Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Dlaczego kobiety po menopauzie żyją tak długo?

Rekomendowane odpowiedzi

Długie życie kobiet po menopauzie to zagadka. Zgodnie z obowiązującym poglądem, selekcja naturalna promuje tych, którzy mogą się rozmnażać. Dlatego w pierwszych dekadach życia nasze organizmy lepiej radzą sobie z pojawiającymi się mutacjami. Jednak po okresie reprodukcyjnym, mechanizm ochronny zostaje wyłączony, po menopauzie komórki stają się bardziej podatne na mutacje. Dla większości zwierząt oznacza to szybką śmierć. Wyjątkiem są tu ludzie i niektóre walenie.

Z ewolucyjnego punktu widzenia długie życie po menopauzie to zagadka. Nie zyskujemy bowiem kilku lat. Mamy cały długi etap życia po przekroczeniu zdolności do reprodukcji, mówi profesor antropologii Michael Gurven z Uniwersytetu Kalifornijskiego w Santa Barbara. Naukowiec przywołuje tutaj przykład naszych bliskich krewnych, szympansów, u których dobrze widać związek pomiędzy płodnością a zdolnością do przeżycia, a długość życia tych zwierząt spada wraz ze spadkiem zdolności reprodukcyjnych.

Gurven we współpracy z ekologiem populacyjnym Razielem Davisonem opublikowali artykuł, w którym rzucają wyzwanie przekonaniu, że po okresie reprodukcyjnym ochronne mechanizmy doboru naturalnego u ludzi zostają wyłączone. Obaj uczeni stwierdzają, że długie życie po utracie zdolności do reprodukcji nie jest u ludzi tylko i wyłącznie zasługą postępów medycyny i opieki zdrowotnej.

Wyewoluowaliśmy możliwość długiego życia, stwierdza Gurven. A długie życie wynika z wartości, jakie niesie ze sobą obecność starszych dorosłych. Taki pomysł krążył wśród naukowców już od pewnego czasu. My go sformalizowaliśmy i zadaliśmy pytanie, jakie wartości – z ewolucyjnego punktu widzenia – wnoszą starsi dorośli.

Jeną z prób wyjaśnienia tego fenomenu jest hipoteza babki, mówiąca, że kobieta po menopauzie, pomagając swojej córce w wychowaniu dzieci, wpływa na polepszenie jej kondycji fizycznej, dzięki czemu córka może mieć więcej dzieci, co z kolei zwiększa szanse przetrwania genów matki. Zatem nie chodzi tutaj o reprodukcję, a rodzaj pośredniej reprodukcji. Możliwość wykorzystania całej puli zasobów, a nie tylko zasobów własnych, zupełnie zmienia reguły gry wśród zwierząt społecznych, wyjaśnia Davison.

Gurven i Davison przyjrzeli się elementowi, który jest motywem centralnym hipotezy babki, czyli transferom międzygeneracyjnym, a mówiąc prościej – dzieleniem się zasobami pomiędzy młodszym a starszym pokoleniem.

Najbardziej widocznym przejawem takiego dzielenia się zasobami jest podział pożywienia wśród społeczności nieuprzemysłowiony. Od chwili urodzin muszą minąć mniej więcej 2 dekady, by człowiek zaczął wytwarzać więcej pożywienia, niż sam konsumuje, mówi Gurven, który badał demografię i gospodarkę boliwijskiego ludu Tsimane i innych rdzennych mieszkańców Ameryki Południowej. Zanim dzieci dorosną, będą w stanie o siebie zadbać i stać się produktywnym członkiem społeczności, dorośli muszą włożyć dużo wysiłku w zdobycie i przygotowanie dla nich żywności. Jest to możliwe dlatego, że dorośli są w stanie wytworzyć więcej żywności niż tylko na własne potrzeby. Ta zdolność pojawiła się w naszej ewolucji już dawno i jest obecna też w wysoko rozwiniętych społeczeństwach przemysłowych.

