Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Naddźwiękowa fala uderzeniowa z butelki szampana pozwoli lepiej zrozumieć silniki odrzutowe
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
W Kwintecie Stephana, na galaktycznym skrzyżowaniu, w którym dawne kolizje galaktyk pozostawiły po sobie liczne szczątki, dochodzi właśnie do kolejnego zderzenia. Bierze w nim udział galaktyka pędząca z prędkością 3,2 milionów km/h. Kolizję, w bezprecedensowej rozdzielczości, zaobserwował międzynarodowy zespół naukowy korzystający z William Herschel Telescope Enhaced Area Velocity Explorer (WEAVE). To supernowoczesny spektrograf, zamontowany przed dwoma laty na William Herschel Telescope na Wyspach Kanaryjskich.
Zderzenie zostało spowodowane przez galaktykę NGC 7318b, która przedziera się przez Kwintet. W jego efekcie powstała potężna fala uderzeniowa, podobna do fali, jaka ma miejsce, gdy samolot przekracza barierę dźwięku.
Kwintet Stephana został odkryty około 150 lat temu. To grupa powiązanych ze sobą grawitacyjnie pięciu galaktyk. Cztery z nich znajdują się w odległości około 290 milionów lat świetlnych od nas, piąta położona jest w odległości 40 milionów lś. Kwintet jest idealnym naturalnym laboratorium służącym do badań interakcji pomiędzy galaktykami. Nic więc dziwnego, że stał się pierwszym celem obserwacyjnym WEAVE.
Doktor Marina Arnaudova z University of Hertfordshire, która stoi na czele grupy badawczej, mówi, że Kwintet nie tylko doświadcza kolejnego w swej historii potężnego zderzenia, ale dzięki niemu astronomowie odkryli podwójną naturę fali uderzeniowej. W miarę, jak wędruje ona przez zimy gaz, ma prędkość hipersoniczną, w medium międzygalaktycznym Kwintetu porusza się z prędkością kilkunastokrotnie większą od prędkości dźwięku. Fala jest tak potężna, że wyrywa elektrony z atomów, pozostawiając za sobą świecący gaz, który obserwujemy za pomocą WEAVE. Jednak gdy fala przechodzi przez otaczający Kwintet gorący gaz, staje się znacznie słabsza. Zamiast dokonywać w nim zniszczeń, fala kompresuje gaz, co prowadzi do pojawienia się emisji w zakresie fal radiowych, którą rejestrują radioteleskopy, takie jak Low Frequency Array (LOFAR), doaje doktorant Soumyadeep Das.
Nowe, niezwykle szczegółowe informacje, zebrano dzięki połączeniu danych z WEAVE, LOFAR, Very Large Array i Teleskopu Jamesa Webba. Eksperci są przede wszystkim zachwyceni możliwościami WEAVE. Maja nadzieję, że nowy instrument zrewolucjonizuje naszą wiedzę o wszechświecie. Już ta pierwsza praca naukowa powstała za jego pomocą pokazała, jak wielki potencjał tkwi w spektrografie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Astronomowie z University of Southampton donoszą o zaobserwowaniu najpotężniejszej znanej kosmicznej eksplozji. Jest ona 10-krotnie jaśniejsza niż jakakolwiek znana supernowa i 3-krotnie jaśniejsza niż najpotężniejsze rozerwanie gwiazdy przez siły pływowe czarnej dziury. Eksplozję AT2021lwx naukowcy obserwują od trzech lat. To bardzo długo, w porównaniu np. z supernowymi, które są widoczne przez kilka miesięcy. Do AT2021lwx doszło przed 8 miliardami lat, gdy wszechświat liczył sobie około 6 miliardów lat.
Specjaliści sądzą, że to, co obserwują to proces niszczenia olbrzymiej chmury gazu – tysiące razy większej od Słońca – przez czarną dziurę. Części chmury wpadły do czarnej dziury, a powstałe w wyniku tego fale uderzeniowe przemiszczają się przez resztę chmury, która otoczyła czarną dziurę, tworząc kształt obwarzanka.
AT2021lwx została wykryta w 2020 roku przez Zwicky Transient Facility i potwierdzona przez Asteroid Terrestrial-impact Last Alert System. Te instalacje przeglądają nocne niebo w poszukiwaniu obiektów gwałtownie zmieniających jasność. Takie zmiany mogą wskazywać na obecność supernowej czy przelatujące komety lub asteroidy. Jednak w momencie wykrycia skala eksplozji nie była znana. Pojawienie się na niebie jasnego obiektu zostało zauważone przez algorytm poszukujący supernowych. Jednak supernowe nigdy nie trwają tak długo.
