Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Teleskop Webba zarejestrował pierwsze fotony. Z powodzeniem przebyły one całą drogę przez układ optyczny i trafiły do NIRCam. To jedno z najważniejszych osiągnięć zaplanowanego na trzy miesiące etapu dostrajania teleskopu. Dotychczas uzyskane wyniki odpowiadają oczekiwaniom i naziemnym symulacjom.

NIRCam to działająca w podczerwieni kamera, rejestrująca fale o długości od 0,6 do 5 mikrometrów. To ona zarejestruje światło z pierwszych gwiazd i galaktyk, pokaże gwiazdy w pobliskich galaktykach, młode gwiazdy w Drodze Mlecznej oraz obiekty w Pasie Kuipera. Wyposażono ją w koronografy, instrumenty pozwalające na fotografowanie bardzo słabo świecących obiektów znajdujących się wokół obiektów znacznie jaśniejszych. Koronografy blokują światło jasnego obiektu, uwidaczniając obiekty słabo świecące. Dzięki nim astronomowie chcą dokładnie obserwować planety krążące wokół pobliskich gwiazd i poznać ich charakterystyki. NIRCam wyposażono w dziesięć czujników rtęciowo-kadmowo-telurkowych, które są odpowiednikami matryc CCD ze znanych nam aparatów cyfrowych. To właśnie NIRCam jest wykorzystywana do odpowiedniego ustawienia zwierciadła webba.

Żeby zwierciadło główne teleskopu działało jak pojedyncze lustro trzeba niezwykle precyzyjnie ustawić względem siebie wszystkie 18 tworzących je segmentów. Muszę one do siebie pasować z dokładnością do ułamka długości fali światła, w przybliżeniu będzie to ok. 50 nanometrów.

Teraz, gdy zwierciadło jest rozłożone, a instrumenty włączone, rozpoczęliśmy wieloetapowy proces przygotowywania i kalibrowania teleskopu. Będzie on trwał znacznie dłużej niż w przypadku innych teleskopów kosmicznych, gdyż zwierciadło główne Webba składa się z 18 segmentów, które muszą działać jak jedna wielka powierzchnia, wyjaśniają eksperci z NASA.

Najpierw trzeba ustawić teleskop względem jego platformy nośnej. Wykorzystuje się w tym celu specjalne systemy śledzenia gwiazd. Obecnie położenie platformy nośnej i segmentów lustra względem gwiazd nie jest ze sobą zgodne. Dlatego też wybrano jedną gwiazdę, jest nią HD 84406, względem której całość będzie ustawiana.

Każdy z 18 segmentów zwierciadła rejestruje obraz tej gwiazdy, a jako że są one w różny sposób ustawione, na Ziemię trafią różne niewyraźne obrazy. Obsługa naziemna będzie następnie poruszała każdym z segmentów z osobna, by określić, który z nich zarejestrował który z obrazów. Gdy już to będzie wiadomo, segmenty będą obracane tak, by wszystkie z uzyskanych obrazów miały podobny wspólny punkt. Stworzona w ten sposób „macierz obrazów” zostanie szczegółowo przeanalizowana.

Wówczas rozpocznie się drugi etap ustawiania zwierciadła, w ramach którego zredukowane zostaną największe błędy ustawienia. Najpierw obsługa poruszy nieco zwierciadłem wtórnym, co dodatkowo zdeformuje obrazy uzyskiwane z poszczególnych segmentów. Dzięki temu możliwe będzie przeprowadzenie analizy matematycznej, która precyzyjnie określi błędy w ułożeniu każdego z segmentów. Po skorygowaniu tych błędów otrzymamy 18 dobrze skorygowanych ostrych obrazów.
W kolejnym etapie położenie każdego z segmentów lustra będzie zmieniane tak, by generowany przezeń obraz trafił dokładnie do środka pola widzenia teleskopu. Każdy z 18 segmentów został przypisany do jednej z trzech grup (oznaczonych jako A, B i C), więc ten etap prac będzie wykonywany w grupach.