W naszym modelu duże nadwyżki wytwarzane przez dorosłych pozwalają poprawić szanse na przeżycie i płodność krewniaków oraz innych członków grupy, którzy również dzielą się swoimi nadwyżkami. Patrząc tylko z punktu widzenia produkcji żywności widzimy, że najwyższą wartość mają tutaj ludzie w wieku rozrodczym. Gdy jednak wykorzystaliśmy dane demograficzny i gospodarcze z wielu różnych społeczności łowiecko-zbierackich i rolniczych okazało się, że nadwyżki dostarczane przez starszych dorosłych, również mają pozytywny wpływ na grupę. Obliczyliśmy, że dłuższe życie starszych osób ma wartość kilku dodatkowych dzieci, mówi Davison.

Okazuje się jednak, że osoby starsze mają swoją wartość, ale tylko do pewnego wieku. Nie wszystkie babki są cenne. Mniej więcej w połowie 7. dekady życia w społecznościach łowiecko-zbierackich i rolniczych starsze osoby zaczynają zużywać więcej zasobów, niż dostarczają. Ponadto w tym czasie większość ich wnuków już ich nie potrzebuje, więc grupa krewnych, która korzysta z ich pomocy jest mała.

Żywność to jednak nie wszystko. Starsze osoby uczą i socjalizują dzieci. To właśnie na tym polega ich największa wartość. Nie dostarczają już tak dużych nadwyżek żywności, jak kiedyś, ale dzielą się z wnukami swoimi umiejętnościami i doświadczeniem oraz odciążają rodziców od opieki nad dziećmi. Gdy zdasz sobie sprawę z tego, że starsi pomagają młodszemu pokoleniu w utrzymaniu kondycji pozwalającej mu na wytwarzanie dużych nadwyżek, łatwo zauważysz, że to spora korzyść z obecności starszych aktywnych osób. Starsi nie tylko dają coś grupie, ale ich użyteczność dla grupy powoduje, że i oni coś od niej otrzymują. Czy to nadwyżki żywności, czy to ochronę i opiekę. Innymi słowy, współzależności występują w obie strony, od starszych do młodszych i od młodszych do starszych, wyjaśnia Gurven.

Zdaniem obu badaczy, w toku ludzkiej ewolucji stosowane przez naszych przodków strategie i długoterminowe inwestycje w kondycję grupy skutkowały zarówno wydłużonym dzieciństwem jak i niezwykle długim życiem po okresie rozrodczym. Dla kontrastu możemy się tutaj przyjrzeć szympansom, które są w stanie zadbać o siebie już przed osiągnięciem 5. roku życia.