Naukowcy przeprowadzili więc szereg badań za pomocą różnych teleskopów. Przeanalizowali spektrum światła, zmierzyli linie absorpcji i emisji, co pozwoliło im na określenie odległości do obiektu. Gdy już znamy odległość i wiemy, jak jasny się nam obiekt wydaje, możemy obliczyć jasność obiektu u źródła. Gdy to zrobiliśmy, zdaliśmy sobie sprawę, że jest on ekstremalnie jasny, mówi profesor Sebastian Hönig.
Jedynymi obiektami, które dorównują AT2021lwx jasnością są kwazary, supermasywne czarne dziury, do których ciągle wpada gaz pędzący z olbrzymią prędkością. W przypadku kwazarów dochodzi do zmian jasności. Raz są jaśniejsze, raz ciemniejsze. Przyjrzeliśmy się danym archiwalnym, z dekady sprzed odkrycia AT2021lwx. Niczego tam nie było i nagle pojawia się najjaśniejszy obiekt we wszechświecie, dodaje profesor Mark Sullivan.
Zjawisko można interpretować na wiele różnych sposobów, jednak najbardziej prawdopodobnym wyjaśnieniem jest niszczenie przez czarną dziurę gigantycznej chmury gazu, głównie wodoru. Naukowcy mają nadzieję, że w najbliższych latach dzięki nowym urządzeniom, jak Vera Rubin Observatory, znajdą więcej obiektów podobnych do AT2021lwx i będą mogli lepiej je zbadać.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy korzystający z Teleskopu Webba opublikowali pierwsze wyniki dotyczące formowania się gwiazd oraz pyłu i gazu w pobliskich galaktykach. W ramach projektu Physics at High Angular resolution in Nearby Galaxies (PHANGS) prowadzony jest największy z dotychczasowych przeglądów nieodległych galaktyk z użyciem najnowszego kosmicznego teleskopu. W badaniach pod kierunkiem Janice Lee z Gemini Observatory i NOIRLab bierze udział ponad 100 naukowców z całego świata.
Uczeni postanowili przyjrzeć się 19 galaktykom spiralnym. W pierwszych miesiącach pracy Webba na celownik wzięli pięć z nich – M74, NGC 7496, IC 5332, NGC 1365 oraz NGC 1433 – i już opublikowali wstępne wnioski oraz artykuły naukowe.
Jesteśmy zdumieni szczegółami struktur, jakie możemy obserwować, mówi David Thilker z Uniwersytetu Johnsa Hopkinsa. Bezpośrednio widzimy, jak energia z formowania się młodych gwiazd wpływ na pobliski gaz. To coś niezwykłego, wtóruje mu Erik Rosolowsky z kanadyjskiego University of Alberta.
Na obrazach zarejestrowanych przez MIRI widzimy sieć wysoko zorganizowanych struktur – świecące obszary pyłu i bąble gazu łączące ramiona galaktyk. Struktury te powstały zarówno w wyniku oddziaływania indywidualnych gwiazd, jak i nachodzą na siebie, gdy tworzące się gwiazdy są wystarczająco blisko położone. Obszary, które są całkowicie ciemne na obrazach z Hubble'a, tutaj są rozświetlone i widzimy niezwykłe szczegóły. Możemy dzięki temu badać, jak pył z ośrodka międzygwiezdnego absorbuje światło z gwiazd i emituje je w podczerwieni, podświetlając niezwykle interesującą sieć pyłu i gazu, zachwyca się Karin Sandstrom z Uniwersytetu Kalifornijskiego w San Diego.
Dzięki Webbowi naukowcy mogą dostrzec struktury, których dotychczas nie widzieli. Zespół PHANGS przez lata obserwował te galaktyki w paśmie optycznym, radiowym i ultrafioletowym, wykorzystując w tym celu Teleskop Hubble'a, Atacama Large Millimeter/Submillimeter Array i Very Large Telescope. Ale nie mogliśmy dostrzec najwcześniejszych etapów życia gwiazd, gdyż były one przesłonięte gazem i pyłem, dodaje Adam Leroy z Ohio State University. Dopiero Teleskop Webba pozwolił na uzupełnienie brakującej wiedzy.
Webb pozwala dostrzec to, co dotychczas było niedostrzegalne. Na przykład jego instrument MIRI, pracujący w zakresie 7,7 i 11,3 mikrometra oraz NIRCam, który działa w zakresie 3,3 mikrometra, rejestrują emisję z wielopierścieniowych węglowodorów aromatycznych, które odgrywają ważną rolę w formowaniu się gwiazd i planet. To zaś pozwala na poznanie ewolucji galaktyk.
