Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Teleskop Webba został całkowicie rozłożony

Recommended Posts

Teleskop Webba zakończył rozkładanie głównego zwierciadła. Tym samym największy w historii i najważniejszy od ponad 30 lat teleskop kosmiczny prezentuje się w całej okazałości i z prędkością 1440 km/h podąża w kierunku swojego celu, punktu libracyjnego L2. Obecnie Webb znajduje się w odległości niemal 1 110 000 kilometrów od Ziemi. Do L2 dzieli go 370 000 kilometrów.

Ostatnim etapem rozkładania teleskopu, który musiał być złożony, by zmieścić się do rakiety nośnej, było rozłożenie dwóch bocznych elementów zwierciadła głównego. Operację rozpoczęto wczoraj o godzinie 14:36 czasu polskiego od rozłożenia pierwszego z nich. O godzinie 20:11 inżynierowie potwierdzili, że skrzydło zostało rozłożone i zablokowane w pozycji. Drugi z elementów zaczęto rozkładać dzisiaj o 14:53, a operację zakończono o 19:17.

Teraz kontrola naziemna rozpocznie proces ustawiania lustra. Zwierciadło główne składa się z 18 sześciokątnych elementów, którymi w sumie steruje 126 aktuatorów. Pozycja każdego z elementów będzie dopasowywana przez wiele miesięcy. Później kalibrowane będą instrumenty naukowe. Pierwszych obrazów z Webba możemy spodziewać się około połowy bieżącego roku.
Wkrótce Webba po raz trzeci odpali silniki, by skorygować swój kurs i ustawić się w pozycji odpowiedniej do wejścia na orbitę wokół punktu libracyjnego (punktu Lagrange'a) L2. To cel jego podróży.

Punkt libracyjny (punkt Lagrange'a) to taki punkt w przestrzeni w układzie dwóch ciał powiązanych grawitacją, w którym trzecie ciało o pomijalnej masie może pozostawać w spoczynku względem obu ciał układu. Tutaj mówimy o układzie Słońce-Ziemia i o Teleskopie Webba, czyli trzecim ciele, tym o pomijalnej masie. W układzie takich trzech ciał występuje pięć punktów libracyjnych, oznaczonych od L1 do L5. Na linii Słońce-Ziemia znajdują się trzy z nich. L3 leży za Słońcem z punktu widzenia Ziemi, L1 znajduje się pomiędzy Słońcem a Ziemią, a L2 to miejsce za Ziemią z punktu widzenia Słońca. Zatem L2 był jedyny możliwym do osiągnięcia punktem, w którym osłona termiczna Webba mogła chronić jego zwierciadła i instrumenty naukowe jednocześnie przed ciepłem emitowanym i przez Słońce i przez Ziemię.

Webb nie jest pierwszym urządzeniem w L2. Wcześniej pracowały tam satelita Planck wraz z teleskopem Herschel oraz satelita WMAP.

Wejście Webba na orbitę wokół L2 powinno nastąpić 24 stycznia.

 