Jednak zdobywanie przez nie pokarmu wymaga mniejszych umiejętności i wytwarzają one niewielkie nadwyżki. Mimo to, jak sugerują Gurven i Davison, gdyby przodek szympansa szerzej dzielił się żywnością z grupą, także i u nich pojawiłyby się mechanizmy preferujące długowieczność. To pokazuje, że naszą długowieczność zawdzięczamy współpracy. Szympansie babki rzadko robią coś dla swoich wnucząt, dodaje Gurven.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Dzikie szympansy spożywają dziennie 14 gramów etanolu. Biorąc pod uwagę masę ich ciała, to odpowiednik ponad dwóch drinków. Takie wnioski płyną z pierwszych badań, podczas których udało się zmierzyć zawartość etanalu w owocach dostępnych szympansom w ich naturalnym środowisku w Afryce. Nie wiemy, czy małpy celowo spożywają bardziej dojrzałe owoce, z większą zawartością alkoholu. Jednak ich powszechna dostępność w środowisku sugeruje, że alkohol jest zwykłą częścią ich diety i że prawdopodobnie był też częścią diety przodków człowieka.
      Uczeni z USA i Wybrzeża Kości Słoniowej pobrali próbki owoców z Ngogo w Ugandzie i Taï na Wybrzeżu Kości Słoniowej. Owoce zawierały 0,26% alkoholu wagowo. Prymatolodzy badający szympansy w tych miejscach stwierdzili, że zwierzęta zjadają średnio dziennie 4,5 kilograma owoców, co stanowi około 75% ich diety. Na tej podstawie badacze mogli wyliczyć ilość spożywanego alkoholu.
      Jeśli szympansy wybierają losowo owoce, tak jak my to robiliśmy, to 14 gramów jest ich przeciętnym dziennym spożyciem. Jeśli jednak wybierają bardziej dojrzałe owoce, to te 14 gramów stanowi ostrożnie wyliczoną dolną granicę spożycia, mówi profesor Robert Dudley z Uniwersytetu Kalifornijskiego w Berkeley.
      Zwierzęta spożywają alkohol w owocach stopniowo przez cały dzień i nie wykazują żadnych objawów z tym wiązanych. Jednak ciągłe wystawienie na oddziaływanie alkoholu wskazuje, że tak samo było z naszymi przodkami. To jednocześnie wskazówka, że codziennych dawek alkoholu brakuje zarówno w diecie szympansów trzymanych w niewoli, jak i ludzi. Prawdopodobnie ludzka skłonność do spożywania alkoholu wzięła się z tej codziennej ekspozycji, na jaką byli wystawieni nasi wspólni przodkowie z szympansami, dodaje Aleksey Maro z UC Berkeley.
      Profesor Dudley już 20 lat temu zaczął podejrzewać, że H. sapiens lubi alkohol, gdyż odziedziczył to zamiłowanie po przodkach. Przed 11 laty opisał swoją teorię w książce The Drunken Monkey: Why We Drink and Abuse Alcohol. Spotkała się ona z krytyką ze strony wielu naukowców, przede wszystkim prymatologów, którzy stwierdzili, że naczelne nie jedzą sfermentowanych owoców.
      Jednak z czasem podejście innych specjalistów zaczęło się zmieniać. Pojawiało się coraz więcej doniesień o małpach jedzących sfermentowane owoce, publikowano artykuły dotyczące trzymanych w niewoli naczelnych i ich skłonności do alkoholu. Na przykład w 2016 roku naukowcy z Dartmouth University donieśli, że gdy palczakom madagaskarskim i kukangom oferowano sok z różną zawartością alkoholu, zwierzęta najpierw wypijały ten, gdzie alkoholu było najwięcej.
      Nie tylko ssaki lubią alkohol. Pół roku temu Dudley i jego zespół opublikowali wyniki badań, z których dowiadujemy się, że w piórach 10 z 17 gatunków ptaków, które zbadali, znajdowały się metabolity wtórne alkoholu. To wskazuje, zdaniem uczonego, że alkohol spożywają wszystkie zwierzęta, których podstawę diety stanowią owoce.
      Dudley uważa, że zwierzęta mogą celowo wybierać bardziej dojrzałe owoce, gdyż dostarczają one więcej energii, a dodatkowo alkohol może zwiększać przyjemność z jedzenia. Niewykluczone też, że dzielenie się owocami z wysoką zawartością alkoholu ma znacznie przy zacieśnianiu więzi społecznych u zwierząt.
      Badacze zauważyli, że najchętniej jedzone przez szympansy owoce – Ficusa mucuso w Ngogo oraz Parinari excelsa w Taï – zawierają najwięcej alkoholu ze wszystkich, jakie spożywają. Całe grupy samców gromadzą się w koronach F. mucuso i jedzą owoce zanim wybiorą się na wspólny patrol swojego terytorium. Z kolei owoce P. excelsa są chętnie jedzone też przez słonie, o których wiadomo, że pociąga je alkohol.
