Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Powstał superwydajny fotoniczny układ scalony wykorzystujący polaryzację światła
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Badania Maika Larooija i Pettera Törnberga z Uniwersytetu w Amsterdamie pokazują, że negatywny wpływ na społeczeństwo i polaryzacja w mediach społecznościowych nie wynikają wyłącznie z działania algorytmów, lecz mogą być zakorzenione w samej strukturze i dynamice platform. Nadzieje na to, że media społecznościowe staną się platformami prawdziwej debaty i wymiany poglądów rozwiały się już dawno. Coraz więcej dowodów wskazuje, że w praktyce sprzyjają one wzmacnianiu już posiadanych poglądów, polaryzacji, koncentracji wpływu w rękach wąskiej elity oraz nadreprezentacji głosów skrajnych. Larooij i Törnberg postanowili sprawdzić, czy zmiany w architekturze platform mogą ograniczyć te zjawiska.
Chcąc uniknąć ograniczeń badań obserwacyjnych wynikających z angażowania ochotników, naukowcy stworzyli model, w którym udział wzięły boty utworzone w oparciu o ChatGPT-4o mini. Funkcjonowały one w uproszczonym środowisku przypominającym sieć społecznościową. Każdy z botów posiadał szczegółowy profil zbudowany na podstawie danych z American National Election Studies. Boty mogły publikować posty, udostępniać cudze treści i obserwować innych.
Mimo prostoty, w modelu pojawiły się znane z rzeczywistości zjawiska: boty miały tendencję do obserwowania tych profili, z którymi dzieliły poglądy, a te boty, które wygłaszały bardziej radykalne opinie miały więcej obserwujących. To pokazuje, że nawet w bardzo uproszczonym środowisku społecznym istnieje tendencja do kierowania większej uwagi na radykałów, zatem do coraz większej polaryzacji. Sądziliśmy, że polaryzacja jest czymś napędzanym przez algorytmy platform społecznościowych, że platformy celowo tak zostały zaprojektowane, żeby maksymalizować zaangażowanie, żeby wkurzyć użytkownika. Dlatego zaprojektowaliśmy najprostszą z możliwych platform, a mimo to uzyskaliśmy takie wyniki – stwierdzają autorzy badań.
Badacze postanowili przetestować sześć scenariuszy, które miały zaradzić występowaniu niekorzystnych zjawisk i poprawić jakość debaty publicznej. Pierwszy polegał na wyświetlaniu postów w porządku chronologicznym, podczas drugiego ograniczono widoczność postów o dużej liczbie udostępnień, a w trzecim promowano wpisy o przeciwnym zabarwieniu politycznym. Czwarty scenariusz polegał na preferowaniu treści o korzystnych cechach (jak np. empatia czy logiczne argumentowanie), w scenariuszu piątym ukryto statystyki postów i użytkowników, a w szóstym usunięto z systemu rekomendacji biogramy użytkowników. Mimo to znowu uzyskano niekorzystne wyniki. To sugeruje, że wynikają one z jakiegoś podstawowego zjawiska związanego z zachowaniem, z umieszczeniem postów, udostępnianiem ich, obserwowaniem innych – komentują naukowcy.
Największy wpływ na działania botów miało chronologiczne wyświetlanie postów. Posty mniej popularne zyskały więcej uwagi. Paradoksalnie jednak doprowadziło to do wzmocnienia ekstremistycznego przekazu. Być może radykalne treści bardziej wyróżniały się na neutralnym tle innych postów. Również ograniczenie wyświetlania najpopularniejszych postów skutkowało zwiększeniem uwagi skierowanej na posty mniej popularne, ale nie miało to wpływu na żadne inne elementy. Podsuwanie użytkownikom postów o odmiennych poglądach politycznych nie wpłynęło na zachowania botów. Nadal angażowały się one w interakcje z wpisami zgodnymi z ich poglądami. Potwierdza to wnioski z innych badań pokazujące, że sama prezentacja odmiennych poglądów nie wystarcza, by przeciwnik brał je pod uwagę.