Po zakończeniu trzeciego etapu będziemy już mieli jeden obraz, jednak będzie to nadal obraz uzyskany tak, jakbyśmy nałożyli na siebie obrazy z 18 różnych teleskopów. Zwierciadło główne wciąż nie będzie działało jak jedno lustro. Rozpocznie się, przeprowadzany trzykrotnie, etap (Coarse Phasing) korygowania ustawienia segmentów lustra względem siebie. Po każdej z trzech części tego etapu ustawienia będą sprawdzane i korygowane za pomocą specjalnych elementów optycznych znajdujących się wewnątrz NIRCam (Fine Phasing). W jego trakcie obraz z poszczególnych zwierciadeł celowo będzie ustawiany poza ogniskową i prowadzone będą analizy zniekształceń. Ten ostatni proces superprecyzyjnej korekty ustawień będzie zresztą przeprowadzany rutynowo podczas całej pracy Webba.

Gdy już teleskop zostanie odpowiednio ustawiony, rozpocznie się etap dostrajania pozostałych trzech instrumentów naukowych. Wyłapane zostaną ewentualne błędy i niedociągnięcia, a specjalny algorytm pokaże, jakich poprawek trzeba dokonać. W końcu, w ostatnim etapie prac, obsługa naziemna osobno sprawdzi jakość obrazu uzyskiwanego dzięki każdemu z segmentów zwierciadła głównego i usunie ewentualne błędy.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Nietypowy obraz Krzyża Einsteina, z piątym źródłem światła w środku, zaskoczył naukowców. Jako pierwszy niezwykłe zjawisko zauważył astronom Pierre Cox, dyrektor ds. badań we Francuskim Narodowym Centrum Badań Naukowych. Analizując dane z położonego we francuskich Alpach radioteleskopów Northern Extended Millimeter Array (NOEMA), stwierdził, że występują w nich anomalie. Wyglądało to jak Krzyż, ale w środku był obiekt. Wiedziałem, że nigdy czego takiego nie widziałem, wspomina uczony.
      Pierwszym zaobserwowanym Krzyżem Einsteina był odkryty w 1984 roku kwazar Q2237+030 Leży on za galaktyką Soczewka Huchry, która poprzez zjawisko soczewkowania grawitacyjnego zwielokrotnia obraz kwazara, pokazując go czterokrotnie. Na zdjęciach tego obiektu można więc zobaczyć Krzyż Einsteina – czyli zwielokrotniony do 4 obrazów kwazar – z leżącą pośrodku Soczewką Huchry. Dotychczas jednak nikt nie widział Krzyża Einsteina składającego się z pięciu obrazów tego samego obiektu.
      Francuzi, korzystając z teleskopów NOEMA i ALMA (Atacama Large Millimeter/submillimeter Array w Chile) badali galaktykę HerS-3. Znajduje się ona w odległości 11,6 miliardów lat świetlnych od Ziemi i wydaje się, że jej światło jej soczewkowane przez masywną grupę galaktyk położoną w odległości 7,8 miliarda lat świetlnych od nas. Jednak astronomowie dostrzegli coś, czego nigdy wcześniej nie widzieli i czego istnienie nie zgadzało się z modelami obliczeniowymi. Zauważyli bowiem, że widoczna z Ziemi HerS-3 tworzy Krzyż Einsteina złożony z dodatkowym, piątym, obrazem pośrodku. Początkowo sądzili, że to jakiś problem z instrumentami, jednak te pracowały bez zarzutu. Odkrywcy we współpracy z kolegami z kilku krajów postanowili rozwiązać zagadkę.