      Więcej o szympansach spożywających alkohol: Ethanol ingestion via frugivory in wild chimpanzees.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Menopauzalny zespół moczowo-płciowy (GSM) dotyka do 85% kobiet po 40. roku życia. Spowodowany jest on ze spadkiem poziomu estrogenu i wiąże się z takimi objawami jak suchość pochwy, świąd, pieczenie, bolesność przy stosunku, krwawienia, częstomocz, nawracające infekcje układu moczowego i inne. Aż 65% kobiet, które go doświadczają, nie jest usatysfakcjonowanych obecnie stosowanymi metodami leczenia i środkami zaradczymi. Na Uniwersytecie Kalifornijskim w San Diego powstał właśnie hydrożel, który nie zawiera hormonów, a jego celem jest złagodzenie negatywnych skutków menopauzy.
      Podczas menopauzy u kobiety zachodzą zmiany hormonalne, które mają wpływ na wiele organów, w tym na pochwę i układ moczowy. Tkanki pochwy stają się cieńsze, kurczą się naczynia krwionośne, tkanka łączna oraz mięśnie gładkie, które odpowiadają za poszerzenie pochwy w trakcie stosunku i utrzymują takie organy jak pęcherz moczowy, macica i odbyt. Dlatego też jeszcze do niedawna menopauzalny zespół moczowo-płciowy nazywany był atrofią pochwy. Jakby tego było mało dochodzi do zmian komórek odpornościowych w układzie moczowym. Zaczynają one produkować białka prozapalne.
      Obecnie złotym standardem leczenia GSM jest terapia niskimi dawkami hormonów. Przeciwdziała ona zmniejszeniu grubości wyściółki pochwy, jednak nie wpływa na głębiej położone mięśnie, które odpowiadają za utrzymanie struktury i funkcjonowania pochwy. Ponadto wielu lekarzy oraz pacjentek nie chce stosować tej terapii w obawie przed rozwojem hormonozależnych nowotworów.
      Na łamach Advanced Materials ukazał się artykuł, w którym naukowcy z UC San Diego i University of Colorado poinformowali o stworzeniu hydrożeli z macierzy pozakomórkowej do leczenia GSM. Już wcześniej materiały tego typu wykazały swą skuteczność w leczeniu tkanek serca po zawale, niedawno pomyślnie przeszły pierwszą fazę badań klinicznych w tych zastosowaniach.
      Nie szukamy zastępstwa dla terapii estrogenowej. Chcemy dać wybór pacjentkom i lekarzom, którzy albo nie chcą korzystać z takiej terapii, albo dla których jest ona niewystarczająca, mówi główna autorka badań, Emma Zelus.
      Naukowcy na razie przeprowadzili badania na szczurach. Wykorzystali 24 samice w okresie menopauzy. Części z nich codziennie aplikowali dopochwowo hydrożel, część otrzymywała kolagen lub sól fizjologiczną. Po 14 dniach pobrano próbki tkanek do badań. Okazało się, że u samic, które otrzymywały hydrożel, tkanka pochwy bardziej przypominała tkankę pochwy samic, które nie przeszły menopauzy. Ponadto u zwierząt tych zauważono zwiększenie grubości mięśni gładkich. Bliższe badania pokazały, że makrofagi zareagowały na obecność żelu wspomagając naprawę tkanek. Co ważne, nie zauważono żadnych negatywnych oznak podawania żelu.
      W następnym kroku naukowcy przeprowadzą szerzej zakrojone badania, w czasie których przetestują skuteczność różnych dawek hydrożelu i ich wpływ w dłuższym czasie. Chcą też sprawdzić, czy żel można podawać rzadziej, raz lub dwa razy w tygodniu, zamiast codziennej aplikacji.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wysoki odsetek ludzi cierpiących na zaburzenia ze spektrum autyzmu to skutek tego, w jaki sposób ewoluowaliśmy, uważają autorzy artykułu opublikowanego na łamach Molecular Biology and Evolution. Wielu naukowców uważa, że autyzm i schizofrenia mogą być zaburzeniami dotykającymi wyłącznie ludzi. Bardzo rzadko bowiem u zwierząt innych niż H. sapiens obserwuje się zachowania identyfikowane z tymi chorobami.
