Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Nowy rekord Teleskopu Hubble'a. Odkrył najdalszą znaną nam gwiazdę

Rekomendowane odpowiedzi

Teleskop Kosmiczny Hubble'a pobił wyjątkowy rekord – zaobserwował najdalej od Ziemi położoną indywidualną gwiazdę. Dotychczasowy rekord również należał do Teleskopu Hubble'a i został pobity w 2018 roku, kiedy to zaobserwowano MACS J1149+2223 Lensed Star 1 położoną w odległości 9 miliardów lat świetlnych od Ziemi. Rekord ten właśnie pobito i to od razu o miliardy lat świetlnych.

Nowo zaobserwowana gwiazda znajduje się w odległości 12,9 miliarda lat świetlnych od naszej planety. Współczynnik przesunięcia ku czerwieni (redshift) dla tej odległości wynosi 6,2. Niemal nie mogliśmy w to uwierzyć, bo gwiazda znajduje się znacznie dalej, niż poprzedni rekord, mówi Brian Welch z Uniwersytetu Johnsa Hhopkinsa, główy autor artykułu opisującego osiągnięcie.

Odkrycia dokonano w danych zebranych w ramach projektu Hubble's RELICS (Reionization Lensing Cluster Survey). Normalnie przy tych odległościach całe galaktyki wyglądają jak niewielkie smugi, w których światło milionów gwiazd zlewa się w jedno. Światło z galaktyki, w której znajduje się ta gwiazda zostało powiększone i rozproszone przez zjawisko soczewkowania grawitacyjnego w długi sierp, który nazwaliśmy Łukiem Wchodzącego Słońca, mówi Welch.

Podczas szczegółowego badania galaktyki naukowcy zauważyli, że jedno z obserwowanych zjawisk jest powodowane przez ekstremalnie powiększoną w soczewkowaniu grawitacyjnym gwiazdę. Została ona nazwana Earendel, co w języku staroangielskim oznacza gwiazdę poranną. Odkrycie daje nadzieję na otwarcie całkiem nowego pola badań nad formowaniem się wczesnych gwiazd.

Earendel powstała tak dawno, że może nie zawierać tych samych pierwiastków, co młodsze gwiazdy. Dzięki możliwości zbadania Earendel zyskamy okazję to przyjrzenia się wszechświatowi, jakiego nie znamy, ale który doprowadził do tego, co istnieje obecnie. To tak, jakbyśmy dotychczas czytali bardzo interesującą książkę, ale zaczęli od drugiego rozdziału, a teraz mieli okazję przeczytać, jak to wszystko się zaczęło, ekscytuje się Welch.

Badacze sądzą, że Earendel ma masę co najmniej 50 razy większą od masy Słońca i jest miliony razy jaśniejsza od naszej gwiazdy. Mimo tego, że jest tak olbrzymia i jasna, nie bylibyśmy w stanie jej dostrzec z odległości, w jakiej się znajduje. Widzimy ją dzięki olbrzymiej gromadzie galaktyk WHL0137-08, który znajduje się między gwiazdą a Ziemią. Masa gromady zagina przestrzeń, działając jak olbrzymie szkło powiększające, dzięki któremu możemy dostrzec światło emitowane przez obiekty znajdujące się poza WHL0137-08.

Szczęśliwie złożyło się, że Earendel znajduje się w takiej pozycji, iż jest maksymalnie powiększana przez soczewkę grawitacyjną tworzoną przez gromadę galaktyk. Dzięki temu „wystaje” z blasku milionów gwiazd swojej galaktyki macierzystej, a jej jasność jest wzmacniana przez soczewkę co najmniej tysiąckrotnie. Obecnie niw wiemy, czy Earendel jest częścią układu podwójnego, ale warto pamiętać, że większość masywnych gwiazd ma co najmniej jednego towarzysza.