      Astrofizyk teoretyczny Charles Keeton z Rutgers University, zapytany o zauważone zjawisko stwierdził, że to nie powinno mieć miejsca. Nie możesz otrzymać piątego obrazu w środku, chyba, że coś niezwykłego dzieje się z masą, która zagina światło, powiedział. Teoretycy siedli więc do modeli obliczeniowych i zauważyli, że żadna z widocznych pobliskich galaktyk, która mogłaby zadziałać jak soczewka grawitacyjna dla HerS-3 nie dałaby obrazu zwielokrotnionego 5 razy. Przetestowaliśmy każdą rozsądną konfigurację z użyciem widocznych galaktyk i nic nie pasowało. W tym przypadku jedynym sposobem na połączenie matematyki i fizyki okazało się dodanie halo ciemnej materii. W tym leży siła modelowania, pozwala ono dostrzec to, co niewidoczne, mówi Keeton.
      To niezwykłe odkrycie niesie ze sobą olbrzymią wartość naukową. Soczewkowanie grawitacyjne nie tylko umożliwia dokładniejsze zbadanie pełnej pyłu galaktyki HerS-3. To też bardzo rzadka okazja do zbadania halo ciemnej materii otaczającej widoczne galaktyki.
      O niezwykłym Krzyżu przeczytacie na łamach The Astrophysical Journal.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Northeastern University odkryli, w jaki sposób można na żądanie zmieniać elektroniczny stan materii. Potencjalnie może to doprowadzić do stworzenia materiałów elektronicznych, które pracują z 1000-krotnie większą prędkością niż obecnie i są bardziej wydajne. Możliwość dowolnego przełączania pomiędzy przewodnikiem a izolatorem daje nadzieję na zastąpienia krzemowej elektroniki mniejszymi i szybszymi materiałami kwantowymi. Obecnie procesory pracują z częstotliwością liczoną w gigahercach. Dzięki pracom uczonych z Northeastern, w przyszłości mogą być to teraherce.
      Opisana na łamach Nature Physics technika „termicznego chłodzenia” (thermal quenching) polega przełączaniu materiału pomiędzy izolatorem a przewodnikiem za pomocą kontrolowanego podgrzewania i schładzania. Współautor odkrycia, profesor Gregory Fiete porównuje tę metodę do przełączania bramek w tranzystorze. Każdy, kto kiedykolwiek używał komputera, doszedł w pewnym momencie do punktu, w którym chciał, by komputer działał szybciej. Nie ma nic szybszego niż światło, a my używamy światła do kontrolowania właściwości materiałów z największą prędkością, jaką dopuszcza fizyka, dodaje uczony.
      Naukowcy w temperaturze bliskiej temperaturze pokojowej oświetlali materiał kwantowy 1T-TaS2 uzyskując „ukryty stan metaliczny”, który dotychczas był stabilny w temperaturach kriogenicznych, poniżej -150 stopni Celsjusza. Teraz osiągnięto ten stan w znacznie bardziej praktycznych temperaturach, sięgających -60 stopni C, a materiał utrzymywał go przez wiele miesięcy. To daje nadzieję na stworzenie podzespołów składających się z jednego materiału, który w zależności od potrzeb może być przewodnikiem lub izolatorem.
      Źródło: Dynamic phase transition in 1T-TaS2 via a thermal quench, https://www.nature.com/articles/s41567-025-02938-1