      Dzięki postępom w analizie RNA pojedynczych komórek wiemy, że komórki mózgu ssaków są bardzo zróżnicowane, a w mózgu ludzi zaszły szybkie zmiany genetyczne, których nie obserwujemy u innych ssaków.
      Autorzy najnowszych badań, Alexander L. Starr i Hunter B. Fraser z Uniwersytetu Stanforda przeanalizowali niedawno opublikowane bazy danych zawierające informacje z sekwencjonowania pojedynczych jąder komórkowych (scRNA-seq) w trzech różnych obszarach mózgu. Zauważyli, że najpowszechniej występujące w zewnętrznej warstwie mózgu neurony L2/3 IT ewoluowały u ludzi wyjątkowo szybko w porównaniu z innymi małpami. A co najbardziej zaskakujące, ta błyskawiczna ewolucja wiązała się z olbrzymimi zmianami w genach, które powiązane są z autyzmem. Prawdopodobnie cały proces napędzany był selekcją naturalną właściwą wyłącznie dla rodzaju Homo.
      Starr i Fraser uważają, że wyniki ich badań bardzo silnie wskazują, że podczas ewolucji człowieka doszło do pojawienia się genów odpowiedzialnych za autyzm. Jednak przyczyny takiej zmiany nie są jasne. Nie wiemy, jakie korzyści z tych genów mogli odnosić nasi przodkowie. Niewiele bowiem wiemy o anatomii mózgu, połączeniach między neuronami czy zdolnościach poznawczych przodków H. sapiens. Badacze spekulują, że być może geny powodujące autyzm odpowiadają też za spowolnienie rozwoju, dzięki czemu nasze mózgi po urodzeniu rozwijają się wolniej niż na przykład mózgu szympansów. Warto też zauważyć, że autyzm i schizofrenia często zaburzają właściwe człowiekowi umiejętności wytwarzania i rozumienia mowy.
      Być może geny, które powodują autyzm, dały nam korzyść w postaci spowolnienia rozwoju mózgu, co umożliwiło wykształcenie się złożonego języka oraz bardziej złożonych procesów myślowych. Nasze badania wskazują, że te same zmiany genetyczne, które spowodowały, że ludzki mózg jest unikatowy, powodują też, że jest bardziej neuroróżnorodny, mówi Starr.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Państwowego Instytutu Geologicznego-Państwowego Instytutu Badawczego i Uniwersytetu Jagiellońskiego dokonali przełomowego odkrycia, zmieniającego pogląd nauki na ewolucję kręgowców lądowych. W Górach Świętokrzyskich znaleźli najstarsze ślady poruszania się kręgowców na lądzie. Ślady pochodzą sprzed ponad 400 milionów lat i dowodzą, że pierwszymi kręgowcami, które próbowały wyjść na ląd, były ryby dwudyszne. Ta próba zasiedlenia nowego środowiska miała miejsce 10 milionów lat przed wyjściem na ląd terapodów – ostatecznych zwycięzców wyścigu o poruszanie się suchą stopą.
      Piotr Szrek, Katarzyna Grygorczyk, Sylwester Salwa, Patrycja Dworczak i Alfred Uchman znaleźli skamieniałe ślady, które nazwali Reptanichnus acutori czyli „Czołgający się pionier”. Całość terminologii naukowej brzmi Reptanichnus acutori igen. et isp. nov., gdzie „Reptanichus” to nazwa nowego ichnorodzaju, czyli rodzaju wyznaczonego na podstawie śladów kopalnych, a nie skamieniałych szczątków zwierzęcia; „acutori” to nazwa gatunku, a zapis „igen. et isp. nov.” oznacza nowy ichnorodzaj i nowy ichnogatunek.
      Ślad składa się z elementów o różnej morfologii. Badacze zidentyfikowali odciski płetw, tułowia, ogona i pyska, którym zwierzę podpierało się, by podciągnąć resztę ciała. Analiza śladów przyniosła dodatkowe sensacyjne odkrycie. Okazało się, że wędrujące po lądzie ryby niemal zawsze podpierały się pyskiem, przechylając głowę na lewą stronę. To sugeruje dominację prawej półkuli mózgu i jest najstarszym dowodem na lateralizację u kręgowców. Może to też oznaczać, że preferencja dla lewej strony, która u ludzi została wyparta przez praworęczność, pojawiła się ewolucyjnie wcześniej.
      Niezwykłe ślady najpierw zauważono w murach słynnego zamku Krzyżtopór. Wówczas naukowcy rozpoczęli badania w regionie i odkryli kolejne ślady w niewielkim opuszczonym kamieniołomie we wsi Ujazd.
      Interpretację odnośnie powstania skamieniałości potwierdzają eksperymenty ze współcześnie żyjącymi rybami dwudysznymi z Afryki. Pozostawiają one niemal identyczne ślady.
