Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Wkrótce Teleskop Webba rozpocznie jedną z najtrudniejszych i najważniejszych operacji

Recommended Posts

Teleskop Kosmiczny Jamesa Webba (JWST) opuścił Ziemię przed 70 godzinami. W tym czasie oddalił się od nas na odległość niemal 460 000 kilometrów, a do celu – punktu libracyjnego L2 – pozostało mu mniej niż 990 000 kilometrów. W ciągu najbliższych godzin JWST rozpocznie jedną z najważniejszych i najtrudniejszych operacji – rozwijanie osłony przeciwsłonecznej.

Osłona ma powierzchnię 300 metrów kwadratowych i wykonana jest z kaptonu, a za jej rozwinięcie odpowiada 139 siłowników, osiem silników i tysiące innych elementów, które nadają pięciu warstwo materiału odpowiedni kształt.

Dotychczas Webb wykonał, samodzielnie lub z polecenia obsługi naziemnej, kilka istotnych zadań. Pierwszym z nich było automatyczne rozłożenie się paneli słonecznych, do którego doszło 31 minut po starcie. Dwanaście godzin później miała miejsce pierwsza – i najważniejsza – korekta kursu. Teleskop został wystrzelony bezpośrednio w kierunku L2, jednak wynosząca go rakieta Ariane 5 celowo nadała mu pęd niewystarczający, by mógł tam dotrzeć. Gdyby bowiem nadany pęd był zbyt duży, teleskop nie mógłby odwrócić się w odpowiednim kierunku w stosunku do Słońca, jego elementy optyczne i instrumenty naukowe zostałyby wystawione na działanie zbyt wysokich temperatur, uległyby przegrzaniu i uszkodzeniu. Dlatego też musi za pomocą własnych silników nadać sobie odpowiedni pęd i utrzymywać pozycję. W sumie Webb przeprowadzi trzy korekty kursu. Najważniejszą jest ta pierwsza, która trwała 65 minut. Jest to też jedyny, obok rozłożenia paneli słonecznych, manewr, który musiał zostać przeprowadzony w ściśle wyznaczonym czasie.

Dobę po wystrzeleniu doszło do automatycznego rozłożenia wysokowydajnej anteny do komunikacji z Ziemią. To drugi, po rozłożeniu paneli słonecznych, manewr wykonywany automatycznie. Wszystkie inne rozpoczynają się od wysłania z Ziemi odpowiednich komend. W drugiej dobie lotu operatorzy Webba po raz kolejny przeprowadzili korektę kursu. Teraz zaś teleskop czeka niezwykle skomplikowana operacja rozłożenia osłony przeciwsłonecznej. Jest ona tak skomplikowana, że pełne rozkładania potrwa 6 dni.

Teleskop Webba będzie pracował w podczerwieni. Dlatego jego zwierciadła oraz instrumenty naukowe muszą być odizolowane od wszelkich źródeł ciepła, zarówno od Słońca, Ziemi, Księżyca jak i od platformy nośnej teleskopu. Webb będzie zwrócony platformą w stronę Ziemi i Słońca, a pomiędzy zwierciadłami i instrumentami naukowymi, a platformą znajdzie się wielka osłona przeciwsłoneczna o wymiarach 21,197x14,162. Zapewni ona pasywne chłodzenie i temperaturę poniżej -223 stopni Celsjusza.
Osłona składa się z pięciu warstwa Kaptonu pokrytych aluminium. Każda z warstw będzie chłodniejsza od poprzedniej, a dwie pierwsze warstwy od strony Słońca pokryto dodatkowo krzemem. Pierwsza warstwa ma grubość 0,05 mm, a każda z czterech kolejnych 0,025mm. Pierwsza warstwa od strony Słońca może nagrzać się do maksymalnej temperatury 110 stopni Celsjusza. Natomiast temperatura warstwy 5., tej najbliżej zwierciadeł i instrumentów naukowych, nigdy nie będzie wyższa niż -52 stopnie.
Rozwijanie osłony i jej napinanie potrwa do 9. doby po wystrzeleniu. Niedługo później rozpocznie się rozkładanie zwierciadła trudnego, następnie zwierciadła głównego, a pomiędzy 15. a 26. dobą podróży rozkładane będą segmenty zwierciadła. Webb będzie gotowy do wejścia na orbitę wokół punku L2.

