Sign in to follow this
Followers
0

Zasilany fotosyntezą procesor działa od roku bez przerwy
By
KopalniaWiedzy.pl, in Technologia
-
Similar Content
-
By KopalniaWiedzy.pl
Światło posiada niezwykle interesującą cechę. Jego fale o różnej długości nie wchodzą ze sobą w interakcje. Dzięki temu można jednocześnie przesyłać wiele strumieni danych. Podobnie, światło o różnej polaryzacji również nie wchodzi w interakcje. Zatem każda z polaryzacji mogłaby zostać wykorzystana jako niezależny kanał przesyłania i przechowywania danych, znakomicie zwiększając gęstość informacji.
Naukowcy z Uniwersytetu Oksfordzkiego poinformowali właśnie o opracowaniu metody wykorzystania polaryzacji światła do zmaksymalizowania gęstości danych. Wszyscy wiemy, że przewaga fotoniki nad elektronika polega na tym, że światło przemieszcza się szybciej i jest bardziej funkcjonalne w szerokich zakresach. Naszym celem było wykorzystanie wszystkich zalet fotoniki połączonych z odpowiednim materiałem, dzięki czemu chcieliśmy uzyskać szybsze i gęstsze przetwarzanie informacji, mówi główny autor badań, doktorant June Sang Lee.
Jego zespół, we współpracy z profesorem C. Davidem Wrightem z University of Exeter, opracował nanowłókno HAD (hybrydyzowane-aktywne-dielektryczne). Każde z nanowłókien wyróżnia się selektywną reakcją na konkretny kierunek polaryzacji, zatem możliwe jest jednoczesne przetwarzanie danych przenoszonych za pomocą różnych polaryzacji. Stało się to bazą do stworzenia pierwszego fotonicznego procesora wykorzystującego polaryzację światła. Szybkość obliczeniowa takiego procesora jest większa od procesora elektronicznego, gdyż poszczególne nanowókna są modulowane za pomocą nanosekundowych impulsów optycznych. Nowy układ może być ponad 300-krotnie bardziej wydajny niż współczesne procesory.
To dopiero początek tego, co możemy osiągnąć w przyszłości, gdy uda się nam wykorzystać wszystkie stopnie swobody oferowane przez światło, w tym polaryzację. Dzięki temu uzyskamy niezwykły poziom równoległego przetwarzania danych. Nasze prace wciąż znajdują się na bardzo wczesnym etapie, dlatego też szacunki dotyczące prędkości pracy takiego układu wciąż wymagają eksperymentalnego potwierdzenia. Mamy jednak niezwykle ekscytujące pomysły łączenia elektroniki, materiałów nieliniowych i komputerów, komentuje profesor Harish Bhakaran, który od ponad 10 lat prowadzi prace nad wykorzystaniem światła w technologiach obliczeniowych.
Ze szczegółami pracy można zapoznać się w artykule Polarisation-selective reconfigurability in hybridized-active-dielectric nanowires opublikowanym na łamach Science Advances.
« powrót do artykułu -
By KopalniaWiedzy.pl
Naukowcy z Uniwersytetu Warmińsko-Mazurskiego w Olsztynie (UWM) pracują nad rozwiązaniami technologicznymi, które pozwolą na hodowlę i wykorzystanie glonów Chlorella na dużą skalę. Zespół skupia się na ich zdolności do pochłaniania dwutlenku węgla i możliwości wykorzystania olejów zawartych w komórkach alg. Jak podkreślono w komunikacie uczelni, już teraz wiadomo, że glony mogą kumulować go o wiele więcej niż inne znane nam rośliny oleiste.
Uzyskane dotąd wyniki są na tyle obiecujące, że rozpoczęły się poszukiwania zakładów przemysłowych do testów. Prowadzone są już pierwsze rozmowy, uczeni zgłosili też swój pomysł do programu ogłoszonego przez Grupę Azoty.
Pożądane właściwości Chlorelli
Glony mają ogromny potencjał. My skupiliśmy się na tych właściwościach Chlorelli, które mogłyby zostać z powodzeniem wykorzystane w przemyśle energetycznym, czyli produkcji biooleju oraz zdolności wychwytywania dwutlenku węgla - tzw. biosekwestracji – wyjaśnia prof. dr. hab. inż. Marcin Zieliński.
Podstawowym celem zespołu jest stworzenie warunków do hodowli w jak najkrótszym czasie i możliwie najniższym kosztem jak największej ilości alg, które będą wychwytywać maksymalnie dużo dwutlenku węgla i przy okazji zgromadzą jak najwięcej biooleju.