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ciemna materia, hipotetyczna materia, która ma stanowić 85% masy kosmosu, wciąż nie została znaleziona. Nie wiemy, z czego się składa, a przekonanie o jej istnieniu pochodzi z obserwacji efektów grawitacyjnych, których obecności nie można wyjaśnić zwykłą materią. Dlatego też co jakiś czas pojawiają się hipotezy opisujące, z czego może składać się ciemna materia. Jedną z nich przedstawili właśnie na lamach Physical Review Letters dwaj uczeni z Dartmouth College. Ich zdaniem ciemna materia może być zbudowana z niemal bezmasowych relatywistycznych cząstek, podobnych do światła, które w wyniku zderzeń utworzyły pary, straciły energię, a zyskały olbrzymią masę.
      Ciemna materia rozpoczęła istnienie jako niemal bezmasowe relatywistyczne cząstki, niemal jak światło. To całkowita antyteza tego, jak się obecnie postrzega ciemną materię – to zimne grudki nadające masę galaktykom. Nasza teoria próbuje wyjaśnić, jak przeszła ona ze światła do grudek, mówi profesor fizyki i astronomii Robert Caldwell. Jest on współautorem badań przeprowadzonych z magistrantem fizyki i matematyki Guanmingiem Liangiem.
      Po Wielkim Wybuchu wszechświat zdominowany był przez gorące szybko poruszające się cząstki podobne do fotonów. W tym chaosie olbrzymia liczba cząstek utworzyła pary. Zgodnie z ich hipotezą, cząstki były przyciągane do sobie dzięki temu, że ich spiny były zwrócone w przeciwnych kierunkach. Utworzone pary schładzały się, a nierównowaga ich spinów prowadziła do gwałtownej utraty energii. W wyniku tego procesu powstały zimne ciężkie cząstki, które utworzyły ciemną materię. Właśnie ten spadek energii, który wyjaśniał przejście z wysokoenergetycznych gorących cząstek do nierównomiernie rozłożonych zimnych grudek, jest najbardziej zaskakującym efektem działania zastosowanego przez uczonych modelu matematycznego.
      To przejście fazowe pozwala na wyjaśnienie olbrzymiej ilości ciemnej materii we wszechświecie. Autorzy badań wprowadzają w swojej teorii teoretyczną cząstkę, która miała zainicjować przejście do cząstek ciemnej materii. Jednak nie jest to zjawisko nieznane. Wiadomo, że cząstki subatomowe mogą przechodzić podobne zmiany. Na przykład w niskich temperaturach dwa elektrony mogą utworzyć pary Coopera. Zdaniem Caldwella i Lianga to dowód, że ich hipotetyczne cząstki również mogłyby zostać skondensowane do ciemnej materii.
      Poszukaliśmy w nadprzewodnictwie wskazówek, czy pewne interakcje mogą prowadzić do tak gwałtownego spadku energii. Pary Coopera to dowód, że taki mechanizm istnieje, mówi Caldwell. Liang zaś obrazowo porównuje takie przejścia jako zamianę od gorącego espresso do owsianki.
      Badacze zapewniają, że ich model matematyczny jest prosty. Na jego podstawie można przypuszczać, że wspomniane cząstki będzie widać w mikrofalowym promieniowaniu tła (CMB). Zdaniem naukowców, można go będzie przetestować już wkrótce, dzięki obecnie prowadzonym i przyszłym badaniom CMB.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Vera C. Rubin Observatory zakończono instalowanie zwierciadła wtórnego. Zamontowane na Simonyi Survey Telescope 3,5-metrowe zwierciadło jest pierwszym stałym elementem systemu optycznego teleskopu. W kolejce do montażu czekają zwierciadło główne o średnicy 8,4 metra oraz LSST Camera, największy na świecie aparat cyfrowy. Vera C. Rubin Observatory, które powstaje za pieniądze amerykańskiej Narodowej Fundacji Nauki (NSF) oraz Biura Nauki Departamentu Energii ma rozpocząć nową erę badań w astronomii naziemnej. Obserwatorium ma rozpocząć pracę już w przyszłym roku.
      Zwierciadło zostało wyprodukowane przez firmę Corning Advanced Optics w 2009 roku. Najpierw trafiło na Uniwersytet Harvarda, gdzie było przez 5 lat przechowywane, a następnie jego polerowaniem i wykończeniem zajęła się firma L3Harris Technologies. Ma ona ponad 50-letnie doświadczenie w projektowaniu i budowaniu układów optycznych. Jej zadaniem było też zbudowanie stelaża, w którym lustro zostało zamontowane, całej elektroniki, czujników, systemu kontroli zwierciadła oraz systemu kontroli termicznej. Stelaż składa się ze sztywnej stalowej ramy oraz 78 siłowników, które wspierają lustro i będą kontrolowały jego kształt.