Szczegółowe informacje na temat teleskopu i jego misji znajdziecie w naszym wcześniejszym artykule.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Administrator NASA, Bill Nelson, zapowiedział, że 12 lipca Agencja pokaże zdjęcie najbardziej odległego obiektu w przestrzeni kosmicznej, jakie kiedykolwiek wykonano. Będzie to możliwe, oczywiście, dzięki Teleskopowi Kosmicznemu Jamesa Webba (JWST). Na tej samej konferencji prasowej poinformowano, że JWST będzie mógł pracować nie przez 10, a przez 20 lat.
      Obecnie najstarszym i najodleglejszym znanym nam obiektem w kosmosie jest galaktyka HD1, z której światło biegło do nas 13,5 miliarda lat. Powstała ona 330 milionów lat po Wielkim Wybuchu. Eksperci sądzą, że Teleskop Webba z łatwością pobije ten rekord. Jakby jeszcze tego było mało, 12 lipca NASA pokaże pierwsze wykonane przez Webba zdjęcia spektroskopowe egzoplanety. Astronom Nestor Espinoza ze Space Telescope Science Institute mówi, że dotychczasowe możliwości spektroskopowego badania egzoplanet były niezwykle ograniczone w porównaniu z tym, co oferuje Webb. To tak, jakbyśmy  byli w bardzo ciemnym pokoju i mogli wyglądać na zewnątrz przez małą dziurkę w ścianie. Webb otwiera przed nami wielkie okno, dzięki któremu zobaczymy wszystkie szczegóły.
      Webb może badać obiekty w Układzie Słonecznym, atmosfery planet okrążających inne gwiazdy, dając nam wskazówki odnośnie tego, czy te atmosfery są podobne do atmosfery Ziemi. Może nam pomóc w odpowiedzi na pytania, skąd przybyliśmy, kim jesteśmy, co jeszcze jest w kosmosie. Poznamy też odpowiedzi na pytania, których jeszcze nie potrafimy zadać, mówił Nelson.
      Zastępca Nelsona, Pam Melroy, poinformowała, że dzięki idealnemu wystrzeleniu rakiety nośnej przez firmę Arianespace, Teleskop Webba będzie mógł pracować przez 20 lat, a nie przez 10, jak planowano. Tych 20 lat pozwoli nam przeprowadzić więcej badań i jeszcze bardziej pogłębić naszą wiedzę, gdyż będziemy mieli okazję dłużej prowadzić obserwacje, dla których podstawą będą wcześniejsze obserwacje Webba, mówiła Melroy.
      Planując czas trwania misji Webba NASA musiała brać pod uwagę ilość paliwa, które teleskop będzie musiał zużyć w czasie podróży do celu swojej podróży, punktu libracyjnego L2. Dzięki niezwykle precyzyjnemu wystrzeleniu rakiety nośnej, teleskop zużył na korekty kursu znacznie mniej paliwa, niż planowano. Teraz wiemy, że pozostało mu go na 20 lat pracy. Paliwo jest potrzebne Teleskopowi do korekty kursu na orbicie punku L2. Siły grawitacyjne oddziałujące na orbicie L2 powodują, że znajdujące się tam obiekty mają tendencję do opuszczenia tej orbity i zajęcia własnej orbity wokół Słońca. Dlatego mniej więcej co 3 tygodnie Webb będzie uruchamiał silniki i korygował orbitę. Teraz wiemy, że będzie mógł to robić przez kolejnych 20 lat.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA poinformowała, że pomiędzy 23 a 25 maja w główne zwierciadło Teleskopu Webba uderzył mikrometeoryt. Takie wydarzenia są nieuniknione, a ich wystąpienie zostało przewidziane przez twórców teleskopu. Uwzględniono je zarówno na etapie projektowania, jak i testowania teleskopu. Jednak majowe zderzenie było silniejsze, niż te uwzględnione podczas testów.
      Inżynierowie przeprowadzili już wstępne oceny skutków uderzenia. Okazało się, że nie wpłynęło ono na Teleskop. Webb wciąż pracuje powyżej oczekiwań. Zwierciadło główne teleskopu zaprojektowano tak, by wytrzymywało uderzenia miniaturowych obiektów poruszających się z olbrzymią prędkością. Podczas budowy teleskopu prowadzono zarówno symulacje cyfrowe, jak i testy laboratoryjne, które miały pokazać, w jaki sposób należy wzmocnić urządzenie tak, by nie uległo uszkodzeniu w wyniki uderzeń.