Specjaliści uważają, że przez wiele kolejnych lat Earendel będzie znacząco powiększana w wyniku soczewkowania. Gwiazdę będzie obserwował Teleskop Kosmiczny Jamesa Webba (JWST), a dzięki temu, że pracuje on głównie w podczerwieni, pozwoli na zdobycie wielu cennych informacji na jej temat. Uczeni spodziewają się, że Webb potwierdzi, iż Earendel to gwiazda, pozwoli nam też zmierzyć jej jasność i temperaturę, to zaś pozwoli na określenie typu gwiazdy i etapu życia, na jakim się znajduje.

Astronomów szczególnie interesuje skład Earendel, gdyż gwiazda powstała zanim jeszcze wszechświat został wypełniony ciężkimi pierwiastkami wytworzonymi przez kolejne generacje gwiazd. Jeśli okaże się, że Earendel składa się wyłącznie w pierwotnego wodoru i helu, będzie to pierwszy dowód na istnienie gwiazd III populacji. To hipotetyczna populacja pierwszych bardzo masywnych gwiazd, które praktycznie nie zawierały metali. Składały się wyłącznie z wodoru i helu, z możliwą niewielką zawartością litu.

Odkrycie Earendel przez Hubble'a daje nadzieję, że Webb dojrzy jeszcze bardziej odległe gwiazdy.

 