Dzięki dużej rozdzielczości teleskopu możemy po raz pierwszy przeprowadzić kompletny badania formowania się gwiazd oraz przyjrzeć się bąblastym strukturom ośrodka międzygwiezdnego w pobliskich galaktykach poza Grupą Lokalną Galaktyk, wyjaśnia Janice Lee.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wyniesienie ładunku w przestrzeń kosmiczną wymaga olbrzymich ilości paliwa. Loty pozaziemskie są przez to niezwykle kosztowne. Jednak nowy rodzaj silnika, zwanego silnikiem rakietowy z rotującą detonacją (RDRE – rotating detonation engine), może spowodować, że rakiety nie tylko będą zużywały mniej paliwa, ale będą też lżejsze i mniej skomplikowane. Problem jednak w tym, że w chwili obecnej silnik taki jest zbyt nieprzewidywalny, by zastosować go w praktyce.
Naukowcy z University of Washington opublikowali na łamach Physical Review E opracowany przez siebie matematyczny model pracy takiego silnika. Dzięki temu inżynierowie mogą po raz pierwszy stworzyć testy pozwalające na udoskonalenie RDRE i spowodowanie, by były one bardziej stabilne.
Badania nad silnikami rakietowymi z rotującą detonacją wciąż znajdują się na wczesnym etapie. Mamy olbrzymią ilość danych na temat tych silników, ale wciąż nie rozumiemy, jak to wszystko działa. Spróbowałem na nowo przepisać nasze dane, ale patrząc na nie pod kątem występujących wzorców, a nie z inżynieryjnego punktu widzenia i nagle okazało się, że to działa, mówi główny autor badań, doktorant James Koch.
Konwencjonalny silnik rakietowy spala paliwo i wyrzuca je z tyłu, by uzyskać ciąg. RDRE spala paliwo w inny sposób. Składa się z koncentrycznych cylindrów. Paliwo wpływa pomiędzy cylindry i tam zostaje zapalone, co powoduje gwałtowne uwolnienie się ciepła w postaci fali uderzeniowej. To silny impuls pochodzący z gazów o znacznie wyższej temperaturze i ciśnieniu, który porusza się szybciej niż prędkość dźwięku, wyjaśnia Koch.
Proces spalania to tak naprawdę eksplozja, ale po tym pierwszym gwałtownym impulsie można tam zaobserwować liczne stabilne impulsy, podczas których spalane jest paliwo. Generowane są w ten sposób wysokie ciśnienie i temperatura, które generują ciąg, dodaje.
W konwencjonalnych silnikach mamy ponadto liczne podzespoły odpowiedzialne za kierowanie i kontrolowanie reakcji spalania tak, by można było ją wykorzystać do uzyskania ciągu. Jednak w RDRE te wszystkie podzespoły nie są potrzebne. Napędzana procesem spalania fala uderzeniowa w sposób naturalny przemieszcza się w komorze spalania. Minusem tego rozwiązania jest fakt, że nie można tego kontrolować. Gdy już wybuchnie, to reszta toczy się swoją drogą. To bardzo gwałtowny proces, dodaje Koch.
Uczeni, chcąc stworzyć matematyczny model pracy takiego silnika, zbudowali taki niewielki silnik. Próbowali kontrolować różne jego parametry, takie jak np. rozmiary przestrzeni pomiędzy cylindrami. Wszystko nagrywali za pomocą szybkiej kamery. Mimo, że każdy z eksperymentów trwał jedynie 0,5 sekundy, to dzięki kamerze pracującej z prędkością 240 000 klatek na sekundę, byli w stanie szczegółowo obserwować cały proces. Na tej podstawie powstał opisujący go model matematyczny.
To jedyny istniejący model opisujący zróżnicowane i złożone dynamiczne procesy zachodzące w silniku rakietowym z rotującą detonacją, mówi profesor matematyki J. Nathan Kutz.