      Zawsze wiedzieliśmy, że Webb będzie musiał znieść niekorzystne warunki, takie jak promieniowanie ultrafioletowe, oddziaływanie naładowanych cząstek ze Słońca, promieniowanie z egzotycznych źródeł w galaktyce oraz uderzenia mikrometeorytów, mówi Paul Geithner z NASA. Zaprojektowaliśmy i zbudowaliśmy Webba z pewnym marginesem – optycznym, termicznym, elektrycznym i mechanicznym – by mógł on prowadzić badania naukowe nawet po wielu latach pobytu w przestrzeni kosmicznej.
      Przykładem może być tutaj optyka Webba. Podczas pobytu na Ziemi utrzymywano ją w znacznie większej czystości niż wymagana. Dzięki temu ma ona większą wydajność, co pozytywnie wpływa na czułość całego teleskopu. To zaś daje większy margines bezpieczeństwa pod kątem degradacji urządzenia w czasie.
      Webb ma też możliwość precyzyjnego korygowania pozycji każdego z segmentów zwierciadła głównego. W przypadku uderzenia i uszkodzenia, pozycję segmentu można zmienić tak, by w jak największym stopniu skorygować błędy powstające wskutek jego uszkodzenia. Inżynierowie już przeprowadzili odpowiednie korekty segmentu C3, w który uderzył mikrometeoryt i planują kolejne korekty, by w jeszcze większym stopniu zniwelować niedoskonałości.
      To jednak nie wszystko. Zespół kontroli lotu Webba przeprowadza manewry obronne jeśli w kierunku teleskopu podąża znany deszcz meteorytów. Uderzenie z maja nie było skutkiem pojawienia się takiego deszczu. To zderzenie z pojedynczym mikrometeorytem. Wydarzenia tego typu są nieuniknione. Po zderzeniu powołano specjalny zespół inżynierów, którego zadaniem jest opracowanie metod niwelowania skutków zderzeń w przyszłości. Po kolejnych zderzeniach i zebraniu większej ilości danych, inżynierowie będą w stanie przewidzieć, w jaki sposób może zmieniać się wydajność Webba w wyniku takich wydarzeń.
      Spodziewaliśmy się, że w zwierciadło główne Webba będą uderzały mikrometeoryty. Od czasu wystrzelenia teleskopu doszło do czterech małych uderzeń. To ostatnie było jednak większe, niż to, co braliśmy pod uwagę w naszych symulacjach, mówi Lee Feinberg.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zakończył się proces ustawiania elementów optycznych Teleskopu Kosmicznego Jamesa Webba (JWST). Obsługa naziemna potwierdziła, że wszystkie cztery instrumenty naukowe teleskopu otrzymują ostry obraz, który można skoncentrować na wybranym obiekcie. W związku z tym zapadła decyzja o przejściu do ostatniej fazy przygotowań teleskopu do pracy – przekazania instrumentów naukowych do użytkowania.
      Już wcześniej pojawiały się informacje, że poszczególne elementy JWST pracują powyżej oczekiwań. Teraz NASA pochwaliła się, że cała optyka działa lepiej, niż najbardziej optymistyczne założenia. Jakość obrazu trafiająca do każdego z instrumentów jest ograniczona wyłącznie limitem dyfrakcyjnym, co oznacza, że odwzorowanie detali jest w tym przypadku najlepsze na jakie pozwalają prawa fizyki. Jako, że limit dyfrakcyjny jest zależny od długości fali obserwowanego światła oraz średnicy źrenicy wejściowej, oznacza to, że z optyka teleskopu działa najlepiej, jak to możliwe. Wraz z zakończeniem procesu ustawiania teleskopu moja praca przy nim dobiegła końca. Uzyskane obrazy głęboko zmieniły sposób, w jaki postrzegam wszechświat. Jesteśmy otoczeni przez symfonię stworzenia, galaktyki są wszędzie. Mam nadzieję, że wszyscy na świecie będą mogli to zobaczyć, stwierdził doktor Scott Acton z Ball Aerospace, który jest odpowiedzialny za elementy optyczne teleskopu.
      Teraz, gdy optyka teleskopu została ustawiona tak, jak należy, do Mission Operations Center w Space Telescope Science Institute w Baltimore przybyli eksperci, którzy skupią się na instrumentach naukowych JWST. Każdy z tych instrumentów to niezwykle skomplikowane urządzenie złożone z unikatowych soczewek, masek, filtrów i czujników. Każdy z tych elementów musi zostać skonfigurowany i sprawdzony w różnych ustawieniach, by w pełni potwierdzić gotować do pracy. Z kolei część specjalistów odpowiedzialnych za optykę zakończyła swoją przygodę z JWST.