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Zachodzące w przestrzeni kosmicznej procesy, w czasie których powstają gwiazdy, mogą prowadzić też do pojawienia się obiektów o masie nieco większej od Jowisza. Badacze korzystający z Teleskopu Webba odkryli w mgławicy NGC 1333 aż sześć takich niezwykłych obiektów o masie planety, ale niepowiązanych grawitacyjne z żadną gwiazdą. Powstały w procesie takim, jak powstają gwiazdy, czyli zapadnięcia się gazu i pyłu, ale ich masa odpowiada masie planet. Badamy granice procesów formowania się gwiazd. Jeśli masz obiekt, który wygląda jak młody Jowisz, to czy jest możliwe, by w odpowiednich warunkach przekształcił się w gwiazdę? To ważne pytanie w kontekście zrozumienia powstawania gwiazd i planet, mówi główny autor badań, astrofizyk Adam Langeveld z Uniwersytetu Johnsa Hopkinsa.
      Dane z Webba sugerują, że odkryte obiekty mają masę od 5 do 10 razy większą niż masa Jowisza. To oznacza, że są jednymi z najlżejszych znanych nam obiektów, które powstały w procesach, w jakich powstają gwiazdy oraz brązowe karły, obiekty o masie 13–80 mas Jowisza, zbyt małej, by zaszła przemiana wodoru w hel.
      Wykorzystaliśmy niezwykła czułość Webba w zakresie podczerwieni, by odnaleźć najsłabiej świecące obiekty w młodej gromadzie gwiazd. Poszukujemy odpowiedzi na podstawowe dla astronomii pytanie o najmniej masywny obiekt podobny do gwiazdy. Okazuje się, że najmniejsze swobodne obiekty powstające w procesach takich, jak gwiazdy, mogą mieć masę taką, jak gazowe olbrzymy krążące wokół pobliskich gwiazd, wyjaśnia profesor Ray Jayawardhana, który nadzorował badania. Nasze obserwacje potwierdzają, że obiekty o masie planetarnej mogą powstawać w wyniku dwóch procesów. Jeden to kurczenie się chmur pyłu i gazu – czyli tak jak tworzą się gwiazdy – drugi zaś to powstawanie planet w znajdującym się wokół gwiazdy dysku akrecyjnym z pyłu i gazu. Tak właśnie powstał Jowisz i inne planety Układu Słonecznego, dodaje Jayawardhana.
      Najbardziej intrygującym z obiektów znalezionych przez Webba jest ten najlżejszy, o masie 5-krotnie większej od Jowisza. Obecność wokół niego dysku akrecyjnego wskazuje, że obiekt najprawdopodobniej uformował się takim procesie, w jakim powstają gwiazdy. Sam dysk również interesuje badaczy. Nie można wykluczyć, że mogą z nim pojawić się planety. To może być żłobek miniaturowego układu planetarnego, znacznie mniejszego niż nasz układ, dodaje Alexander Scholz, astrofizyk z University of St. Andrews.
      Co interesujące, Webb nie zarejestrował – a ma takie możliwości – żadnego obiektu o masie mniejszej niż 5 mas Jowisza. Może to oznaczać dolną granicę masy obiektów formujących się z zapadnięcia chmur pyłu i gazu.
      Autorzy badań przeanalizowali też profil światła wszystkich nowo znalezionych obiektów oraz dokonali ponownej analizy profilu światła 19 znanych brązowych karłów. Odkryli przy tym brązowego karła, który ma towarzysza o masie planety. To rzadkie znalezisko rzuca wyzwanie naszym modelom tworzenia się układów podwójnych.
      W najbliższych miesiącach naukowcy chcą zająć się analizą atmosfer nowo odkrytych obiektów i porównać je do brązowych karłów oraz gazowych olbrzymów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed miesiącem pisaliśmy, że astronomowie z Yale University donieśli o odkryciu czarnej dziury, która ciągnie za sobą gigantyczny ogon gwiazd i materii gwiazdotwórczej. Informacja odbiła się szerokim echem, gdyż takie zjawisko wymagałoby spełnienia całego szeregu wyjątkowych warunków. Liczne zespoły naukowe zaczęły poszukiwać alternatywnego wyjaśnienia zaobserwowanej przez Hubble'a struktury. Naukowcy z Instituto de Astrofísica de Canarias przedstawili na łamach Astronomy and Astrophysics Letters własną interpretację obserwowanego zjawiska.
      Ich zdaniem niezwykła struktura zarejestrowana przez Hubble'a może być płaską galaktyką, którą widzimy od strony krawędzi. Galaktyki takie nie posiadają centralnego zgrubienia i są dość powszechne. Ruch, rozmiary i liczba gwiazd pasują do tego, co widzimy w płaskich galaktykach w lokalnym wszechświecie, mówi główny autor najnowszych badań, Jorge Sanchez Almeida. Proponowany przez nas scenariusz jest znacznie prostszy. Chociaż z drugiej strony szkoda, że to może być wyjaśnieniem, gdyż teorie przewidują, że wyrzucenie czarnej dziury z galaktyki jest możliwe, tutaj więc mielibyśmy pierwszą obserwację takiego zjawiska, dodaje.