      W 2018 roku wraz z komponentami potrzebnymi do montażu trafiło do Chile i było przechowywane w obserwatorium, nad którego budową wciąż trwały prace. Już na miejscu, w 2019 roku, pokryto je ochronną warstwą srebra, a na początku lipca bieżącego roku zamontowano w stelażu, wraz z którym przed kilkoma dniami zostało ostatecznie zainstalowane w teleskopie. To jedno z największych wypukłych luster w historii jest monolitem o grubości 10 centymetrów.
      Operacja montażu nie była łatwa. Wykorzystano podczas niej specjalnie zaprojektowany podnośnik, który zmienił pozycję zwierciadła na pionową. W tym czasie musiał pracować system kontroli, który zapobiegał powstaniu niepotrzebnych naprężeń w zwierciadle. Po zamontowaniu podłączono elektronikę i uruchomiono oprogramowanie kontrolne. W najbliższym czasie zainstalowana zostanie Commissioning Camera. To mniejsza wersja LSST camera, której zadaniem będzie przeprowadzanie serii testów obu luster teleskopu. Na sierpień zaplanowano zaś instalację głównego zwierciadła. Przed końcem roku ma zostać ukończony montaż LSST Camera.
      Vera C. Rubin Observatory wybudowano na Cerro Pachón w Chile. Tamtejszy teleskop będzie fotografował południową część nieboskłonu. Zobrazowanie całego widocznego nieba zajmie mu kilka nocy. Zadanie to będzie powtarzał przez 10 lat, tworząc w ten sposób obraz zmieniającego się wszechświata. Tę kampanię naukową nazwano Legacy Survey of Space and Time (LSST).
      Wczesne prace nad projektem, zwanym wówczas Large-aperture Synoptic Survey Telescope (LSST) były finansowane z niewielkich grantów, a w 2008 roku pojawiły się większe pieniądze przekazane przez państwa Simonyi oraz Billa Gatesa. W 2010 roku podczas dekadalnego przeglądu projektów naukowych NSF uznała LSST za naziemny instrument naukowy o najwyższym projekcie i w 2014 roku organizacja uzyskała zezwolenie na sfinansowanie projektu do końca.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Komputery kwantowe mogą bazować na różnych rodzajach kubitów (bitów kwantowych). Jednym z nich są kubity z fotonów, które o palmę pierwszeństwa konkurują z innymi rozwiązaniami. Mają one sporo zalet, na przykład nie muszą być schładzane do temperatur kriogenicznych i są mniej podatne na zakłócenia zewnętrzne niż np. kubity bazujące na nadprzewodnictwie i uwięzionych jonach. Pary splątanych fotonów mogą stanowić podstawę informatyki kwantowej. Jednak uzyskanie splatanych fotonów wymaga zastosowania nieporęcznych laserów i długotrwałych procedur ich dostrajania. Niemiecko-holenderska grupa ekspertów poinformowała właśnie o stworzeniu pierwszego w historii źródła splątanych fotonów na chipie.
      Dokonany przez nas przełom pozwolił na zmniejszenie źródła ponad 1000-krotnie, dzięki czemu uzyskaliśmy powtarzalność, długoterminową stabilność, skalowalność oraz potencjalną możliwość masowej produkcji. To warunki, które muszą być spełnione, by zastosować tego typu rozwiązanie w realnym świecie kwantowych procesorów, mówi profesor Michael Kues, dyrektor Instytutu Fotoniki na Leibniz Universität Hannover. Dotychczas źródła światła dla komputerów kwantowych wymagały zastosowania zewnętrznych, nieporęcznych systemów laserowych, których użyteczność była ograniczona. Poradziliśmy sobie z tymi problemami tworząc nową architekturę i różne systemy integracji podzespołów na układzie scalonym, dodaje doktorant Hatam Mahmudlu z grupy Kuesa.
      Naukowcy mówią, że ich układ scalony jest równie łatwy w użyciu, jak każdy innych chip. Żeby rozpocząć generowanie splątanych fotonów wystarczy układ zamontować i włączyć. Jak każdy inny układ scalony. Jego obsługa nie wymaga żadnego specjalnego doświadczenia. Zdaniem twórców układu, w przyszłości takie źródło może znaleźć się w każdym kwantowym procesorze optycznym.
      Dotychczas eksperci mieli olbrzymie problemy w zintegrowaniu na jednym chipie laserów, filtra i wnęki, gdyż nie istnieje żaden pojedynczy materiał, z którego można by stworzyć wszystkie te urządzenia. Rozwiązaniem okazało się podejście hybrydowe. Naukowcy na jednym chipie umieścili laser z fosforku indu, wnękę oraz filtr z azotku krzemu. W polu lasera, w wyniku spontanicznego nieliniowego procesu, dochodzi do powstania dwóch splątanych fotonów. Uzyskaliśmy wydajność i jakość wymaganą do zastosowania naszego chipa w kwantowych komputerach czy kwantowym internecie, zapewnia Kues. Nasze źródło światła wkrótce stanie się podstawowym elementem programowalnych fotonicznych procesorów kwantowych, uważa uczony. Szczegóły badań zostały opublikowane w Nature Photonics.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...