Pewien pozytywny skutek miało promowanie postów wysokiej jakości. Zmniejszyło ono zaangażowanie botów po własnej stronie ideologicznej i w niewielkim stopniu zwiększyło zaangażowanie po stronie przeciwnej. Jednocześnie jednak doprowadziło to do zwiększenia nierówności w odbiorze postów - boty zaczęły zwracać uwagę na wysokiej jakości posty tworzone przez „elitę”.
Ukrywanie statystyk postów i statystyk użytkowników skutkowało jedynie nieznacznym wzrostem uwagi w kierunku mniej popularnych postów i użytkowników. Jednostronne zaangażowanie ideologiczne nie uległo zmianie.
Symulacja pokazała, że nawet bez skomplikowanych algorytmów optymalizujących zaangażowanie, podstawowe mechanizmy działania mediów społecznościowych mogą prowadzić do tych samych patologii, co w prawdziwych serwisach. Kluczowy okazał się mechanizm sprzężenia zwrotnego między emocjonalnie nacechowanym zaangażowaniem a wzrostem sieci kontaktów.
Udostępnienia treści nie tylko zwiększały zasięg sieci danego użytkownika, ale też przyciągały nowych obserwujących, co w kolejnych iteracjach wzmacniało widoczność podobnych treści i użytkowników. W ten sposób utrwalała się polaryzacja, nierówny rozkład uwagi i przewaga głosów skrajnych.
Badania sugerują, że popularne wyjaśnienie problemów mediów społecznościowych poprzez „winę algorytmów” jest uproszczone. Algorytmy mogą pogłębiać zjawiska, ale ich źródła tkwią głębiej — w sposobie, w jaki platformy są zaprojektowane do nagradzania i reprodukowania emocjonalnych interakcji. To oznacza, że kosmetyczne zmiany w logice rekomendacji czy układzie interfejsu prawdopodobnie nie wystarczą. Jeśli celem jest stworzenie przestrzeni sprzyjającej konstruktywnej wymianie poglądów, konieczne może być gruntowne przeprojektowanie mechaniki widoczności i interakcji, nawet kosztem spadku zaangażowania czy liczby aktywnych użytkowników.
Autorzy podkreślają, że ich symulacja ma charakter wstępny i nie uwzględnia czynników takich jak doświadczenie użytkownika czy biznesowa opłacalność platform. Niemniej metoda generatywnej symulacji społecznej otwiera nowe możliwości testowania hipotetycznych scenariuszy w kontrolowanych warunkach. Choć wiąże się to z wyzwaniami — od kalibracji wyników po ryzyko stronniczości modeli — może być cennym narzędziem do badania tego, co naprawdę napędza dynamikę życia społecznego w sieci.
Rozwiązanie problemów polaryzacji napędzanej przez platformy społecznościowe może wymagać odważnych, strukturalnych reform. Nie chodzi tylko o naprawianie algorytmów, ale o zmianę samej logiki, według której platformy społecznościowe kształtują i nagradzają ludzkie interakcje. To być może jedyne rozwiązanie, które daje realną szansę na poprawę jakości debaty publicznej online.
Wyniki badań zostały opublikowane w serwisie arXiv.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Stała struktury subtelnej (α) to być może najważniejsza ze stałych we wszechświecie. Opisuje siłę oddziaływań elektromagnetycznych i jest kombinacją trzech podstawowych stałych przyrody – ładunku elektronu, stałej Plancka i prędkości światła. Istnieje wiele metod pomiaru tej stałej. Zwykle pomiary takie są dokonywane pośrednio, poprzez pomiar innych właściwości fizycznych i obliczenie na tej podstawie wartości α. Na Uniwersytecie Technicznym w Wiedniu (TU Wien) przeprowadzono eksperyment, w trakcie którego udało się po raz pierwszy bezpośrednio zmierzyć wartość stałej struktury subtelnej.
Stała struktury subtelnej opisuje siłę oddziaływań elektromagnetycznych. Wskazuje, z jaką siłą naładowane cząstki, takie jak elektrony, reagują z polem magnetycznym. Jej wartość wynosi 1/137, gdyby była nieco inna – powiedzmy 1/136 – świat, jaki znamy, nie mógłby istnieć Atomy miałyby inne rozmiary, wszystkie procesy chemiczne przebiegałyby inaczej, inaczej też przebiegałyby reakcje termojądrowe w gwiazdach. Co interesujące, naukowcy spierają się o to, czy stała struktury subtelnej jest rzeczywiście stałą, czy też w ciągu miliardów lat jej wartość uległa niewielkim zmianom.