      Mimo, że zakończono ustawianie teleskopu, prowadzone będą pewne prace związane z kalibracją. W ramach przekazania instrumentów naukowych do użytkowania JWST będzie kierowany na różne obszary nieboskłonu tak, by do jego osłony termicznej docierała różna ilość promieniowania słonecznego. Takie działania mają potwierdzić termiczną stabilność teleskopu podczas zmiany obserwowanych obiektów. Ponadto ustawienie zwierciadła głównego będzie co dwa dni sprawdzane i w miarę potrzeb wprowadzane będą korekty.
      Ostatnia faza przygotowywania JWST do pracy potrwa około 2 miesięcy. Latem teleskop rozpocznie badania naukowe.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Teleskop Kosmiczny Jamesa Webba zobaczy pierwsze galaktyki, jakie uformowały się po Wielkim Wybuchu. By jednak tego dokonać, jego instrumenty muszą osiągnąć bardzo niską temperaturę. NASA ogłosiła właśnie, że MIRI (Mid-Infrared Instrument) – najważniejszy z instrumentów Webba – został schłodzony do swojej docelowej temperatury pracy, wynoszącej 7 kelwinów (-266,15 stopni Celsjusza).
      MIRI początkowo schładzał się pasywnie, podobnie jak pozostałe instrumenty Webba. Przed promieniami Słońca chroni je wielka osłona przeciwsłoneczna, dzięki której MIRI osiągnął temperaturę -183 stopni Celsjusza. Później MIRI chłodzony był za pomocą specjalnego urządzenia, które utrzyma jego niską temperaturę przez cały okres pracy.
      Bardzo niskie temperatury są niezbędne instrumentom naukowym Webba. Teleskop pracuje w podczerwieni. Odległe galaktyki, gwiazdy ukryte w chmurach pyłu czy planety w naszym Układzie Słonecznym emitują promieniowanie podczerwone. Problem w tym, że emitują je wszystkie ciepłe obiekty. W tym urządzenia elektroniczne i optyczne Webba. Dlatego też trzeba je schłodzić do niskich temperatur, zmniejszając ich emisję w podczerwieni, by nie zakłócała emisji rejestrowanej z obserwowanych obiektów. Jako, że MIRI rejestruje większe długości fal, musi być chłodniejszy niż pozostałe trzy instrumenty.
      Kolejnym powodem, dla którego instrumenty muszą być chłodne, jest występowanie zjawiska występowania tzw. prądu ciemnego. To niewielki prąd płynący w urządzeniach rejestrujących światło, który pojawia się nawet gdy nie docierają do nich żadne fotony. Jest on generowany przez wibrujące atomy samego urządzenia. Daje on sygnał podobny do prawdziwego sygnału rejestrowanego przez detektory, zakłócając ich pracę i dostarczając fałszywych danych, jakoby do wykrywacza dotarło promieniowanie z zewnętrznego źródła. Im chłodniejsze jest urządzenie rejestrujące, tym mniejsze wibracje jego atomów, zatem tym słabszy prąd ciemny. MIRI zaś jest bardziej niż pozostałe instrumenty Webba czułe na prąd ciemny. Dlatego musi być jeszcze chłodniejsze. A trzeba wiedzieć, że na każdy dodatkowy stopień Celsujsza prąd ciemny wzmaga się aż 10-krotnie.
      Gdy przed tygodniem MIRI został schłodzony do 6,4 kelwina (-266,75 C), specjaliści z NASA rozpoczęli serię testów, by upewnić się, że urządzenie działa jak należy. Następnie wydali urządzeniu całą serię poleceń, sprawdzając, czy zostaną one wypełnione zgodnie z oczekiwaniami. Ćwiczyliśmy to przez wiele lat. To przypominało trochę scenariusz filmowy. Wszystko mieliśmy rozpisane krok po kroku. Gdy zaczęły nadchodzić dane z testu z radością zauważyłem, że wszystko działa tak, jak się spodziewaliśmy, mówi odpowiedzialny za MIRI, Mike Ressler.
      Teraz, gdy MIRI osiągnął odpowiednią temperaturę pracy i działa jak należy, naukowcy wykonają serię zdjęć testowych gwiazd i innych znanych obiektów. Posłużą one do kalibracji MIRI i dalszego sprawdzenia jego działania. Jednocześnie kalibrowane będą pozostałe trzy instrumenty naukowe Webba.