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Teleskop Webba (JWST) od kilku tygodni przysyła wspaniałe zdjęcia przestrzeni kosmicznej. JWST może pracować nawet przez 20 lat i w tym czasie będzie badał też egzoplanety. Dzięki olbrzymiej czułości, dostarczy niedostępnych dotychczas informacji o świetle docierającym z ich atmosfer, co pozwoli określenie ich składu, historii i poszukiwanie śladów życia. Jednak, jak się okazuje, teleskop jest tak doskonały, że obecnie stosowane narzędzia mogą niewłaściwe interpretować przesyłane dane.
      Grupa naukowców z MIT opublikowała na łamach Nature Astronomy artykuł, w którym informuje, że obecnie używane przez astronomów narzędzia do interpretacji danych ze światła mogą dawać niewłaściwe wyniki w przypadku JWST. Chodzi konkretnie o modele nieprzezroczystości, narzędzia opisujące, jak światło wchodzi w interakcje z materią w zależności od jej właściwości. Mogą one wymagać znacznych zmian, by dorównać precyzji danym z JWST. Jeśli nie zostaną odpowiednio dostosowane to – jak ostrzegają autorzy badań – informacje dotyczące takich właściwości atmosfer egzoplanet jak temperatura, ciśnienie i skład mogą różnić się od rzeczywistych o cały rząd wielkości.
      Z punktu widzenia nauki istnieje olbrzymia różnica, czy np. woda stanowi 5% czy 25% składu. Obecne modele nie są w stanie tego odróżnić, stwierdza profesor Julien de Wit. Obecnie używany przez nas model interpretujące dane ze spektrum światła nie przystaje precyzją i jakością do danych, jakie napływają z Teleskopu Webba. Musimy rozwiązać ten problem, wtóruje mu student Prajwal Niraula.
      Nieprzezroczystość określa, na ile łatwo foton przechodzi przez badany ośrodek, jak jest absorbowany czy odbijany. Interakcje te zależą też od temperatury i ciśnienia ośrodka. De Wit mówi, że obecnie używany najdoskonalszy model badania nieprzezroczystości bardzo dobrze się sprawdził w przypadku takich instrumentów jak Teleskop Hubble'a. Teraz jednak weszliśmy na kolejny poziom precyzji danych. Wykorzystywany przez nas sposób ich interpretacji nie pozwoli nam wyłapać drobnych subtelności, które mogą decydować np. o tym, czy planeta nadaje się dla życia czy nie.
      Uczeni z MIT po analizie najpowszechniej używanego obecnie modelu nieprzezroczystości stwierdzili, że jego wykorzystanie do danych z Webba spowoduje, iż trafimy na „barierę precyzji”. Model ten nie będzie na tyle dokładny, by stwierdzić, czy temperatura na planecie wynosi 27 czy 327 stopni Celsjusza, a stężenie jakiegoś gazu w atmosferze to 5 czy 25 procent.
      Wit i jego zespół uważają, że aby poprawić obecnie używane modele konieczne będzie przeprowadzenie więcej badań laboratoryjnych, obliczeń teoretycznych oraz poszerzenie współpracy pomiędzy specjalistami z różnych dziedzin, szczególnie astronomami i ekspertami od spektroskopii.
      Możemy wiele zrobić, jeśli będziemy dobrze rozumieli, jak światło wchodzi w interakcje z materią. Dobrze rozumiemy warunki panujące wokół Ziemi. Jednak tam, gdzie mamy do czynienia z innymi typami atmosfery, wszystko się zmienia. A teraz dysponujemy olbrzymią ilością danych o coraz lepszej jakości, więc istnieje ryzyko błędnej interpretacji, wyjaśnia Niraula.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po wielkiej pompie publicznej prezentacji pierwszych zdjęć z Teleskopu Kosmicznego Jamesa Webba nadszedł czas codziennej pracy.  W ramach trwającego właśnie 1. Cyklu obserwacyjnego Space Telescope Science Institute rozdysponował około 6000 godzin czasu obserwacyjnego. Naukowcy z całego świata od długiego czasu mogli wnioskować o przyznanie im możliwości skorzystania z teleskopu.