Potencjalne zastosowania biooleju
Olej wytwarzany przez glony można wykorzystać w przemyśle spożywczym, a także jako produkt prozdrowotny/suplement diety i biopaliwo. Aby z tego oleju mogło powstać biopaliwo, konieczne jest przeprowadzenie różnych procesów, w wyniku których zostanie uzyskany biodiesel, ale z naszych badań wynika, że jest to jak najbardziej możliwe - wyjaśnia dr Paulina Rusanowska.
Czas na testy w zakładach przemysłowych
Opracowane rozwiązania zostały już przetestowane w warunkach laboratoryjnych. Teraz naukowcy szukają zakładów przemysłowych, które byłyby zainteresowane ich sprawdzeniem. Zależy nam na współpracy z firmami, które np. produkują spaliny i chcą ograniczyć emisję CO2. Glony można wykorzystać do oczyszczania spalin z dwutlenku węgla, a przy okazji uzyskać także inne cenne produkty, jak np. bioolej czy nawóz organiczny z alg - zachwala prof. Zieliński.
Dr Rusanowska dodaje, że na tym etapie można już ze sporą dozą pewności powiedzieć, że możliwe jest opłacalne hodowanie Chlorelli w dużym zakładzie przemysłowym. Należy się, oczywiście, liczyć z wkładem początkowym, bo konieczne jest wybudowanie reaktorów do hodowli oraz zapewnienie światła i pożywki na bazie fosforu i azotu. Wierzymy jednak, że zaproponowane przez nas rozwiązania zafunkcjonują i taka inwestycja będzie się opłacać.
« powrót do artykułu -
By KopalniaWiedzy.pl
Od dekad tranzystory są mniejsze i mniejsze. Dzięki temu w procesorze możemy upakować ich więcej. To zaś najłatwiejszy sposób na zwiększenie wydajności procesora. Powoli zbliżamy się do momentu, w którym nie będziemy już w stanie zmniejszać długości bramki tranzystora. Niewykluczone, że Chińczycy właśnie dotarli do tej granicy.
Prąd w tranzystorze przepływa pomiędzy źródłem a drenem. Przepływ ten kontrolowany jest przez bramkę, która przełącza się pod wpływem napięcia. Długość bramki to kluczowy czynnik decydujący o rozmiarach tranzystora.
W ostatnich latach naukowcy zaczęli eksperymentować z nowymi materiałami, z których chcą budować elektronikę przyszłości. W obszarze ich zainteresowań jest na przykład grafen – dwuwymiarowy materiał składający się z pojedynczej warstwy atomów węgla – czy disiarczek molibdenu, czyli warstwa atomów molibdenu zamknięta między dwiema warstwami siarki.
Teraz specjaliści z Chin wykorzystali te materiały do zbudowania rekordowo małego tranzystora. Długość jego bramki wynosi zaledwie 0,34 nanometra. To tyle, co średnica atomu węgla.
Nowy tranzystor można porównać do dwóch schodów. Na górnym znajduje się źródło, na dolnym zaś dren. Oba zbudowane są z tytanu i palladu. Powierzchnia schodów działa jak łączący je kanał. Jest ona zbudowana w pojedynczej warstwy disiarczku molibdenu, pod którą znajduje się izolująca warstwa ditlenku hafnu. Wyższy stopień zbudowany jest z wielu warstw. Na samy dole znajduje sie warstwa grafenu, nad nią zaś aluminium pokryte tlenkiem aluminium. Jego zadaniem jest oddzielenie grafenu i disiarczku molibdenu. Jedynym miejscem ich połączenia jest widoczna na grafice niewielka szczelina w wyższym stopniu.
Gdy bramka zostaje ustawiona w pozycji „on” jej długość wynosi zaledwie 0,34 nm. Autorzy nowego tranzystora twierdzą, że nie uda się tej odległości już bardziej zmniejszyć. Na pewno zaś próba zbudowania jeszcze mniejszych tranzystorów będzie wymagała nowatorskiego podejścia do materiałów dwuwymiarowych.
Ze szczegółami pracy zespołu z Tsinghua University można zapoznać się na łamach Nature.
« powrót do artykułu -
By KopalniaWiedzy.pl
Microsoft zatrudnił byłego projektanta układów scalonych Apple'a, , który wcześniej pracował też w firmach Arm i Intel, trafił do grupy kierowanej przez Raniego Borkara, zajmującej się rozwojem chmury Azure. Zatrudnienie Filippo wskazuje, że Microsoft chce przyspieszyć prace nad własnymi układami scalonymi dla serwerów tworzących oferowaną przez firmę chmurę. Koncern idzie zatem w ślady swoich największych rywali – Google'a i Amazona.
Obecnie procesory do serwerów dla Azure są dostarczane przez Intela i AMD. Zatrudnienie Filippo już odbiło się na akcjach tych firm. Papiery Intela straciły 2% wartości, a AMD potaniały o 1,1%.