      MIRI to współne dzieło NASA i Europejskiej Agencji Kosmicznej (ESA). Z ramienia NASA prace nad MIRI nadzorowali naukowcy z Jet Propulsion Laboratory, z ramienia ESA byli to przedstawiciele różnych instytutów astronomicznych.
      Teleskop Webba rozpocznie pracę naukową latem bieżącego roku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Już niemal wszystkie instrumenty naukowe Teleskopu Kosmicznego Jamesa Webba zostały zsynchronizowane ze zwierciadłem głównym. Niemal wszystkie, gdyż ostatni z nich – Mid-Infrared Instrument (MIRI) – można będzie ustawić gdy osiągnie odpowiednią temperaturę pracy. MIRI potrzebuje tak niskiej temperatury, że nie wystarczy mu chłodzenie pasywne, dlatego jest od wielu dni schładzany za pomocą specjalnego nowatorskiego urządzenia kriogenicznego.
      Około połowy marca informowaliśmy, że zakończył się kluczowy etap ustawiania segmentów zwierciadła Teleskopu Webba. Aby tego dokonać, konieczne było dostrojenie zwierciadła głównego i wtórnego do urządzenia Near-Infrared Camera (NIRCam). To pozwoliło na przeprowadzenie niezbędnych testów i upewnienie się, że system optyczny Webba działa bez zarzutów. Uzyskano wówczas obraz wybranej gwiazdy wykonany za pomocą NIRCam. Po zakończeniu tego etapu rozpoczęto fazę dostrajania optyki do współpracy z Fine Guidance Sensor (FGS), Near-Infrared Slitless Spctrograph (NIRISS) oraz Near-Infrared Spectrometer (NIRSpec).
      Instrument NIRCam, z którym najpierw synchronizowano optykę, to pracująca w podczerwieni kamera, rejestrująca fale o długości od 0,6 do 5 mikrometrów. Jej celem jest zarejestrowanie światła pierwszych gwiazd i galaktyk, obrazowanie gwiazd w pobliskich galaktykach, młode gwiazdy w Drodze Mlecznej czy obiekty w Pasie Kuipera. Kamerę wyposażono w koronografy, pozwalające na fotografowanie bardzo słabo świecących obiektów, znajdujących się w pobliżu obiektów znacznie jaśniejszych. Dzięki temu możliwe będą dokładne obserwacje planet krążących wokół pobliskich gwiazd.
      NIRSpec również działa w zakresie 0,6–5 mikrometrów. Spektrograf będzie rejestrował całe widmo promieniowania, co pozwoli na poznanie cech fizycznych badanych obiektów, jak ich masa temperatura czy skład chemiczny. Z kolei FGS/NIRISS będzie odpowiedzialny za precyzyjne pozycjonowanie Webba na wybrane obiekty, wykrycie pierwszego światła, jakie rozbłysło we wszechświecie oraz wykrywanie, charakteryzowanie i badania spektroskopowe egzoplanet.
      Instrument, na którego zestrojenie z optyką wciąż czekamy, to MIRI. Składa się on z kamery i spektrografu pracujących w średnich zakresach podczerwieni (5–28 mikrometrów). To niezwykle czułe urządzenie naukowe. MIRI zobaczy przesunięcie ku czerwieni odległych galaktyk, słabo widoczne planety, tworzące się dopiero gwiazdy, będzie obserwował obiekty w Pasie Kuipera.
      To ono dostarczy nam najbardziej spektakularnych zdjęć. Jednak, by móc wykorzystać swoje niezwykłe możliwości, musi zostać schłodzony do temperatury -266,15 stopni Celsjusza. Osiągnięcie tak niskiej temperatury nie jest możliwe za pomocą samego tylko pasywnego chłodzenia i ochrony zapewnianej przez osłonę przeciwsłoneczną. Potrzebne jest chłodzenie aktywne, za które odpowiada nowatorskie dwustopniowe urządzenie. Jego pierwszy stopień schłodzi MIRI do temperatury -255,15 stopni, a dzięki drugiemu MIRI osiągnie wymaganą temperaturę pracy wynoszącą -266,15 stopni Celsjusza. To zaledwie 7 stopni powyżej zera absolutnego.
      Do niedawna temperatura MIRI spadała bardzo wolno. W ciągu 54 dni chłodzenia pasywnego zmniejszyła się ona o 58 stopni. Przed 10 dniami włączono chłodzenie aktywne i w tym czasie temperatura MIRI spadła o kolejne 52 stopnie. W chwili pisania tego tekstu temperatura MIRI wynosi -231,35 stopni Celsjusza.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...