Większość ważnych stałych fizycznych to wartości wymiarowe, wyrażane w konkretnych jednostkach, na przykład prędkość światła wyrażamy w metrach na sekundę. Stała struktury subtelnej jest inna. Nie ma tutaj jednostek, to po prostu liczba. Jest to stała bezwymiarowa, wyjaśnia profesor Andrei Pimenow z Instytutu Fizyki Ciała Stałego na TU Wien.
Pimenov oraz jego koledzy z TU Wien i naukowcy z Uniwersytetu Kalifornijskiego w Los Angeles przeprowadzili pierwszy eksperyment, podczas którego możliwe było dokonanie bezpośrednich pomiarów wartości stałej struktury subtelnej.
Światło lasera jest spolaryzowane liniowo, oscyluje wertykalnie. Gdy podczas eksperymentu trafia na dysk z materiału o grubości liczonej w nanometrach, jego polaryzacja ulega zmianie. Samo w sobie nie jest to niczym niezwykłym. Wiele materiałów powoduje zmianę polaryzacji światła laserowego. Dzięki interakcji fotonów z polem elektromagnetycznym można polaryzację można obracać. Przy silnych polach magnetycznych i w niskich temperaturach pojawia się kwantowy efekt Halla, a zmiany polaryzacji są proporcjonalne do stałej struktury subtelnej. Jednak konieczność używania silnego pola magnetycznego powoduje, że trzeba uwzględnić je w równaniach opisujących α, co utrudnia przygotowanie eksperymentu.
Podczas ostatniego eksperymentu naukowcy wykorzystali światło terahercowego lasera, które nakierowali na cienki dysk izolatora topologicznego o wzorze chemicznym (Cr0.12Bi0.26Sb0.62)2Te3. Materiał zawiera chrom, ma więc wbudowane pole magnetyczne. Gdy naukowcy przyjrzeli się zmianie polaryzacji światła po przejściu przez dysk okazało się, że doszło do skokowej, a nie płynnej, zmiany kąta polaryzacji i wynosiła ona tyle, ile wartość α. Stała struktury subtelnej jest tutaj natychmiast widoczna jako kąt, cieszy się Pimenov.
I mimo że pomiary te nie dały tak dokładnego wyniku, jak pomiary pośrednie, to – jak podkreśla Pimenov – główną korzyścią jest tutaj możliwość otrzymania podstawowej stałej fizycznej z bezpośredniego eksperymentu, a nie poleganie na innych pomiarach i precyzji kalibracji sprzętu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W piśmie Energy & Environmental Science ukazał się artykuł opisujący mikroprocesor zasilany procesem fotosyntezy. Twórcami niewielkiego systemu są naukowcy z University of Cambridge, a ich procesor pracuje bez przerwy od ponad roku. Ich badania dają nadzieję na stworzenie stabilnego, odnawialnego źródła zasilania dla niewielkich urządzeń.
Wielkość całego systemu jest porównywalna z rozmiarami baterii AA. W jego skład wchodzą glony z rodzaju Synechocystis, niewielka aluminiowa elektroda i mikroprocesor. Całość zbudowana jest z tanich, powszechnie dostępnych i w większości poddających się recyklingowi materiałów. Twórcy systemu mówią, że najbardziej się on przyda w miejscach, gdzie brak jest dostępu do sieci energetycznych, a potrzebne są niewielkie ilości energii np. do zasilania czujników.
Rozrastający się Internet of Things zwiększa zapotrzebowanie na energię elektryczną. Myślimy, że mamy tutaj rozwiązanie pozwalające na generowanie jej niewielkich ilości na bieżące potrzeby, mówi jeden z twórców systemu, profesor Christopher Howe. W naszym systemie nie występuje problem wyczerpania energii, gdyż do jej wytwarzania wykorzystywane jest światło słoneczne, dodaje.
