Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Za kilka godzin Teleskop Webba dotrze do celu

Rekomendowane odpowiedzi

Dzisiaj około godziny 20:00 czasu polskiego kontrola naziemna Teleskopu Webba wyda mu polecenie uruchomienia silników i wprowadzi JWST na orbitę wokół punku libracyjnego L2 (punkt Lagrange'a). Teleskop pozostanie w tym miejscu przez co najmniej 10 lat. Jednak już teraz wszystko wskazuje na to, że misję Webba będzie można wydłużyć.

Obecnie Teleskop Kosmiczny Jamesa Webba (JWST) znajduje się w odległości mniej niż 6000 km od swojej docelowej orbity i porusza się w jej kierunku z prędkością ok. 200 metrów na sekundę. Najwyższa temperatura po jego gorącej stronie wynosi 55 stopni Celsjusza, a najniższa po stronie zimnej to -210 stopni.

Punkt libracyjny (punkt Lagrange'a) to taki punkt w przestrzeni w układzie dwóch ciał powiązanych grawitacją, w którym trzecie ciało o pomijalnej masie może pozostawać w spoczynku względem obu ciał układu. Tutaj mówimy o układzie Słońce-Ziemia i o Teleskopie Webba, czyli trzecim ciele, tym o pomijalnej masie. W układzie takich trzech ciał występuje pięć punktów libracyjnych, oznaczonych od L1 do L5. Na linii Słońce-Ziemia znajdują się trzy z nich. L3 leży za Słońcem z punktu widzenia Ziemi, L1 znajduje się pomiędzy Słońcem a Ziemią, a L2 to miejsce za Ziemią z punktu widzenia Słońca. Zatem L2 był jedyny możliwym do osiągnięcia punktem, w którym osłona termiczna Webba mogła chronić jego zwierciadła i instrumenty naukowe jednocześnie przed ciepłem emitowanym i przez Słońce i przez Ziemię.

Teleskop nie zostanie umieszczony w samym punkcie L2, a będzie wokół niego krążył po orbicie, której promień będzie większy od orbity Księżyca. Będzie on wynosił nawet 800 000 kilometrów, a przebycie pełnej orbity zajmie Webbowi pół roku. Dlaczego jednak nie ustawić Webba dokładnie w L2?

Punkty libracyjne przemieszczają się wraz z ruchem Ziemi wokół Słońca. Webb musiałby za L2 podążać. L2, podobnie jak L1 i L3 są punktami metastabilnymi. Jeśli narysujemy siatkę przedstawiającą gradient zmian grawitacji w tych punktach, będzie ona miała kształt siodła. Tak jakby punkty te znajdowały się na krawędzi łączącej dwa wystające ponad nią górskie szczyty. W kierunku obu szczytów nasze punkty (L1, L2 i L3) są stabilne. Kulka pchnięta w kierunku jednego ze szczytów, wróci do punktu wyjścia. Jednak po bokach naszej krawędzi opadają doliny i w tych kierunkach punkty te są niestabilne.

Znacznie łatwiejszą i bardziej efektywną alternatywą wobec umieszczenia Webba dokładnie w L2 jest wprowadzenie go na orbitę wokół tego punktu. Ma to i tę zaletę, że orbitujący Webb będzie równomiernie oświetlany przez Słońce, nie doświadczy zaćmienia Słońca przez Ziemię. A to bardzo ważne zarówno dla ładowania paneli słonecznych teleskopu jak i utrzymania równowagi termicznej, niezbędnej do precyzyjnej pracy jego instrumentów. Napęd Webbowi na orbicie L2 będą nadawały same oddziałujące siły grawitacyjne. Natomiast, jako, że L2 jest metastabilny, Webb będzie miał tendencję do opuszczenia jego orbity i zajęcia własnej orbity wokół Słońca. Dlatego też co mniej więcej trzy tygodnie odpali silniki, korygując swój kurs. W punktach L4 i L5 tego problemu nie ma. To punkty stabilne, a nasza siatka ze zmianami grawitacji ma tam kształt miski. Zatem obiekty krążące wokół tych punktów, samodzielnie pozostają na orbitach. Dlatego też znamy asteroidy krążące wokół L4 i L5, ale nie wokół pozostałych punktów libracyjnych.

