Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Niezwykły układ planetarny z prostopadłymi orbitami planet
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Przed tygodniem misja BepiColombo przeleciała w odległości zaledwie 295 kilometrów nad powierzchnią Merkurego. O godzinie 7:07 pojazd znalazł się bezpośrednio nad północnym biegunem planety, który właśnie był oświetlony przez Słońce. Była to szósta i ostatnia asysta grawitacyjna, dzięki której pod koniec przyszłego roku pojazd trafi na orbitę Merkurego. Europejska Agencja Kosmiczna (ESA), która wraz z Japońską Agencją Kosmiczną (JAXA) zorganizowała misję, pokazała zdjęcia wykonane podczas przelotu. Trzeba przyznać, że fotografie nie zawiodły oczekiwań.
Wspomniany przelot był ostatnią okazją do wykonania zdjęć przez M-CAMs (monitoring cameras). Moduł Mercury Transfer Module, do którego zamontowane są trzy 1-megapikselowe aparaty, oddzieli się od dwóch orbiterów – Mercury Planetary Orbiter (MPO - ESA) i Mercury Magnetospheric Orbiter (Mio - JAXA) – i zostanie porzucony w przestrzeni kosmicznej. MPO i MMO trafią zaś na orbitę planety.
Podczas niedawnego przelotu aparat M-CAM 1 wykonał pierwsze ujęcia powierzchni Merkurego. Mijając terminator – linię między dzienną a nocną stroną planety – miał unikatową możliwość zajrzenia do wiecznie zacienionych kraterów. Krawędzie kraterów Prokofjew, Kandinski, Tolkien i Gordimer rzucają wieczny cień na ich dno. To zaś czyni te kratery jednymi z najchłodniejszych miejsc w Układzie Słonecznym. I dzieje się tak pomimo tego, że Merkury jest planetą najbliższą Słońca.
Mamy przesłanki, by przypuszczać, że na dnie tych kraterów znajduje się woda. Czy rzeczywiście ona tam jest? To jedno z najważniejszych pytań, na jakie ma odpowiedzieć misja BepiColombo.
Na lewo od bieguna północnego M-CAM 1 sfotografował rozległe równiny wulkaniczne zwane Borealis Planitia. Te największe równiny najmniejszej planety Układu Słonecznego powstały 3,7 miliarda lat temu podczas masowego wypływu lawy. Zalała ona wcześniej istniejące kratery, jak Henri i Lismer. Widoczne na zdjęciach zmarszczki lawy utworzyły się w ciągu miliardów lat po ostygnięciu lawy, prawdopodobnie w wyniku kurczenia się samej planety, której wnętrze powoli stygło.
Kolejne zdjęcie zostało wykonane przez M-CAM 1 kilka minut po pierwszym. Widać na nim na przykład krater Mendelssohn. Jego krawędzie są ledwie widoczne nad zalanym przez lawę wnętrzem. Podobnie zresztą jest w przypadku krateru Rustaweli.
Na zdjęciach widzimy też basen Caloris. To największy krater uderzeniowy Merkurego o średnicy ponad 1500 kilometrów. Uderzenie, które go utworzyło, było tak potężne, że na powierzchni planety widać linie ciągnące się przez tysiące kilometrów od krateru. Na górze od basenu Caloris widać jaśniejszą fragment powierzchni w kształcie bumerangu. To lawa, która wydaje się łączyć powierzchnię z wnętrzem Merkurego. Wydaje się, że jej kolor jest podobny do lawy w Caloris na na Borealis Planitia. BepiColombo ma znaleźć odpowiedź na pytanie, w którą stronę ta lawa płynęła. Od czy do Caloris.