Podczas prowadzonego właśnie eksperymentu glony wykorzystywane są do zasilania procesora Arm Cortex M0+, który powszechnie wykorzystywany jest w Internet of Things. Zasilany glonami procesor pracował zarówno w warunkach domowych jak i na zewnątrz. Był wystawiony na naturalne zmiany światła i temperatury. Byliśmy pod wrażeniem ciągłości jego pracy. Sądziliśmy, że całość może ulec awarii po kilku tygodniach, ale tak się nie stało, mówi doktor Paolo Bombelli z Wydziału Biochemii University of Cambridge.
Glony nie potrzebują specjalnego odżywiania, gdyż zapewniają sobie – i procesorowi – energię drogą fotosyntezy. I mimo tego, że do jej przeprowadzenia konieczne jest światło, procesor był zasilany nawet w okresach, gdy panowała ciemność. Glony wciąż prowadziły procesy metaboliczne.
Twórcy systemu zwracają uwagę, że zasilanie miliardów Internet of Things stosowanymi obecnie akumulatorami litowo-jonowymi byłoby niepraktyczne. Potrzebne do tego byłoby więcej litu, niż obecnie wytwarzamy. A tradycyjne ogniwa fotowoltaiczne wytwarzane są z użyciem materiałów niebezpiecznych dla środowiska. Stąd potrzeba opracowania nowych, stabilnych i przyjaznych środowisku źródeł energii.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Urządzenia elektroniczne pracują coraz szybciej i szybciej.Jednak w pewnym momencie dotrzemy do momentu, w którym prawa fizyki nie pozwolą na dalsze ich przyspieszanie. Naukowcy z Uniwersytetu Technologicznego w Wiedniu, Uniwersytetu Technologicznego w Grazu i Instytutu Optyki Kwantowej im. Maxa Plancka w Garching określili najkrótszą skalę czasową, w której mogą pracować urządzenia optoelektroniczne.
Podzespoły elektroniczne pracują w określonych interwałach czasowych i z sygnałami o określonej długości. Procesy kwantowo-mechaniczne, które umożliwiają wygenerowanie sygnału, trwają przez pewien czas. I to właśnie ten czas ogranicza tempo generowania i transmisji sygnału. Jego właśnie udało się określić austriacko-niemieckiemu zespołowi.
Naukowcy, chcąc dotrzeć do granic tempa konwersji pól elektrycznych w sygnał elektryczny, wykorzystali impulsy laserowe, czyli najbardziej precyzyjne i najszybsze dostępne nam pola elektromagnetyczne. O wynikach swoich badań poinformowali na łamach Nature Communications.
Badaliśmy materiały, które początkowo w ogóle nie przewodzą prądu, mówi profesor Joachim Burgdörfer z Instytutu Fizyki Teoretycznej Uniwersytetu Technologicznego w Wiedniu. Materiały te oświetlaliśmy ultrakrótkimi impulsami lasera pracującego w ekstremalnym ultrafiolecie. Impulsy te przełączały wzbudzały elektrony, które wchodziły na wyższy poziom energetyczny i zaczynały się swobodnie przemieszczać. W ten sposób laser zamieniał na krótko nasz materiał w przewodnik. Gdy tylko w materiale pojawiały się takie swobodne elektrony, naukowcy z pomocą drugiego, nieco dłuższego impulsu laserowego, przesuwali je w konkretnym kierunku. W ten sposób dochodziło do przepływu prądu elektrycznego, który rejestrowano za pomocą elektrod po obu stronach materiału.
Cały proces odbywał się w skali atto- i femtosekund. Przez długi czas uważano, że zjawiska te powstają natychmiast. Jednak obecnie dysponujemy narzędziami, które pozwalają nam je precyzyjnie badać, wyjaśnia profesor Christoph Lemell z Wiednia. Naukowcy mogli więc odpowiedzieć na pytanie, jak szybko materiał reaguje na impuls lasera, jak długo trwa generowanie sygnału i jak długo sygnał ten trwa.