Jako że Webb będzie musiał korygować swoją orbitę, czas jego misji jest ograniczony ilością paliwa. Przewidziano, że teleskop będzie pracował przez 10 lat. Już teraz jednak wiemy, że prawdopodobnie uda się ten czas wydłużyć. A to dzięki niezwykle precyzyjnemu wystrzeleniu rakiety Ariane, które wyniosła go w przestrzeń kosmiczna. Ta precyzja spowodowała, że podczas dwóch korekt kursu, jakie Webb wykonał, zużyto mniej paliwa niż planowano. Pozostało go więc na tyle dużo, że prawdopodobnie teleskop pozostanie w L2 znacznie dłużej niż planowano. Musimy bowiem pamiętać, że nie jest planowana żadna misja serwisowa do teleskopu. Więc nie będzie można uzupełnić jego paliwa.

Umieszczenie pojazdu w punkcie L2 to dość proste zadanie. Pozostaje więc pytanie, po co były zużywające cenne paliwo korekty kursu? Odpowiedź tkwi w samej architekturze Webba. Teleskop musiał dwukrotnie w czasie lotu odpalić silniki, gdyż rakieta Ariane nadała mu na tyle rozpędu, by mógł przebyć odległość dzielącą go od L2, jednak zbyt mało energii, by mógł całkowicie uciec z pola grawitacyjnego Ziemi.

Co prawda tę dodatkową energię Ariane mogłaby mu nadać podczas startu, jednak istniało wówczas ryzyko, że będzie jej nieco za dużo i Webb będzie poruszał się zbyt szybko, by wejść na orbitę wokół L2. Mógłby ją minąć. Problem ten można by rozwiązać wyhamowując teleskop. Jednak manewr hamowania za pomocą silników Webba zużyłby więcej paliwa, niż na korekty kursu. Jednak nie to było głównym problemem, a fakt, że silniki Webba są umieszczone po jego gorącej stronie, tej zwróconej w kierunku Słońce. Zatem Webb, żeby wyhamować, musiałby wykonać obrót o 180 stopni wokół własnej osi. Wówczas jego optyka i instrumenty naukowe, które wymagają bardzo niskich temperatur, zostałyby wystawione na bezpośrednie oddziaływanie Słońca, doszłoby do ich rozgrzania i... roztopienia kleju, którym są spojone.

Gdy Webb znajdzie się na swojej orbicie rozpocznie pięciomiesięczny proces testowania i kalibrowania zwierciadeł oraz instrumentów naukowych. Naukowcy etap misji rozpocznie się w czerwcu.

 


