Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Aktywność fizyczna poprawia jakość połączeń między neuronami i chroni przed alzheimerem

Rekomendowane odpowiedzi

Gdy starsi ludzie pozostają fizycznie aktywni, w ich mózgach znajduje się więcej protein tworzących połączenia pomiędzy neuronami. Dzięki temu, zachowują tez sprawność umysłową. Zwiększoną ilość wspomnianych białek zaobserwowano podczas autopsji nawet w mózgach osób, które były pełne toksycznych protein powiązanych z chorobą Alzheimera i innymi chorobami neurodegeneracyjnymi.

"Jako pierwsi wykorzystaliśmy tego typu dane, by wykazać, że regulacja protein w synapsach jest powiązana z aktywnością fizyczną i to właśnie ona może być przyczyną pozytywnych skutków ćwiczeń fizycznych w starszym wieku, które możemy obserwować", powiedziała główna autorka badań, profesor Kaitlin Casaletto z Uniwersytetu Kalifornijskiego w San Francisco (UCSF).

Badania Casaletto i jej grupy opierały się na danych pozyskanych w ramach Memory and Aging Project prowadzonego na Rush University w Chicago. W ramach tego projektu śledzono poziom aktywności fizycznej u starszych ludzi, którzy zgodzili się oddać po śmierci swoje mózgi do badań. Dlatego też uczeni z UCSF mogą pochwalić się przeprowadzeniem wyjątkowych badań na ludziach. Dotychczas bezpośredni związek pomiędzy aktywnością fizyczną a zdolnościami poznawczymi mogliśmy obserwować w ten sposób na myszach.

Utrzymanie stabilnych połączeń pomiędzy neuronami może być kluczowym elementem ochrony przed demencją. To synapsy są tym miejscem, które decydują o naszych zdolnościach poznawczych. A utrzymanie aktywności fizycznej, co jest bardzo łatwe, może pomóc w poprawieniu funkcjonowania synaps, stwierdza Casaletto.

Naukowcy nie tylko zauważyli, że dzięki aktywności fizycznej poprawia się jakość synaps, ale – ku ich zdumieniu – okazało się, że dobroczynne skutki wykraczają daleko poza hipokamp i dotyczą też innych obszarów mózgu. "Być może aktywność fizyczna ma pozytywny wpływ na cały mózg, wspierając i utrzymując prawidłowe funkcjonowanie protein odpowiedzialnych za wymianę sygnałów między synapsami", dodaje współautor badań, profesor William Honer z University of British Columbia.

W mózgach większości osób starszych dochodzi do akumulacji białek tau i beta-amyloidu. To toksyczne proteiny powiązane z chorobą Alzheimera. Obecnie uważa się, że najpierw pojawia się beta-amyloid, a następnie tau i dochodzi do uszkodzeń synaps oraz neuronów. Casaletto już podczas wcześniejszych badań zauważyła, że u starszych osób z bardziej spójnymi połączeniami między synapsami – niezależnie od tego, czy badania były wykonywane z płynu mózgowo-rdzeniowego pobranego od żywych pacjentów, czy na podstawie autopsji mózgu – toksyczne działanie beta-amyloidu i białek tau było osłabione.