Filippo rozpoczął pracę w Apple'u w 2019 roku. Wcześniej przez 10 lat był głównym projektantem układów w firmie ARM. A jeszcze wcześniej przez 5 lat pracował dla Intela. To niezwykle doświadczony inżynier. Właśnie jemu przypisuje się wzmocnienie pozycji układów ARM na rynku telefonów i innych urządzeń.
Od niemal 2 lat wiadomo, że Microsoft pracuje nad własnymi procesorami dla serwerów i, być może, urządzeń Surface.
Giganci IT coraz częściej starają się projektować własne układy scalone dla swoich urządzeń, a związane z pandemią problemy z podzespołami tylko przyspieszyły ten trend.
« powrót do artykułu -
By KopalniaWiedzy.pl
Powszechna obecność komputerów kwantowych to wciąż dość odległa przyszłość, jednak specjaliści już pracują nad kryptografią postkwantową, czyli technikami kryptograficznymi mającymi na celu uchronienie nas przed atakami przeprowadzanymi za pomocą komputerów kwantowych. Algorytmy takie wymagają jednak olbrzymich mocy obliczeniowych. Teraz naukowcy z Niemiec ogłosili, że stworzyli układ scalony, który bardzo efektywnie wykorzystuje tego typu algorytmy i może rozpocząć epokę kryptografii postkwantowej.
Większość współczesnej kryptografii korzysta z faktu, że komputery klasyczne potrzebują bardzo dużo czasu do rozwiązania złożonych problemów matematycznych, takich jak faktoryzacja (rozkład na czynniki) wielkich liczb. Jednak komputery kwantowe będą radziły sobie z takimi obliczeniami błyskawicznie. A przeprowadzenie udanej faktoryzacji oznacza we współczesnej kryptografii złamanie szyfru.
Dlatego też specjaliści już od lat projektują algorytmy dla kryptografii postkwantowej. To problemy matematyczne, które mają sprawiać dużą trudność zarówno komputerom klasycznym jak i kwantowym. Wiele z nich to algorytmy kratowe. Ta krata to zbiór punktów w przestrzeni z periodyczną strukturą. W strukturze tej można zapisać wektory. Zaszyfrowana wiadomość zależy od jednego z tych punktów/wektorów. Do kraty dodawany jest też losowy szum, a cała trudność polega na tym, by – nie wiedząc jaki szum został dodany – znaleźć oryginalny punkt/wektor za pomocą którego zaszyfrowano wiadomość i go odszyfrować.
Odszyfrowanie tak zabezpieczonej wiadomości jest trudne zarówno dla komputerów klasycznych jak i kwantowych. Jednak wykorzystanie takiego algorytmu wymaga bardzo dużych mocy obliczeniowych. Georg Sigl i jego koledzy z Uniwersytetu Technicznego w Monachium właśnie rozwiązali ten problem.
Wspólnie z Siemensem, Infineonem i Giesecke+Devrient stworzyli układ scalony oparty na opensource'owej architekturze RISC-V. Zarówno układ jak i pracujące na nim oprogramowanie zostały zoptymalizowane pod kątem pracy z algorytmami kratowymi.
W porównaniu z rozwiązaniami bazującymi tylko na oprogramowaniu, nowy układ jest 10-krotnie szybszy podczas pracy z Kyberem, jednym z najbardziej obiecujących algorytmów kratowych. Wykorzystuje też 8-krotnie mniej energii. Co więcej układ jest na tyle elastyczny, że pracuje też z SIKE, innym algorytmem kryptografii postkwantowej, który nie jest algorytmem kratowym. W tym przypadku ma być on 21-krotnie szybszy niż rozwiązania czysto software'owe.
Twórcy nowego układu pracują też nad rozwiązaniem innego problemu bezpieczeństwa – trojanów sprzętowych. To złośliwe elementy sprzętowe celowo wprowadzane do układów scalonych. Sigle i jego grupa wbudowali w swój układ cztery takie trojany.
Aby wiedzieć, czy można zaufać danemu chipowi, musimy posiadać metody jego weryfikacji. Chcemy się dowiedzieć, w jaki sposób można sprawdzić sam sprzęt i wykryć w nim sprzętowe trojany, wyjaśnia Sigl. Każdy z trojanów, które badają specjaliści z Monachium, działa w inny sposób. Jeden może zmniejszać wydajność układu, inny zaś przekazywać dane na zewnątrz. Celem badań jest stworzenie metod identyfikacji tego typu zagrożeń. Na razie udało się opracować trzy metody wykrywania sprzętowych trojanów na etapie projektowania układu scalonego.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.