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Inżynierowie lotniczy i kosmiczni z MIT odkryli, że sposób, w jaki emisja gazów cieplarnianych wpływa na atmosferę, zmniejszy liczbę satelitów, które można będzie umieścić na niskiej orbicie okołoziemskiej (LEO). Na łamach Nature Sustainability stwierdzają, że rosnąca emisja gazów cieplarnianych zmniejsza zdolność atmosfery do usuwania odpadków krążących wokół Ziemi.
      Badacze zauważyli, że dwutlenek węgla i inne gazy cieplarniane powodują, iż górne warstwy atmosfery się kurczą. Głównie interesuje ich termosfera, w której krąży Międzynarodowa Stacja Kosmiczna i większość satelitów. Gdy termosfera się kurczy, jej zmniejszająca się gęstość prowadzi do zmniejszenia oporów, a to właśnie opór aerodynamiczny jest tym czynnikiem, który powoduje, że kosmiczne śmieci – chociażby pozostałości po nieczynnych satelitach – opadają w kierunku Ziemi i płoną w atmosferze. Mniejszy opór oznacza, że odpady takie będą dłużej znajdowały się na orbicie, zatem ich liczba będzie rosła, a to zwiększa ryzyko kolizji z działającymi satelitami i innymi urządzeniami znajdującymi się w tych samych rejonach.
      Naukowcy przeprowadzili symulacje, których celem było sprawdzenie, jak emisja dwutlenku węgla wpłynie na górne partie atmosfery i astrodynamikę. Wynika z nich, że do roku 2100 pojemność najpopularniejszych regionów orbity zmniejszy się o 50–66 procent właśnie z powodu gazów cieplarnianych.
      Nasze zachowanie na Ziemi w ciągu ostatnich 100 lat wpływa na to, w jaki sposób będziemy używali satelitów przez kolejnych 100 lat, mówi profesor Richard Linares z Wydziału Aeronautyki i Astronautyki MIT. Emisja gazów cieplarnianych niszczy delikatną równowagę górnych warstw atmosfery. Jednocześnie gwałtownie rośnie liczba wystrzeliwanych satelitów, szczególnie telekomunikacyjnych, zapewniających dostęp do internetu. Jeśli nie będziemy mądrze zarządzali satelitami i nie ograniczymy emisji, orbita stanie się zbyt zatłoczona, co będzie prowadziło do większej liczby kolizji i większej liczby krążących na niej szczątków, dodaje główny autor badań, William Parker.
      Termosfera kurczy się i rozszerza w 11-letnich cyklach, związanych z cyklami aktywności słonecznej. Gdy aktywność naszej gwiazdy jest niska, do Ziemi dociera mniej promieniowania, najbardziej zewnętrzne warstwy atmosfery tymczasowo się ochładzają i kurczą. W okresie zwiększonej aktywności słonecznej są one cieplejsze i rozszerzają się.
      Już w latach 90. naukowcy stworzyli modele, z których wynikało, że w miarę ocieplania się klimatu na Ziemi, górne warstwy atmosfery będą się schładzały, co doprowadzi do kurczenia się termosfery i zmniejszania jej gęstości.
      W ciągu ostatniej dekady nauka zyskała możliwość precyzyjnych pomiarów oporu aerodynamicznego działającego na satelity. Pomiary te pokazały, że termosfera kurczy się w odpowiedzi na zjawisko wykraczające poza naturalny 11-letni cykl. Niebo dosłownie spada, w tempie liczonych w dziesięcioleciach. A widzimy to na podstawie zmian oporów doświadczanych przez satelity, wyjaśnia Parker.
      Naukowcy z MIT postanowili sprawdzić, w jaki sposób to zmierzone zjawisko wpłynie na liczbę satelitów, które można bezpiecznie umieścić na niskiej orbicie okołoziemskiej. Ma ona wysokość do 2000 kilometrów nad powierzchnią Ziemi. Obecnie na orbicie tej znajduje się ponad 10 000 satelitów. Ich liczba jest już tak duża, że operatorzy satelitów standardowo muszą wykonywać manewry unikania kolizji. Każda taka kolizja oznacza nie tylko zniszczenie satelity, ale też pojawienie się olbrzymiej liczby szczątków, które będą krążyły na orbicie przez kolejne dekady i stulecia, zwiększając ryzyko kolejnych kolizji.