      Almeida i jego zespół porównali strukturę zaobserwowaną przez Hubble'a z dobrze znaną nieodległą galaktyką IC5249, która nie posiada centralnego zgrubienia, i znaleźli zaskakująco wiele podobieństw. Gdy przeanalizowaliśmy prędkości w tej odległej strukturze gwiazd okazało się, że odpowiadają one prędkościom obrotowym galaktyk, więc postanowiliśmy porównać tę strukturę ze znacznie nam bliższą galaktyką i okazało się, że są one wyjątkowo podobne, dodaje współautorka artykułu Mireia Montes.
      Naukowcy przyjrzeli się też stosunkowi masy do maksymalnej prędkości obrotowej i odkryli, że to galaktyka, która zachowuje się jak galaktyka, stwierdza Ignacio Trujillo. Jeśli uczeni z Wysp Kanaryjskich mają rację, to Hubble odkrył interesujący obiekt. Dużą galaktykę położoną w odległych od Ziemi regionach, gdzie większość galaktyk jest mniejsza.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zespół Thiago Ferreiry z Uniwersytetu w São Paulo poinformował o odkryciu dwóch egzoplanet okrążających gwiazdę podobną do Słońca. Zwykle egzoplanety wykrywa się metodą tranzytu, badając zmiany jasności gwiazdy macierzystej, na tle której przechodzą. Tym razem odkrycia dokonano rejestrując zmiany prędkości radialnej gwiazdy spowodowane oddziaływaniem grawitacyjnym planet. Tą metodą odnaleziono dotychczas około 13% z ponad 5000 znanych nam egzoplanet.
      Naukowcy obserwowali gwiazdę HIP 104045. To gwiazda typu G5V, należy do ciągu głównego, a jej rozmiary i masa są zaledwie kilka procent większe od rozmiarów i masy Słońca. Temperatura powierzchni gwiazdy wynosi 5825 kelwinów, a jej wiek to 4,5 miliarda lat. Jest więc bardzo podobna do Słońca, gwiazdy typu G2V o temperaturze 5778 kelwinów i wieku ok. 4,6 miliarda lat.
      Planeta HIP 104045 c to super-Neptun położony blisko gwiazdy. Jej masa jest około 2-krotnie większa od masy Neptuna, znajduje się w odległości 0,92 jednostki astronomicznej od gwiazdy, którą obiega w ciągu 316 dni. Z kolei HIP 104045 b ma masę co najmniej połowy Jowisza, położona jest w odległości 3,46 j.a. od gwiazdy i obiega ją ciągu 2315 dni.
      Okazuje się, że gwiazda HIP 104045 jest podobna do Słońca również pod względem składu chemicznego, chociaż istnieją pewne różnice mogące wskazywać, że HIP 104045 mogła wchłonąć nieco materiału z planety skalistej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z NASA napotkali na zadziwiająco masywną czarną dziurę. Jej odkrycie każe ponownie zastanowić się nad teoriami dotyczącymi ewolucji gwiazd.
      Wspomniana czarna dziura jest częścią galaktyki M33, która znajduje się w odległości 3 milionów lat świetlnych od Ziemi. Dane z Chandra X-ray Observatory i teleskopu Gemini wykazały, iż czarna dziura w układzie podwójnym M33 X-7 jest 15,7 razy bardziej masywna niż Słońce. Tym samym jest to najbardziej masywna znana nam gwiazdowa czarna dziura.
      Odkrycie stawia zupełnie nowe pytania o formowanie się czarnych dziur – mówi Jerome Orosz z San Diego State University, jeden z odkrywców M33 X-7.
      Czarna dziura znajduje się w pobliżu towarzyszącej jej gwiazdy, która ma również olbrzymią masę, jest 70 razy cięższa od Słońca. To z kolei najcięższa gwiazda w binarnym systemie, w skład którego wchodzi czarna dziura. Wspomniana gwiazda krąży wokół czarnej dziury przesłaniając ją co trzy i pół doby. To jedyna znana nam czarna dziura w systemie binarnym, która ulega zaćmieniom. Dzięki nim możliwe jest precyzyjne określenie jej masy.
      To olbrzymia gwiazda, której towarzyszy olbrzymia czarna dziura. W przyszłości gwiazda prawdopodobnie zmieni się w supernową i z czasem powstanie para czarnych dziur – stwierdził Jeffrey McClintock z Harvard-Smithsonian Center of Astrophysics.
      Ewolucja systemu binarnego M33 X-7 jest trudna do przestawienia, gdyż nie zgadza się ze współczesnymi teoriami.