Uczona podsumowuje, że biorąc pod uwagę oba wspomniane badania, widać, jak ważne jest utrzymywanie aktywności fizycznej w starszym wieku.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Przenoszony przez komary wirus Zika powoduje infekcje w obu Amerykach, Afryce i Azji, a świat szerzej o nim usłyszał przed 10 laty, gdy wywołał epidemię w Ameryce Południowej. Zwykle Zika nie daje objawów lub przypominają one lekkie przeziębienie. W bardzo rzadkich przypadkach dochodzi do pojawienia się zespołu Guillaina-Barrégo. Dlatego też głównym zagrożeniem wiążącym się z infekcją jest zarażenie ciężarnej kobiety. Zika powoduje bowiem małogłowie u dzieci zarażonych matek.
      Naukowcy z uniwersytetów w Kalifornii, Nowym Jorku i Nevadzie właśnie odkryli mechanizm wywoływania małogłowia u noworodków przez Zikę.
      W artykule Microcephaly protein ANKLE2 promotes Zika virus replication donoszą, że Zika przejmuje proteinę ANKLE2, która jest niezbędna do prawidłowego rozwoju mózgu, i wykorzystuje ją podczas replikacji. Również spokrewnione z Ziką wirusy, jak wirus dengi i wirus żółtej gorączki, również korzystają z ANKLE2. Jednak Zika, w przeciwieństwie do większości spokrewnionych z nim wirusów, jest w stanie przedostać się do łożyska. A to ma katastrofalne skutki dla rozwijającego się dziecka. W przypadku Ziki mamy do czynienia z wirusem, który dostaje się w złe miejsce, w złym czasie, mówi doktor Priya Shah z Uniwersytetu Kalifornijskiego w Davis.
      Zika należy do rodzaju ortoflawiwirusów. Posiadają one jednoniciowe RNA i, podobnie jak inne wirusy, niosą ze sobą ograniczony zestaw instrukcji we własnym kodzie genetycznym. By się replikować, muszą skorzystać z materiału dostępnego w zarażonej komórce gospodarza. Już wcześniej autorzy obecnych badań zauważyli, że wchodząca w skład wirusa proteina NS4A wchodzi w interakcje z ANKLE2 w zarażonych komórkach. ANKLE2 jest zaangażowana w rozwój mózgu u płodu, ale występuje w komórkach całego ciała.
      Podczas najnowszych badan uczeni wykazali, że usunięcie z komórek genu kodującego ANKLE2 zmniejsza zdolność wirusa do namnażania się. Stwierdzili też, że w wyniku interakcji NS4A z ANLKE2 proteina ANKLE2 gromadzi się wokół siateczki śródplazmatycznej zarażonych komórek, tworząc „kieszonkę”, w której replikacja wirusa jest znacznie bardziej efektywna. Ponadto „kieszonka” ukrywa patogen przed układem odpornościowym. Nasz organizm potrafi efektywnie zwalczać wirusy, pod warunkiem jednak, że jest w stanie je znaleźć. Zika i spokrewnione wirusy wyewoluowały efektywne strategie pozwalające ukryć im się w tych „kieszonkach”, by uniknąć wykrycia, stwierdzają autorzy badań. Bez kieszonek wirusy są narażone na atak ze strony układu odpornościowego, który dobrze sobie radzi z utrzymywaniem ich pod kontrolą.
      Co więcej, okazało się, że wirus przechwytuje też proteinę ANKLE2 u komarów, co oznacza, że odgrywa ona dla niego ważną rolę, zarówno u gospodarzy ludzkich, jak i zwierzęcych. Uczeni wykazali też, że do interakcji NS4A i ANKLE2 dochodzi również w przypadku innych wirusów przenoszonych przez komary. To zaś sugeruje, że interakcja ta odgrywa duża rolę w rozprzestrzenianiu się wielu chorób, zatem jej mechanizm można wziąć na cel opracowując nowe leki i szczepionki.
      Wirus Zika jest jednak o tyle unikatowy, że przenika do łożyska i powoduje nieodwracalne szkody u płodu.  Większość innych wirusów nie ma, na szczęście, takich możliwości.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Każdy z nas potrafi przywołać z pamięci charakterystyczny widok psa otrzepującego się po wyjściu z wody. Podobnie otrzepują się wszystkie zwierzęta posiadające futro. Jednak do niedawna nauka nie wiedziała, jaki mechanizm uruchamia takie zachowanie. O wiedzę tę wzbogacił nas właśnie profesor neurobiologii David Ginty i jego zespół z Wydziału Neurobiologii Harvard Medical School.