      Wielu specjalistów chce dokładniej zbadać planety pozasłoneczne. Drake Deming z University of Maryland będzie badał skład molekularny atmosfery planety HD 189733b, a naukowcy z Instytutu Astronomii im. Maxa Plancka mają zamiar przeprowadzić podobne badania w odniesieniu do gorącego Jowisza WASP-121b. Interesujące wyniki mogą dać badania składu atmosfery podobnej do Ziemi egzoplanety GI486b, które planuje wykonać Megan Mansfield z University of Arizona. Z kolei Christine Chen z Uniwersytetu Johnsa Hopkinsa chce poszukać odpowiedników Pasa Kuipera w pozasłonecznych układach planetarnych.
      Popularnością cieszą się też badania całych galaktyk. Naukowcy chcą scharakteryzować ultrajasne galaktyki z początków istnienia wszechświata, mają zamiar zbadać emisję z kwazarów z okresu formowania się galaktyk, a Helmut Dannerbauer z Instituto de Astrofisica de Canarias chce zajrzeć do wypełnionego pyłem wnętrza tworzącej się gromady galaktyk Spiderweb.
      Niektórzy naukowcy mają zamiar w swojej pracy sięgnąć aż do epoki rejonizacji, która rozpoczęła się około 150 milionów lat po Wielkim Wybuchu. W epoce tej wodór został ponownie zjonizowany. Było to jedno z najważniejszych wydarzeń ery materii, które zakończyło tzw. wieki ciemne w historii wszechświata. Naukowcy z Kalifornii chcą badać echa kwazarów z tego okresu, a Johna Chisholma z Arizony interesuje jonizująca jasność galaktyk. z kolei Anson D'Aloisio otrzymał czas obserwacyjny na potrzeby zbadania pierwszych zjonizowanych bąbli gazowych.
      Wielu naukowców interesuje jednak nasze najbliższe sąsiedztwo. Webb zostanie wykorzystany przez nich do poszukiwań 10-kilometrowych obiektów transneptunowych, badania atmosfery Neptuna i systemu klimatycznego Plutona. Badane będą związki lotne w główny pasie asteroid, a Larissa Markwardt ma zamiar przeprowadzić pierwsze badania spektroskopowe w bliskiej podczerwieni planetoid trojańskich na orbicie Neptuna.
      Jeszcze inni uczeni wykorzystają Webba do zbadania początków Mgławicy Kraba, emisji energii i materiału z supernowej SN 1987A, najjaśniejszej supernowej od 1604 roku czy spróbują opisać formacje pyłu w prymitywnych środowiskach. Spora część czasu obserwacji zostanie przeznaczona na badanie czarnych dziur. Chi-kwan Chan i Andreas Gaspar chcą zbadać emisję w ultrafiolecie z centralnej czarnej dziury Drogi Mlecznej, Sagittariusa A*, a Anil Seth będzie przyglądał się aktywnym jądrom galaktyk o niskiej jasności.
      Webb otwiera przed światem nauki całkowicie nowe możliwości. Astronomowie będą mogli korzystać z nich być może nawet przez 20 lat. Dzięki idealnemu wystrzeleniu teleskopu nie musiał on bowiem zużywać paliwa na liczne korekty kursu i już teraz wiemy, że wystarczy mu go na ponad 20 lat pracy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W nocy z poniedziałku na wtorek NASA pokazała pierwsze pełnokolorowe zdjęcie z Teleskopu Kosmicznego Jamesa Webba. Zobaczyliśmy na nim oddaloną o 4,6 miliarda lat świetlnych gromadę galaktyk SMACS 0723. Jej grawitacja zagina światło z obiektów znajdujących się poza gromadą, powiększając je, dzięki czemu możemy zajrzeć jeszcze głębiej w przestrzeń kosmiczną. Teraz NASA zaprezentowała kolejne zdjęcia.
      Możemy więc zobaczyć Mgławicę Carina, jedną z największych i najjaśniejszych mgławic. Znajduje się ona w odległości około 7600 lat świetlnych od Ziemi, w Gwiazdozbiorze Carina. Mgławica Carina jest domem licznych masywnych gwiazd, wielokrotnie większych od Słońca. Widoczne na zdjęciu „góry” i „wąwozy” to krawędź regionu gwiazdotwórczego NGC 3324. Najwyższe „szczyty” mają tutaj około 7 lat świetlnych długości. Webb pokazał miejsca narodzin gwiazd oraz same gwiazdy, których nie było widać w świetle widzialnym.