Merkury ma ciemną powierzchnię. Jasne fragmenty są młodsze od reszty. Naukowcy wciąż nie są pewni, jaki dokładnie jest skład planety, jednak jasne jest, że materiał, który wydobył się z wnętrza Merkurego na powierzchnię, ciemnieje z czasem. Na trzecim zdjęciu widzimy więc bardzo jasny obszar Nathair Facula, pozostałość po ostatniej wielkiej erupcji wulkanicznej na Merkurym. Obszar ma co najmniej 300 kilometrów średnicy. Po lewej znajduje się krater Fonteyn. Młody, powstał zaledwie 300 milionów lat temu. BepiColombo będzie badała jasne i ciemne fragmenty Merkurego i pozwoli znaleźć odpowiedź na pytanie, z czego planeta jest zbudowana i jak powstała.
Główna faza badawcza misji rozpocznie się za dwa lata, ale każdy z 6 dotychczasowych przelotów przyniósł nam niezwykle ważne informacje o tej mało zbadanej planecie, mówi główny naukowiec misji z ramienia ESA, Geraint Jones.
BepiColombo została wystrzelona 20 października 2018 roku. W jej skład wchodzą dwa orbitery, wspomniane już MPO i Mio. Za ich transport w okolice Merkurego odpowiada zaś Mercury Transfer Module. Pod koniec 2026 roku MTM oddzieli się od orbiterów, które wejdą na orbity biegunowe wokół planety. Badania naukowe rozpoczną na początku 2027 roku. Misja obu orbiterów przewidziana jest na 12 miesięcy, z możliwością przedłużenia jej o kolejny rok.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Gdyby większość ciemnej materii istniała nie w postaci w formie cząstek, a mikroskopijnych czarnych dziur, to mogłyby one wpływać na orbitę Marsa tak, że bylibyśmy w stanie wykryć to za pomocą współczesnej technologii. Zatem zmiany orbity Czerwonej Planety mogłyby posłużyć do szukania ciemnej materii, uważają naukowcy z MIT, Uniwersytetu Stanforda i Uniwersytetu Kalifornijskiego w Santa Cruz. A wszystko zaczęło się od odrodzenia hipotezy z lat 70. XX wieku i pytania o to, co stałoby się z człowiekiem, przez którego przeszłaby miniaturowa czarna dziura.
Pomysł, że większość ciemnej materii, której wciąż nie potrafimy znaleźć, istnieje w postaci miniaturowych czarnych dziur, narodził się w latach 70. Wysunięto wówczas hipotezę, że u zarania wszechświata z zapadających się chmur gazu powstały niewielkie czarne dziury, które w miarę ochładzania się i rozszerzania wszechświata, rozproszyły się po nim. Takie czarne dziury mogą mieć wielkość pojedynczego atomu i masę największych znanych asteroid. W ostatnich latach hipoteza ta zaczęła zdobywać popularność w kręgach naukowych.
Niedawno jeden z autorów badań, Tung Tran, został przez kogoś zapytany, co by się stało, gdyby taka pierwotna czarna dziura przeszła przez człowieka. Tran chwycił za coś do pisania i wyliczył, że gdyby tego typu czarna dziura minęła przeciętnego człowieka w odległości 1 metra, to osoba taka zostałaby w ciągu 1 sekundy odrzucona o 6 metrów. Badacz wyliczył też, że prawdopodobieństwo, by taki obiekt znalazł się w pobliżu kogokolwiek na Ziemi jest niezwykle małe.
Jednak Tung postanowił sprawdzić, co by się stało, gdyby miniaturowa czarna dziura przeleciała w pobliżu Ziemi i spowodowała niewielkie zmiany orbity Księżyca. Do pomocy w obliczeniach zaprzągł kolegów. Wyniki, które otrzymaliśmy, były niejasne. W Układzie Słonecznym mamy do czynienia z tak dynamicznym układem, że inne siły mogłyby zapobiec takim zmianom, mówi uczony.