      Naukowcy wykorzystali nowoczesne narzędzia, które w znacznej mierze sami opracowali, do wyizolowania i śledzenia pojedynczych neuronów oraz stymulowania ich lub blokowania za pomocą światła. Dzięki nim dowiedzieli się, że za aktywowanie takiego zachowania odpowiadają łatwo pobudliwe mechanoreceptory typu C (C-LTMRs). Receptory te stanowią wczesny system ostrzegania, że coś – insekt, woda czy brud – za chwilę wejdzie w kontakt ze skórą. To wrodzony mechanizm odruchowy, który jednak zwierzę może kontrolować. Profesor Ginty porównuje jego działanie do sytuacji, gdy na naszym ramieniu wyląduje komar. Możemy odruchowo potrząsnąć ramieniem czy uderzyć owada dłonią, ale możemy też się powstrzymać.
      Naukowcy z laboratorium Ginty'ego wykorzystali olej słonecznikowy, którego krople nakładali na grzbiet myszy, które genetycznie zmodyfikowano tak, by za pomocą światła stymulować lub blokować specyficzne neurony. Tak zaawansowane eksperymenty stały się możliwe dzięki temu, że w ciągu ostatnich dwóch dekad opracowano potężne narzędzia genetyczne.
      Na skórze znajduje się około 20 różnego typu receptorów czuciowych. Około 12 z nich jest odpowiedzialnych za rejestrowanie różnego typu dotyku, od szybkiego ukłucia, przez wibracje po delikatne masowanie. Receptory C-LTMR są owinięte wokół podstawy mieszków włosowych i należą do najbardziej czułych receptorów skóry. Rejestrują najlżejsze ruchy włosa czy ugięcie skóry wokół jego podstawy. Z receptora sygnały wędrują do mózgu za pośrednictwem rdzenia kręgowego.
      Wielką zaletą technik wykorzystanych przez laboratorium Ginty'ego jest możliwość przyjrzenia się temu, co dzieje się w rdzeniu. Rozumiemy sposób organizacji neuronów przetwarzających informacje wizualne i dźwiękowe. Jeśli jednak chodzi o dotyk, o przetwarzanie sygnałów somatosensorycznych, dopiero próbujemy to zrozumieć, gdyż bardzo trudno jest uzyskać dostęp i rejestrować to, co dzieje się w rdzeniu kręgowym, stwierdza uczony.
      Jego zespołowi udało się zidentyfikować konkretny obszar w mózgu, do którego trafia sygnał skłaniający psa do otrzepania się, ale wiele jeszcze pozostaje do zbadania. Naukowcy wciąż nie wiedzą, czy zidentyfikowany przez nich szlak nerwowy jest jedynym mechanizmem biorącym udział w reakcji na kontakt z wodą czy też istnieją jeszcze inne, niezidentyfikowane. Trudno jest odpowiedzieć na to pytanie, gdyż narzędzia, jakich zwykle używamy, rzadko w 100 procentach blokują to, co byśmy chcieli. Dlatego nie wiemy, czy obserwowane zachowanie wynika z 10% niezablokowanych sygnałów, czy też istnieje inna droga ich przekazywania, czy inny typ komórki, który przeoczyliśmy. W tym przypadku chodzi raczej o to drugie, ale nie jesteśmy pewni, wyjaśnia uczony.
      Drugie pytanie, na które trzeba odpowiedzieć brzmi: dlaczego, skoro C-LTMR znajdują się na całym ciele, otrzepywanie się jest uruchamiane tylko w przypadku zmoczenia środkowej części grzbietu? Można to w pewnej mierze wyjaśnić faktem, że ta część ciała znajduje się poza zasięgiem łap i zębów. Nie tłumaczy to jednak, jak to się dzieje, że sygnały pochodzące z takich samych neuronów i trafiające do tych samych części mózgu, raz wywołują otrzepywanie się, a innym razem nie. Być może, zastanawiają się badacze, sygnały ze środkowej części grzbietu trafiają do innych regionów jądra okołoramieniowego w mózgu, niż sygnały z pozostałej części ciała. A może te z grzbietu są wzmacniane w rdzeniu kręgowym, dlatego wywołują taką reakcję.