      Webb pokazał nam też Mgławicę Pierścień Południowy, zwaną też Rozerwaną Ósemką. To mgławica planetarna, rozszerzająca się chmura gazu, która otacza umierającą gwiazdę. Rozerwana Ósemka znajduje się w odległości około 2000 lat świetlnych od Ziemi i ma średnicę niemal pół roku świetlnego.
      Teleskop Webba jest pierwszym instrumentem, który pokazał nam słabiej świecącą gwiazdę znajdującą się wewnątrz Mgławicy Pierścień Południowy. To właśnie ta gwiazda, z której od tysięcy lat wydobywają się pył i gaz, utworzyła mgławicę. Webb umożliwi astronomom dokładne badanie mgławic planetarnych. Krajobraz jest zdominowany przez dwie gwiazdy krążące wokół siebie po ciasnej orbicie. Gwiazdy te wpływają na rozkład gazu i pyłu rozprzestrzeniającej się z jednej z nich, tworząc nieregularne wzory.
      Na kolejnym zdjęciu widzimy Kwintet Stephana, pierwszą kompaktową grupą galaktyk jaką poznała ludzkość. Odkryty on został w 1877 roku. Cztery z pięciu tworzących go galaktyk jest ze sobą powiązanych grawitacyjne. Kwintet Stephana znajduje się w odległości 290 milionów lat świetlnych od nas.
      Kwintet Stephana to największy z dotychczasowych obrazów dostarczonych przez Webba. Składa się on z ponad 150 milionów pikseli i został złożony z niemal 1000 zdjęć. Webb sfotografował nawet fale uderzeniowe wstrząsające kwintentem w wyniku przechodzenia przez niego jednej z galaktyk, NGC 7318B.
      Mimo że struktura zwana jest kwintetem, to tylko cztery galaktyki (NGC 7317, NGC 7318A, NGC 7318B i NGC 7319) są powiązane grawitacyjnie i znajdują się 290 milionów lat świetlnych od nas. Piąta z nich, NGC 7320, znajduje się w odległości 40 milionów lat świetlnych od Ziemi.
      Teleskop dostarczył też obraz spektroskopowy planety WASP-96b. To gorący gazowy olbrzym oddalony o 1150 lat świetlnych od Ziemi. Okrąża swoją gwiazdę w 3,4 doby i ma masę o połowę mniejszą od masy Jowisza. Dane potwierdzają obecność wody w atmosferze WASP 96b, naukowcy zaobserwowali w nich dowody na obecność mgły oraz chmur, których nie widzieliśmy podczas wcześniejszych obserwacji. Dokładniejsza analiza danych pozwoli na okreslenie ilości pary wodnej, węgla, tlenu oraz ocenę zmian temperatury atmosfery w zależności od jej wysokości nad planetą.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Białym Domu właśnie odbyła się uroczystość, w czasie której zaprezentowano próbkę tego, czego możemy spodziewać się jutro. Joe Biden pokazał zdjęcie SMACS 0723, masywnej gromady galaktyk działającej jak kosmiczna soczewka.
      Gromada galaktyk SMACS 0723 jest chętnie obserwowana przez Teleskop Hubble'a i inne teleskopy w poszukiwaniu obrazów z dalekiej przeszłości. Masywna grupa galaktyk, oddalona od nas o około 4,6 miliarda lat świetlnych, działa jak gigantyczny kosmiczny teleskop. Pole grawitacyjne galaktyk zagina i powiększa światło z obiektów znajdujących się poza nimi, działając jak soczewka. Mamy tutaj do czynienia ze zjawiskiem znanym jako soczewkowanie grawitacyjne. Dzięki SMACS 0723 możemy obserwować niezwykle odległe obiekty, które – gdyby nie soczewkowanie grawitacyjne – byłyby dla nas niewidoczne.
      Jutro, 12 lipca, NASA – we współpracy z Europejską Agencją Kosmiczną (ESA) i CSA (Kanadyjską Agencją Kosmiczną) – pokaże kolejne pełnokolorowe obrazy oraz dane spektroskopowe zgromadzone przez Teleskop Kosmiczny Jamesa Webba.
      Innymi obiektami, które wybrał międzynarodowy komitet, złożony z przedstawicieli NASA, ESA, CSA oraz Space Telescope Science Institute, a które zobaczymy jutro na pierwszych obrazach przekazanych przez Webba, będą:
       