      W ciągu ostatnich 5 lat ludzkość umieściła na LEO więcej satelitów, niż przez wcześniejszych 60 lat. Jednym z głównych celów badań było sprawdzenie, czy sposób, w jaki obecnie prowadzimy działania na niskiej orbicie okołoziemskiej można będzie utrzymać w przyszłości. Naukowcy symulowali różne scenariusze emisji gazów cieplarnianych i sprawdzali, jak wpływa to na gęstość atmosfery i opór aerodynamiczny. Następnie dla każdego z tych scenariuszy sprawdzali jego wpływ na astrodynamikę i ryzyko kolizji w zależności od liczby obiektów znajdujących się na orbicie. W ten sposób obliczali „zdolność ładunkową” orbity. Podobnie jak sprawdza się, ile osobników danego gatunku może utrzymać się w danym ekosystemie.
      Z obliczeń wynika, że jeśli emisja gazów cieplarnianych nadal będzie rosła, to liczba satelitów, jakie można umieścić na wysokości od 200 do 1000 kilometrów nad Ziemią będzie o 50–66 procent mniejsza niż w scenariuszu utrzymania poziomu emisji z roku 2000. Jeśli „zdolność ładunkowa” orbity zostanie przekroczona, nawet lokalnie, dojdzie do całej serii kolizji, przez co pojawi się tyle szczątków, że orbita stanie się bezużyteczna.
      Autorzy badań ostrzegają, że niektóre regiony orbity już zbliżają się do granicy ich „zdolności ładunkowej”. Dzieje się tak głównie przez nowy trend, budowanie megakonstelacji olbrzymiej liczby małych satelitów, takich jak Starlink SpaceX.
      Polegamy na atmosferze, która oczyszcza orbitę z pozostawionych przez nas odpadów. Jeśli atmosfera się zmienia, zmienia się też środowisko, w którym znajdują się odpady. Pokazujemy, że długoterminowe możliwości usuwania odpadów z orbity są uzależnione od zmniejszenia emisji gazów cieplarnianych, podsumowuje Richard Linares.
      Specjaliści szacują, że obecnie na orbicie znajduje się 40 500 odpadków o rozmiarach większych niż 10 cm, 1 milion 100 tysięcy odpadków wielkości od 1 do 10 cm oraz 130 milionów śmieci wielkości od 1 mm do 1 cm. Nawet te najmniejsze odpady stanowią duże zagrożenie. Średnia prędkość kolizji, do jakich między nimi dochodzi, to 11 km/s czyli około 40 000 km/h.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gdyby większość ciemnej materii istniała nie w postaci w formie cząstek, a mikroskopijnych czarnych dziur, to mogłyby one wpływać na orbitę Marsa tak, że bylibyśmy w stanie wykryć to za pomocą współczesnej technologii. Zatem zmiany orbity Czerwonej Planety mogłyby posłużyć do szukania ciemnej materii, uważają naukowcy z MIT, Uniwersytetu Stanforda i Uniwersytetu Kalifornijskiego w Santa Cruz. A wszystko zaczęło się od odrodzenia hipotezy z lat 70. XX wieku i pytania o to, co stałoby się z człowiekiem, przez którego przeszłaby miniaturowa czarna dziura.
      Pomysł, że większość ciemnej materii, której wciąż nie potrafimy znaleźć, istnieje w postaci miniaturowych czarnych dziur, narodził się w latach 70. Wysunięto wówczas hipotezę, że u zarania wszechświata z zapadających się chmur gazu powstały niewielkie czarne dziury, które w miarę ochładzania się i rozszerzania wszechświata, rozproszyły się po nim. Takie czarne dziury mogą mieć wielkość pojedynczego atomu i masę największych znanych asteroid. W ostatnich latach hipoteza ta zaczęła zdobywać popularność w kręgach naukowych.