      Więcej na temat badań przeczytasz w artykule Traces of dipnoan fish document the earliest adaptations of vertebrates to move on land.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na opisywanej przez nas przed kilkunastoma miesiącami planecie hyceańskiej K2-18b odkryto najsilniejsze dotychczas wskazówki mogące świadczyć o istnieniu życia pozaziemskiego. Naukowcy z Uniwersytetu w Cambridge poinformowali właśnie, że dzięki Teleskopowi Webba zauważyli w atmosferze K2-18b sygnały świadczące o istnieniu tam siarczku dimetylu (DMS) i/lub disiarczku dimetylu (DMDS). Na Ziemi związki te powstają wyłącznie w wyniku działania organizmów żywych. To oznacza, że albo na K2-18b istnieje życie, albo zachodzi tam nieznany nauce proces chemiczny, albo... że to fałszywy sygnał.
      W przypadku opisywanych tutaj badań wartość odchylenia standardowego wynosi 3 sigma, co oznacza, że istnienie 0,3-procentowe prawdopodobieństwo, iż zaobserwowany sygnał jest fałszywy. Wartość odchylenia standardowego, od której w nauce ogłaszane jest odkrycie wynosi 5 sigma. Przy tym poziomie prawdopodobieństwo, iż zarejestrowane dane są przypadkowym fałszywym sygnałem wynosi poniżej 0,00006%. Naukowcy z Cambridge mówią, że potrzebują od 16 do 24 godzin obserwacji za pomocą Teleskopu Webba, by (ewentualnie) zwiększyć poziom ufności do 5 sigma.
      K2-18b krąży w ekosferze chłodnego karła K2-18 znajdującego się w odległości 120 lat świetlnych od Ziemi w Gwiazdozbiorze Lwa. Jest ona 8,6 razy bardziej masywna od Ziemi. Rozmiary plasują ją pomiędzy wielkością Ziemi a Neptuna. W Układzie Słonecznym nie istnieje żaden „mini-Neptun”, dlatego słabo rozumiemy takie światy. Jeśli zaś K2-18b jest rzeczywiście planetą hyceańską, jeśli taki typ planet istnieje, mogą być one dobrym celem poszukiwania życia. Tradycyjnie życia poszukiwaliśmy na mniejszych skalistych planetach, jednak atmosfery większych światów hyceańskich jest łatwiej badać, mówił przed kilkunastoma miesiącami Nikku Madhusudhan z Uniwersytetu w Cambridge.
      Termin „planety hyceańskie" został ukuty – na podstawie badań K2-18b – przez naukowców z Uniwersytetu w Cambridge na określenie hipotetycznej klasy planet. Pochodzi od połączenia słów „wodór” (hydrogen) i „ocean”. Oznacza potencjalnie nadające się do zamieszkania gorące planety pokryte oceanami, które posiadają bogatą w wodór atmosferę. Zdaniem brytyjskich uczonych mogą być bardziej powszechne niż planety typu ziemskiego.
      Badacze z Cambridge obserwują K2-18b za pomocą Teleskopu Webba. Już wcześniej za pomocą instrumentów NIRISS i NIRSpec zauważyli sygnały, które mogą pochodzić od siarczku dimetylu. Niedawno potwierdzili je za pomocą instrumentu MIRI. To niezależna linia dowodowa, zdobyta za pomocą instrumentu, którego wcześnie nie wykorzystywaliśmy. Działa on w zakresie fal świetlnych, który nie nakłada się na zakres wcześniej używanych instrumentów. Sygnał jest silny i czytelny, mówi główny autor badań, profesor Nikku Madhusudhan.
      Dotychczas przeprowadzone badania wskazują jednak, że poziom DMS/DMDS w atmosferze K2-18b jest tysiące razy wyższy, niż w atmosferze Ziemi i wynosi ponad 10 części na milion. Wcześniejsze prace teoretyczne wskazywały, że atmosfera planet hyceańskich może być bogata w gazy zawierające siarkę. Nasze obserwacje zgadzają się z teoretycznymi obliczeniami. Biorąc pod uwagę to, co dotychczas wiemy o tej planecie, najbardziej możliwym scenariuszem jest świat hyceański, w którego oceanie istnieje życie, dodaje uczony.
      Naukowiec studzi jednak zapał i podkreśla, że jest zbyt wcześnie, by ogłaszać istnienie życia na egzoplanecie. Może bowiem istnieć nieznany nam proces chemiczny, w wyniku którego powstają DMS i DMDS. Dlatego też chce przeprowadzić eksperymenty i badania teoretyczne, by sprawdzić, czy wspomniane związki mogą powstawać w procesach nie związanych z biologią i w takiej ilości, jak zostały zaobserwowane.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...