      Otóż gwiazda, z której powstała czarna dziura, musiałaby mieć masę większą, niż istniejąca jeszcze gwiazda wchodząca w skład systemu binarnego. To właśnie przez to, iż jej masa była większa, jako pierwsza zmieniła się w czarną dziurę. Tu powstaje jednak pewien problem. Otóż średnica tej gwiazdy byłaby wówczas większa, niż obecna odległość pomiędzy czarną dziurą a istniejącą gwiazdą. Oznaczałoby to, iż gwiazdy miałyby wspólną część zewnętrznego płaszcza. To z kolei powinno spowodować tak znacznie straty w masie takiego systemu, że niemożliwe byłoby powstanie tak masywnej czarnej dziury, jaką odkryto.
      Powstanie takiej dziury byłoby możliwe jedynie wówczas, gdyby gwiazda, z której czarna dziura się narodziła, traciła masę 10-krotnie wolniej, niż przewidują współczesne modele astronomiczne.
      Jednak takie wolniejsze tracenie masy mogłoby wyjaśniać inne zjawisko, które wcześniej zaobserwowano. Otóż ostatnio astronomowie zauważyli niezwykle jasną supernową SN 2006gy. Gwiazda, która zmieniła się w supernową było 150-krotnie cięższa od Słońca. Oznacza to, że pod koniec swojego życia gwiazdy mogą być znacznie bardziej masywne, niż przewidują współczesne teorie. Innymi słowy, wolniej tracą masę, niż dotychczas sądzono.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Planety mogą wymuszać na swoich gwiazdach macierzystych, by zachowywały się tak, jakby były młodsze niż są w rzeczywistości. Badania licznych układów przeprowadzone przy użyciu Chandra X-ray Observatory dostarczyły najsilniejszych jak dotąd dowodów, na to, że niektóre planety spowalniają proces starzenia się gwiazd.
      Już wcześniej zauważono pierwsze oznaki „odmładzania” gwiazd przez gorące jowisze, czyli gazowe olbrzymy, które znajdują się na orbitach podobnych do orbity Merkurego lub nawet bliżej. Jednak dopiero teraz udało się zjawisko to dobrze i systematycznie udokumentować.
      W medycynie, żeby stwierdzić, czy obserwowane zjawisko jest prawdziwe, czy też jest to odchylenie od normy, trzeba zaangażować do badań wielu pacjentów. Podobnie jest w astronomii, a te badania dają nam pewność, że gorące jowisze naprawdę powodują, że ich gwiazdy zachowują się tak, jakby były młodsze, mówi kierująca badaniami Nikoleta Ilic z Instytutu Astrofizyki im. Leibniza w Poczdamie.
      Gorące jowisze wpływają na swoje gwiazdy prawdopodobnie za pomocą sił pływowych, powodując, że gwiazdy szybciej obracają się wokół własnej osi niż gdyby nie posiadały tego typu plany. Szybciej obracająca się gwiazda jest bardziej aktywna i wytwarza więcej promieniowania rentgenowskiego, co jest cechą młodszych gwiazd.
      Z upływem czasu wszystkie gwiazdy spowalniają swój obrót i dochodzi na nich do mniejszej liczby rozbłysków. Jednak określenie wieku gwiazd nie jest łatwe, więc trudno jest stwierdzić, czy gwiazda, wokół której krąży gorący jowisz zachowuje się jakby była młodsza, czy rzeczywiście jest młodsza.
      Uczeni rozwiązali ten problem przyglądając się układom podwójnym, gdzie dwie odległe gwiazdy krążą wokół siebie, ale tylko jedna z nich posiada na orbicie gorącego jowisza. Astronomowie wiedzą, że gwiazdy w układach podwójnych są w tym samym wieku. Odległość pomiędzy takimi gwiazdami jest zbyt duża, by wpływały na swoje tempo obrotu lub by gorący jowisz wpływał na gwiazdę, wokół której nie krąży. Zatem gwiazda nie posiadająca gorącego jowisza może posłużyć do kontrolowania rzeczywistego wieku obu gwiazd układu.
      Naukowcy wykorzystali ilość promieniowania rentgenowskiego jako wskaźnik wieku gwiazd. Znaleźli około 30 układów podwójnych, w których jednej z gwiazd towarzyszył gorący jowisz. Okazało się, że gwiazdy z krążącym gorącym jowiszem zwykle emitowały więcej promieni X, zatem były bardziej aktywne, niż gwiazdy bez gazowego olbrzyma.
      Wcześniejsze badania pozwoliły na zdobycie pewnych wskazówek, ale teraz mamy w końcu statystycznie istotne dowody, że niektóre planety wpływają na swoje gwiazdy powodując, że zachowują się one tak, jakby były młodsze, stwierdza współautorka badań Marzieh Hosseini.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...