      Niedawno jeden z autorów badań, Tung Tran, został przez kogoś zapytany, co by się stało, gdyby taka  pierwotna czarna dziura przeszła przez człowieka. Tran chwycił za coś do pisania i wyliczył, że gdyby tego typu czarna dziura minęła przeciętnego człowieka w odległości 1 metra, to osoba taka zostałaby w ciągu 1 sekundy odrzucona o 6 metrów.  Badacz wyliczył też, że prawdopodobieństwo, by taki obiekt znalazł się w pobliżu kogokolwiek na Ziemi jest niezwykle małe.
      Jednak Tung postanowił sprawdzić, co by się stało, gdyby miniaturowa czarna dziura przeleciała w pobliżu Ziemi i spowodowała niewielkie zmiany orbity Księżyca. Do pomocy w obliczeniach zaprzągł kolegów. Wyniki, które otrzymaliśmy, były niejasne. W Układzie Słonecznym mamy do czynienia z tak dynamicznym układem, że inne siły mogłyby zapobiec takim zmianom, mówi uczony.
      Badacze, chcąc uzyskać jaśniejszy obraz, stworzyli uproszczoną symulację Układu Słonecznego składającego się z wszystkich planet i największych księżyców. Najdoskonalsze symulacje Układu biorą pod uwagę ponad milion obiektów, z których każdy wywiera jakiś wpływ na inne. Jednak nawet nasza uproszczona symulacja dostarczyła takich danych, które zachęciły nas do bliższego przyjrzenia się problemowi, wyjaśnia Benjamin Lehmann z MIT.
      Na podstawie szacunków dotyczących rozkładu ciemnej materii we wszechświecie i masy miniaturowych czarnych dziur naukowcy obliczyli, że taka wędrująca we wszechświecie czarna dziura może raz na 10 lat trafić do wewnętrznych regionów Układu Słonecznego. Wykorzystując dostępne symulacje rozkładu i prędkości przemieszczania się ciemnej materii w Drodze Mlecznej, uczeni symulowali przeloty tego typu czarnych dziur z prędkością około 241 km/s. Szybko odkryli, że o ile efekty przelotu takiej dziury w pobliżu Ziemi czy Księżyca byłyby trudne do obserwowania, gdyż ciężko byłoby stwierdzić, że widoczne zmiany wywołała czarna dziura, to w przypadku Marsa obraz jest już znacznie jaśniejszy.
      Z symulacji wynika bowiem, że jeśli pierwotna czarna dziura przeleciałaby w odległości kilkuset milionów kilometrów od Marsa, po kilku latach orbita Czerwonej Planety zmieniłaby się o około metr. To wystarczy, by zmianę taką wykryły instrumenty, za pomocą których badamy Marsa.
      Zdaniem badaczy, jeśli w ciągu najbliższych dziesięcioleci zaobserwujemy taką zmianę, powinniśmy przede wszystkim sprawdzić, czy nie została ona spowodowana przez coś innego. Czy to nie była na przykład nudna asteroida, a nie ekscytująca czarna dziura. Na szczęście obecnie jesteśmy w stanie z wieloletnim wyprzedzeniem śledzić tak wielkie asteroidy, obliczać ich trajektorie i porównywać je z tym, co wynika z symulacji dotyczących pierwotnych czarnych dziur, przypomina profesor David Kaiser z MIT.
      A profesor Matt Caplan, który nie był zaangażowany w badania, dodaje, że skoro mamy już obliczenia i symulacje, to pozostaje najtrudniejsza część – znalezienie i zidentyfikowanie prawdziwego sygnału, który potwierdzi te rozważania.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Webba pokazuje rzeczy, jakich nigdy nie widzieliśmy, w tym okres formowania się galaktyk. Webb pozwolił właśnie na szczegółowe obserwacje protogromady siedmiu galaktyk, o przesunięciu ku czerwieni z=7,9, co oznacza, że obserwujemy ją tak, jak wyglądała 650 milionów lat po Wielkim Wybuchu. Astronomowie określili jej prawdopodobną późniejszą ewolucję i doszli do wniosku, że z czasem utworzyła znaną obecnie Gromadę Warkocza Bereniki (Abell 1656), najgęstszą z gromad galaktyk.
      To szczególne, unikatowe miejsce przyspieszonej ewolucji galaktyk, a Webb daje nam bezprecedensową możliwość dokonania pomiarów prędkości tych siedmiu galaktyk, dzięki czemu możemy upewnić się, że tworzą one protogromadę, mówi główny autor badań, Takahiro Morishita z IPAC-California Institute of Technology.