Model nie jest jeszcze gotowy do wykorzystania przez inżynierów. Moim zadaniem było jedynie odtworzenie zachowania impulsów, które widzieliśmy podczas eksperymentów. Upewnienie się, że wyniki obliczeń są takie same, jak wyniki eksperymentów. Zidentyfikowałem główne zjawiska fizyczne i określiłem ich interakcje. Teraz mogę dokonać opisu ilościowego. Gdy już będzie on gotowy, możemy zacząć dyskusje na temat ulepszania silnika, wyjaśnia Koch.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Przed dwoma dniami prezydent Biden popisał Inflation Reduction Act, ustawę przewidującą wydatkowanie z federalnego budżetu 437 miliardów dolarów w ciągu najbliższych 10 lat. Przewidziano w niej 370 miliardów USD na energetykę odnawialną i inne technologie niskoemisyjne. Jednak najbardziej interesujące są przepisy dotyczące technologii produkcji wodoru. Z jednej strony dlatego, że przewidziano środki znacznie większe niż spodziewali się analitycy, z drugiej zaś, że przepisy nie wyróżniają żadnej technologii pozyskiwania wodoru. Specjaliści zajmujący się rynkiem wodoru mówią, że dzięki temu w końcu można będzie mówić o początku prawdziwej rewolucji wodorowej. Wodór można przecież wykorzystać zarówno jako paliwo napędzające pojazdy czy statki, jak i do produkcji energii elektrycznej zasilającej nasze domy.
Ustawa przewiduje bowiem, że producenci wodoru mogą pomniejszyć należny państwu podatek, a wielkość tego pomniejszenia będzie zależała wyłącznie od ilości dwutlenku węgla emitowanego podczas produkcji wodoru. I tak producenci wykorzystujący najczystszą obecnie metodę pozyskiwania wodoru, w czasie której na każdy kilogram wodoru emituje się 0,45 kg CO2, będą mogli odpisać 3 USD na każdy wytworzony kilogram wodoru. Dzięki temu wodór taki może być tańszy niż tzw. szary wodór uzyskiwany z gazu metodą reformingu parowego. W metodzie tej na każdy kilogram wodoru emituje się 8–10 kg CO2. Obecnie cena szarego wodoru w USA to około 2 USD/kg. Dlatego też niemal cały wodór – ok. 10 milionów ton rocznie – produkowany w Stanach Zjednoczonych wytwarzany jest tą metodą.
Największym na świecie producentem wodoru są Chiny. Państwo Środka wytwarza 25 milionów ton tego pierwiastka rocznie, z czego aż 62% uzyskuje się z węgla, co wiąże się z emisją 18–20 kg CO2 na kilogram wodoru. Zarówno USA jak i Chiny produkują czysty tzw. zielony wodór uzyskiwany metodą elektrolizy z wykorzystaniem odnawialnych źródeł energii, ale produkcja ta nie przekracza 1% całości. Ten zielony wodór kosztuje bowiem ok. 5 USD/kg. Teraz, dzięki możliwości odpisania 3-dolarowego podatku, stanie się on konkurencyjny cenowo z szarym wodorem.
Amerykanie opracowali też plan dojścia do produkcji zielonego wodoru bez ulg podatkowych. Przepisy przewidują, że do roku 2026 kwota, którą można będzie odpisać od kilograma zielonego wodoru zostanie zmniejszona do 2 USD, a w roku 2031 wyniesie 1 USD.
Przepisy te znacznie przyspieszą transformację wodorową. Specjaliści z National Renewable Energy Laboratory spodziewali się, że cena zielonego wodoru spadnie o trzy dolary do roku 2026. Teraz, dzięki ustawie, spadnie ona natychmiast. Mamy gwałtowne obniżenie kosztów do poziomu, przy którym zielony wodór staje się konkurencyjny, a w wielu miejscach tańszy, od wodoru pozyskiwanego z paliw kopalnych. Stąd też wielkie nadzieje związane z nową ustawą.
Wspomniany odpis podatkowy to tylko jeden z ostatnich kroków na rzecz wodorowej rewolucji. W ubiegłym roku w życie weszła ustawa Infrastructure Investment and Jobs Act, w której przewidziano 8 miliardów USD na stworzenie w USA ośmiu regionalnych „hubów wodorowych” produkujących zielony wodór. W oczekiwaniu na rozdysponowanie tych pieniędzy, co ma nastąpić we wrześniu lub październiku, przedsiębiorstwa zgłosiły 22 projekty potencjalnych hubów.
Wkrótce też ma ruszyć warty 2,65 miliarda USD projekt firm Mitsubishi Power Americas i Magnum Development, w ramach którego zainstalowane zostaną 840-megawatowe turbiny zasilane mieszaniną gazu naturalnego i wodoru, wspierane przez instalację fotowoltaiczną. W miejscu tym 220-megawatowy system elektrolizy będzie wytwarzał wodór. W znajdujących się w pobliżu podziemnych wysadach solnych powstaną zaś magazyny przechowujące do 300 GWh energii w postaci wodoru.
Nowe amerykańskie przepisy powinny znacznie przyspieszyć prace prowadzone chociażby przez Hydrogen Council. To ogólnoświatowa organizacja skupiająca obecnie 132 korporacje pracujące nad technologiami wodorowymi.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.