Eksperyment był jednak obarczony pewną dozą niepewności związaną ze zjawiskami kwantowymi. Żeby bowiem zwiększyć tempo, konieczne były ekstremalnie krótkie impulsy lasera, by maksymalnie często dochodziło do tworzenia się wolnych elektronów. Jednak wykorzystanie ultrakrótkich impulsów oznacza, że nie jesteśmy w stanie precyzyjnie zdefiniować ilości energii, jaka została przekazana elektronom. Możemy dokładnie powiedzieć, w którym momencie w czasie dochodziło do tworzenia się ładunków, ale nie mogliśmy jednocześnie określić, w jakim stanie energetycznym one były. Ciała stałe mają różne pasma przewodzenia i przy krótkich impulsach laserowych wiele z nich jest wypełnianych wolnymi ładunkami w tym samym czacie, dodaje Lemell.
Elektrony reagują różnie na pole elektryczne, a reakcja ta zależy od tego, jak wiele energii przenoszą. Jeśli nie znamy dokładnie tej wartości, nie możemy precyzyjnie ich kontrolować i dochodzi do zaburzeń przepływu prądu. Szczególnie przy bardzo intensywnej pracy lasera.
Okazuje się, że górna granica możliwości kontrolowania procesów optoelektronicznych wynosi około 1 petaherca, mówi Joachim Burgdörfer. To oczywiście nie oznacza, że będziemy kiedykolwiek w stanie wyprodukować układy komputerowe z zegarami pracującymi nieco poniżej petaherca. Realistyczne możliwości technologii są zwykle znacznie niższe niż granice fizyczne. Jednak mimo tego, że nie jesteśmy w stanie pokonać praw fizyki, badania nad limitami fizycznych możliwości pozwalają na ich analizowanie, lepsze zrozumienie i udoskonalanie technologii.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Od dekad tranzystory są mniejsze i mniejsze. Dzięki temu w procesorze możemy upakować ich więcej. To zaś najłatwiejszy sposób na zwiększenie wydajności procesora. Powoli zbliżamy się do momentu, w którym nie będziemy już w stanie zmniejszać długości bramki tranzystora. Niewykluczone, że Chińczycy właśnie dotarli do tej granicy.
Prąd w tranzystorze przepływa pomiędzy źródłem a drenem. Przepływ ten kontrolowany jest przez bramkę, która przełącza się pod wpływem napięcia. Długość bramki to kluczowy czynnik decydujący o rozmiarach tranzystora.
W ostatnich latach naukowcy zaczęli eksperymentować z nowymi materiałami, z których chcą budować elektronikę przyszłości. W obszarze ich zainteresowań jest na przykład grafen – dwuwymiarowy materiał składający się z pojedynczej warstwy atomów węgla – czy disiarczek molibdenu, czyli warstwa atomów molibdenu zamknięta między dwiema warstwami siarki.
Teraz specjaliści z Chin wykorzystali te materiały do zbudowania rekordowo małego tranzystora. Długość jego bramki wynosi zaledwie 0,34 nanometra. To tyle, co średnica atomu węgla.
Nowy tranzystor można porównać do dwóch schodów. Na górnym znajduje się źródło, na dolnym zaś dren. Oba zbudowane są z tytanu i palladu. Powierzchnia schodów działa jak łączący je kanał. Jest ona zbudowana w pojedynczej warstwy disiarczku molibdenu, pod którą znajduje się izolująca warstwa ditlenku hafnu. Wyższy stopień zbudowany jest z wielu warstw. Na samy dole znajduje sie warstwa grafenu, nad nią zaś aluminium pokryte tlenkiem aluminium. Jego zadaniem jest oddzielenie grafenu i disiarczku molibdenu. Jedynym miejscem ich połączenia jest widoczna na grafice niewielka szczelina w wyższym stopniu.
Gdy bramka zostaje ustawiona w pozycji „on” jej długość wynosi zaledwie 0,34 nm. Autorzy nowego tranzystora twierdzą, że nie uda się tej odległości już bardziej zmniejszyć. Na pewno zaś próba zbudowania jeszcze mniejszych tranzystorów będzie wymagała nowatorskiego podejścia do materiałów dwuwymiarowych.
Ze szczegółami pracy zespołu z Tsinghua University można zapoznać się na łamach Nature.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.