      Dzięki precyzyjnym pomiarom dokonanym przez instrument NIRSpec naukowcy mogli potwierdzić odległość galaktyk oraz prędkość ich przemieszczania się przez halo ciemnej materii, która wynosi około 1000 km/s. Dane spektrograficzne zaś pozwoliły na modelowanie i mapowanie przyszłej ewolucji gromady. Po analizie naukowcy uznali, że najprawdopodobniej utworzyła ona Abell 1656. Obserwujemy te odległe galaktyki jak krople wody w różnych rzekach i możemy stwierdzić, że z czasem staną się one częścią jednego olbrzymiego nurtu, dodaje Benedetta Vulcani z Narodowego Instytutu Astrofizyki we Włoszech. Webb dostrzegł protogromadę dzięki wykorzystaniu zjawiska soczewkowania grawitacyjnego zapewnionego przez Gromadę Pandora (Abell 2744).
      Obserwowanie początków powstawania wielkich gromad galaktyk jak Pandora czy Warkocz Bereniki jest bardzo trudne, gdyż wszechświat się rozszerza, a to oznacza, że docierające do nas z coraz większej odległości fale świetlne są coraz bardziej rozciągnięte, przesuwając się ku podczerwieni. Przed Webbem nie dysponowaliśmy instrumentem, który rejestrowałby podczerwień w wystarczająco dużej rozdzielczości. Teleskop Webba powstał właśnie po to, by wypełnić tę lukę w astronomii. I, jak widać, świetnie się sprawdza.
      Sprawdzają się też przewidywania mówiące, że największą korzyść osiągniemy ze współpracy Webba z Hubble'em.Te siedem galaktyk w protogromadzie zostało wytypowanych właśnie przez Teleskop Hubble'a jako potencjalnie interesujący cel badawczy. Hubble nie ma jednak możliwości obserwowania światła o długości fali większej niż bliska podczerwień, dlatego też nie był w stanie dostarczyć nam zbyt wielu danych. Uzyskaliśmy je dzięki Webbowi.
      Co więcej, autorzy badań nad protogromadą przypuszczają, że współpraca Webba z Roman Grace Telescope, który ma zostać wystrzelony w 2027 roku, a który bazuje na jednym z teleskopów przekazanych NASA przez agencję wywiadowczą, może dostarczyć nam jeszcze więcej informacji o początkach gromad galaktyk.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Webba zaobserwował szczegóły zawierających krzemiany chmur w atmosferze odległej planety. W jej atmosferze bez przerwy dochodzi do mieszania, wznoszenia i opadania materiału w 22-godzinym cyklu. Wynikiem tego są tak olbrzymie zmiany jasności, że wspomniana planeta jest najbardziej zmiennym znanym nam obiektem o masie planetarnej.
      Naukowcy, na czele których stoi Brittany Miles z University of Arizona, zauważyli też wyjątkowo wyraźne sygnały świadczące o obecności wody, metanu i tlenku węgla oraz dowód na występowanie w atmosferze dwutlenku węgla. Tym samym Teleskop Webba wykrył największą liczbę molekuł zauważonych jednorazowo w atmosferze egzoplanety.
      Wspomniana egzoplaneta, VHS 1256 b, znajduje się w odległości 40 lat świetlnych od Ziemi o okrąża 2 gwiazdy. Okres jej obiegu wynosi ponad 10 000 lat. VHS 1256 b znajduje się około 4-krotnie dalej od swoich gwiazd, niż Pluton od Słońca. To czyni ją idealnym celem dla obserwacji za pomocą Webba. Dobiegające z niej światło nie miesza się ze światłem z jej gwiazd macierzystych, mówi Miles. Uczona dodaje, że w górnych partiach temperatura jej atmosfery sięga 830 stopni Celsjusza.