      Mgławica Carina, jedna z największych i najjaśniejszych mgławic. Znajduje się w odległości około 7600 lat świetlnych od Ziemi, w Gwiazdozbiorze Carina. W mgławicach rodzą się nowe gwiazdy, a Mgławica Carina jest domem licznych masywnych gwiazd, wielokrotnie większych od Słońca; planeta WASP-96 b to gazowy olbrzym oddalony o 1150 lat świetlnych od Ziemi. Okrąża swoją gwiazdę w 3,4 doby i ma masę o połowę mniejszą od masy Jowisza. Z planety otrzymamy obraz spektroskopowy; Mgławica Pierścień Południowy, zwana też Rozerwaną Ósemką, jest mgławicą planetarną, rozszerzającą się chmurą gazu, która otacza umierającą gwiazdę. Rozerwana Ósemka znajduje się w odległości około 2000 lat świetlnych od Ziemi i ma średnice niemal pół roku świetlnego; Kwintet Stephana, jest pierwszą kompaktową grupą galaktyk. Odkryty został w 1877 roku. Cztery z pięciu tworzących go galaktyk jest ze sobą powiązanych grawitacyjne. Kwintet Stephana znajduje się w odległości 290 milionów lat świetlnych od nas.
      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Z Teleskopu Webba na Ziemię zaczęły trafiać pierwsze zdjęcia przestrzeni kosmicznej oraz dane spektroskopowe. Gdy będziemy oglądać fascynujące obrazy warto pamiętać, że pochodzą one z urządzenia, które znajduje się niemal 3000 razy dalej od Ziemi niż Teleskop Hubble'a. Warto więc dowiedzieć się, jak do nas trafiły.
      Znaczna odległość Webba od Ziemi oznacza, że sygnał musi przebyć długą drogę, zanim do nas trafi, a cały system komunikacyjny musi działać naprawdę dobrze, gdyż nie przewiduje się misji serwisowych do Webba. Jeśli więc komunikacja zawiedzie, będziemy mieli w przestrzeni kosmicznej całkowicie bezużyteczny najdoskonalszy teleskop w idealnym stanie.
      Teleskop Kosmiczny Jamesa Webba (JWST) jest pierwszą misją kosmiczną, która wykorzystuje pasmo Ka do przesyłania tak dużej ilości danych. Już na etapie projektowania zdecydowano o wykorzystaniu Ka, części większego pasma K.
      Webb wysyła na Ziemię dane w paśmie o częstotliwości 25,9 Ghz, a prędkość transmisji może dochodzić do 28 Mb/s. Tak duża prędkość jest niezbędna, gdyż JWST może zebrać do 57 GB danych na dobę, chociaż rzeczywista ilość danych będzie zależała od zaplanowanych obserwacji. Dla porównania, Teleskop Hubble'a (HST) zbiera każdej doby nie więcej niż 2 GB danych.
      Pasmo Ka wybrano, gdyż kanałem tym można przesłać więcej danych niż powszechnie wykorzystywanymi w komunikacji kosmicznej pasmami X (7–11 GHz) czy S (2–4 GHz). Dodatkowo przeciwko wykorzystaniu pasma X przemawiał fakt, że antena pracująca w tym zakresie musiałaby być na tyle duża, że teleskop miałby problemy z utrzymaniem wysokiej stabilności, niezbędnej do prowadzenia obserwacji.
      Szybki transfer danych jest niezbędny na potrzeby przesyłania informacji naukowych. Webb korzysta też z dwóch kanałów pasma S. Jeden z nich, o częstotliwości 2.09 GHz to kanał odbiorczy, pracujący z prędkością 16 kb/s. Służy on do wysyłania do teleskopu poleceń dotyczących zaplanowanych obserwacji oraz przyszłych transmisji danych. Za pomocą zaś drugiego kanału, 2.27 GHz, pracującego w tempie 40 kb/s, Webb przysyła na Ziemię informacje dane inżynieryjne, w tym informacje o kondycji poszczególnych podzespołów.
      Łączność pomiędzy Ziemią a teleskopem nie jest utrzymywana przez 24 godziny na dobę. Dlatego też JWST musi przechowywać dane na pokładzie, zanim je nam przyśle. Magazynem danych jest 68-gigabajtowy dysk SSD, którego 3% pojemności zarezerwowano na dane inżynieryjne. Gdy już Webb prześle dane na Ziemię, oczekuje na potwierdzenie, że dotarły i wszystko z nimi w porządku. Dopiero po potwierdzeniu może wykasować dane z dysku, by zrobić miejsce na kolejne informacje. Specjaliści z NASA spodziewają się, że za 10 lat pojemność dysku, z powodu oddziaływania promieniowania kosmicznego, zmniejszy się do około 60 GB.
      Dane z Teleskopu Webba są odbierane na Ziemi przez Deep Space Network. DSN korzysta z trzech kompleksów anten znajdujących się w pobliżu Canberry, Madrytu i Barstow w Kalifornii. Z DNS korzysta wiele innych misji, w tym Parker Solar Probe, TESS czy Voyagery. Dlatego też JWST musi dzielić się z nimi ograniczonym czasem korzystania z anten. Wszystko to wymaga starannego planowania. Czas, w którym dana misja będzie mogła korzystać z anten DSN jest planowany z wyprzedzeniem sięgającym 12-20 tygodni. Wyjątkiem była sytuacja, gdy Teleskop Webba przygotowywał się do pracy, rozkładał poszczególne podzespoły, uruchamiał instrumenty, gdy były one sprawdzane i kalibrowane. Większość z tych czynności wymagała komunikacji w czasie rzeczywistym, wówczas więc Webb miał pierwszeństwo przed innymi misjami.
      Inżynierowie pracujący przy systemie komunikacji przykładali szczególną uwagę do jego niezawodności. Wiedzieli, że jeśli oni popełnią błąd, cała praca kolegów z innych zespołów pójdzie na marne. System komunikacji musi działać idealnie. Dlatego też wybrali znane rozwiązanie i odrzucili co najmniej dwie propozycje wykorzystania eksperymentalnej komunikacji laserowej.
       


      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...