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ryż jest podstawowym produktem spożywczym dla ponad 4 miliardów ludzi. Zawiera dużo węglowodanów, ale mało białka. W Azji, gdzie ryż się głownie spożywa, żyje ponad połowa wszystkich cukrzyków na świecie, a wielu z nich cierpi też na niedobór białka. Naukowcy z Międzynarodowego Instytutu Badań nad Ryżem na Filipinach oraz Instytutu Molekularnej Fizjologii Roślin im. Maxa Plancka w Niemczech, zidentyfikowali geny ryżu, które kontrolują zawartość węglowodanów i białek w roślinie. Następnie wyhodowali nowe odmiany, zawierające mało cukrów, a dużo białka. Wykorzystali przy tym zarówno tradycyjne metody, jak i modyfikacje genetyczne. Odmiana powstała w wyniku krzyżowania dwóch gatunków nie jest uznawana za roślinę GMO, w związku z tym można ją będzie uprawiać i sprzedawać w Unii Europejskiej.
      Tradycyjne kultywary ryżu zawierają głównie węglowodany w postaci łatwo przyswajalnej skrobi. Może ona stanowić aż 90% węglowodanów. Taka skrobia ma wysoki indeks glikemiczny, co oznacza, że jej spożycie powoduje gwałtowny skok poziomu cukru, więc nie jest to pożywienie odpowiednie dla osób z cukrzycą. Nowe odmiany ryżu dają więc nadzieję, na poprawienie stanu zdrowia setek milionów mieszkańców Azji i Afryki, którzy dzięki nim powinni zyskać dostęp do żywności o niższym indeksie glikemicznym i zawierającej więcej białka.
      Naukowcy skrzyżowali odmiany Samba Mahsuri oraz IR36ae, uzyskując nowy kultywar o 16-procentowej zawartości białka. To od 2 do 8 razy więcej, niż odmiany standardowe. Uzyskana odmiana zawiera wiele aminokwasów egzogennych, takich jak histydyna, izoleucyna, lizyna, metionina, fenyloalanina i walina. Zawiera ich tyle, że zapewnia rekomendowane dziennie spożycie tych aminokwasów dla osób powyżej 9. roku życia. Jednocześnie ma niski indeks glikemiczny, dzięki któremu poziom cukru we krwi nie rośnie tak gwałtownie, jak w przypadku tradycyjnych odmian.
      Jakby tych zalet było mało, okazuje się, że nowe odmiany dają podobne plony jak obecnie uprawiane odmiany wysokowydajne. Zatem lepsza zawartość składników odżywczych nie będzie wiązała się z niższą produktywnością.
      Dodatkową korzyścią jest fakt, że wspomniane odmiany można uzyskać zarówno metodami edycji genów, jak i poprzez tradycyjne krzyżowanie, zatem można je będzie uprawiać i sprzedawać nawet tam, gdzie odmiany GMO nie są dopuszczane na rynek.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W przebiegu chorób Alzheimera czy Parkinsona w neuronach tworzą się splątki neurofibrynalne, patologiczne agregacje białek. Dotychczas sądzono, że komórki mikrogleju sprzątają splątki dopiero wówczas, gdy zostaną uwolnione z komórki po śmierci neuronu. Badania przeprowadzone przez naukowców z Instytutu Biologii Wieku im. Maxa Plancka wykazały, że mikroglej tworzy niewielkie rurki połączone z komórkami nerwowymi i za pomocą tych rurek usuwa splątki, zanim wyrządzą one neuronowi szkodę.
      To jednak nie wszystko. Za pomocą rurek mikroglej wysyła do neuronów w których pojawiły się splątki, zdrowe mitochondria umożliwiające komórkom lepsze funkcjonowanie pomimo choroby. Jesteśmy podekscytowani tym odkryciem i jego potencjalnymi zastosowaniami w celu poprawy funkcjonowania neuronów za pomocą mikrogleju, mówi współautor badań Frederik Eikens.
      Uczeni odkryli też, że mutacje genetyczne w mikrogleju wpływają na tworzenie i działanie tych rurek. Mutacje takie zwiększają ryzyko wystąpienia chorób neurodegeneracyjnych, co sugeruje, że zaburzenia tworzenia „rurek tunelowania” jest jednym z czynników rozwoju chorób neurodegeneracyjnych. Na następnym etapie badań skupimy się na zrozumieniu, jak te rurki powstają i spróbujemy opracować metody zwiększenia procesu ich generowania w czasie choroby, dodaje Lena Wischhof.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...