      Webb zauważył też dwa rodzaje ziaren krzemianów w chmurach. Mniejsze mogą być wielkości cząstek dymu, większe zaś są jak bardzo gorące miniaturowe ziarenka piasku. VHS 1256 b ma bardzo słabą grawitację, dlatego też chmury występują bardzo wysoko w jej atmosferze, co pozwala na ich obserwację. Drugą przyczyną tak gwałtownych zjawisk w atmosferze jest młody wiek planety. Naukowcy szacują, że uformowała się ona zaledwie 150 milionów lat temu i przez najbliższy miliard lat będzie się schładzała i zmieniała.
      Wiele z cech, które zaobserwowano na VHS 1256 b zauważono wcześniej na innych planetach. Jednak w ich przypadku wymagało to wielu obserwacji za pomocą różnych teleskopów. Tutaj zaś Teleskop Webba dostarczył wszystkich informacji jednocześnie. A to nie wszystko. Naukowcy uważają, że przez najbliższe miesiące i lata, analizując dane dostarczone przez Webba, będą zdobywali kolejne informacje. Mamy tutaj olbrzymią ilość danych uzyskanych w niedługim czasie. Czujemy olbrzymi potencjał i mamy nadzieję na wiele odkryć w danych, zebranych w ciągu zaledwie kilku godzin obserwacji, cieszy się Beth Biller z Uniwersytetu w Edynburgu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astrofizyk Stephen Kane z Uniwersytetu Kalifornijskiego w Riverside przeprowadził symulacje komputerowe, w których uzupełnił dwie rzucające się w oczy luki w Układzie Słonecznym. Pierwsza z nich to brak super-Ziemi, druga zaś to jej lokalizacja. Z symulacji wynika, że ich uzupełnienie zakończyło by historię życia na Ziemi.
      Największą planetą skalistą Układu Słonecznego jest Ziemia. Najmniejszym gazowym olbrzymem jest zaś Neptun o 4-krotnie większej średnicy i 17-krotnie większej masie. Nie ma żadnej planety o pośrednich cechach. W innych układach znajduje się wiele planet o wielkości i masie pomiędzy Ziemią a Neptunem. Nazywamy je super-Ziemiami, wyjaśnia Kane. Druga z luk to odległość od Słońca. Merkury położony jest o 0,4 jednostki astronomicznej (j.a.) od naszej gwiazdy, Wenus dzieli od niej 0,7 j.a., Ziemię – 1 j.a., a Marsa – 1,5 j.a. Kolejna planeta, Jowisz, znajduje się już 5,2 j.a. od Słońca. Kane w swoich symulacjach postanowił wypełnić tę lukę. Symulował więc istnienie tam planety o różnej masie i sprawdzał, jak jej obecność wpływała na inne planety.
      Wyniki symulacji – w ramach których Kane badał skutki obecności planety o masie 1-10 mas Ziemi na orbicie odległej od Słońca o 2-4 j.a. – opublikowane na łamach Planetary Science Journal, były katastrofalne dla Układu Słonecznego. Taka fikcyjna planeta wpłynęłaby na orbitę Jowisza, co zdestabilizowałby cały układ Słoneczny. Jowisz, największa z planet, ma masę 318-krotnie większa od Ziemi. Jego grawitacja wywiera więc duży wpływ na otoczenie. Jeśli super-Ziemia lub inny masywny obiekt zaburzyłby orbitę Jowisza, doszłoby do znacznych zmian w całym naszym otoczeniu. W zależności od masy i dokładnej lokalizacji super-Ziemi jej obecność – poprzez wpływ na Jowisza – mogłaby doprowadzić do wyrzucenia z Układu Słonecznego Merkurego, Wenus i Ziemi. Podobny los mógłby spotkać Urana i Neptuna. Jeśli zaś super-Ziemia miałaby znacznie mniejszą masę niż ta prowadząca do katastrofy i znajdowałaby się dokładnie po środku pomiędzy Marsem a Jowiszem, układ taki mógłby być stabilny. Jednak każde odchylenie w jedną lub drugą stronę skończyłoby się katastrofą.
      Badania Kane'a to nie tylko ciekawostka. Pokazują, jak delikatna jest równowaga w Układzie Słonecznym. Ma też znaczenie dla poszukiwania układów planetarnych zdolnych do podtrzymania życia. Mimo że podobne do Jowisza, odległe od swoich gwiazd, gazowe olbrzymy znajdowane są w zaledwie 10% układów, to ich obecność może decydować o stabilności orbit planet skalistych.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...