Badacze, chcąc uzyskać jaśniejszy obraz, stworzyli uproszczoną symulację Układu Słonecznego składającego się z wszystkich planet i największych księżyców. Najdoskonalsze symulacje Układu biorą pod uwagę ponad milion obiektów, z których każdy wywiera jakiś wpływ na inne. Jednak nawet nasza uproszczona symulacja dostarczyła takich danych, które zachęciły nas do bliższego przyjrzenia się problemowi, wyjaśnia Benjamin Lehmann z MIT.
Na podstawie szacunków dotyczących rozkładu ciemnej materii we wszechświecie i masy miniaturowych czarnych dziur naukowcy obliczyli, że taka wędrująca we wszechświecie czarna dziura może raz na 10 lat trafić do wewnętrznych regionów Układu Słonecznego. Wykorzystując dostępne symulacje rozkładu i prędkości przemieszczania się ciemnej materii w Drodze Mlecznej, uczeni symulowali przeloty tego typu czarnych dziur z prędkością około 241 km/s. Szybko odkryli, że o ile efekty przelotu takiej dziury w pobliżu Ziemi czy Księżyca byłyby trudne do obserwowania, gdyż ciężko byłoby stwierdzić, że widoczne zmiany wywołała czarna dziura, to w przypadku Marsa obraz jest już znacznie jaśniejszy.
Z symulacji wynika bowiem, że jeśli pierwotna czarna dziura przeleciałaby w odległości kilkuset milionów kilometrów od Marsa, po kilku latach orbita Czerwonej Planety zmieniłaby się o około metr. To wystarczy, by zmianę taką wykryły instrumenty, za pomocą których badamy Marsa.
Zdaniem badaczy, jeśli w ciągu najbliższych dziesięcioleci zaobserwujemy taką zmianę, powinniśmy przede wszystkim sprawdzić, czy nie została ona spowodowana przez coś innego. Czy to nie była na przykład nudna asteroida, a nie ekscytująca czarna dziura. Na szczęście obecnie jesteśmy w stanie z wieloletnim wyprzedzeniem śledzić tak wielkie asteroidy, obliczać ich trajektorie i porównywać je z tym, co wynika z symulacji dotyczących pierwotnych czarnych dziur, przypomina profesor David Kaiser z MIT.
A profesor Matt Caplan, który nie był zaangażowany w badania, dodaje, że skoro mamy już obliczenia i symulacje, to pozostaje najtrudniejsza część – znalezienie i zidentyfikowanie prawdziwego sygnału, który potwierdzi te rozważania.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Nowo odkryta planeta wielkości Neptuna ma gęstość większą od stali. Masa TOI-1853b jest niemal dwukrotnie większa niż planet jej rozmiarów. To zaś oznacza, że musi składać się ze znacznie większego odsetka skał, niż można by się spodziewać. Dlatego naukowcy z Włoch i Wielkiej Brytanii uważają, że planeta powstała w wyniku zderzenia innych planet.
Jak czytamy na łamach Nature, zderzenie odrzuciło lżejszy materiał, jak woda i atmosfera, pozostawiając planetę złożoną w olbrzymiej mierze ze skał. W naszym Układzie Słonecznym mamy dowody na potężne kolizje między planetami. Dowodem takim jest istnienie Księżyca. Dysponujemy też dowodami na zderzenia pomiędzy mniejszymi egzoplanetami. Wiemy, że egzoplanety są niezwykle zróżnicowane. Wiele z nich nie ma odpowiedników w Układzie Słonecznym, ale często te skaliste ciała niebieskie mają podobną masę i skład do naszych lodowych olbrzymów, Neptuna i Urana, mówi doktor Phil Carter z University of Bristol.
Naukowcy przeprowadzili symulacje komputerowe, które miały pokazać, w jaki sposób mogła powstać planeta taka jak TOI-1853b. Stwierdzili, że planety, które dały jej początek, prawdopodobnie były bogate w wodę. Musiały zderzyć się z prędkością większą niż 75 km/s, by powstała planeta o takich parametrach jak TOI-1853b, dodaje Carter.
Odkrycie potwierdza rolę zderzeń w powstawaniu planet. Zdobyta dzięki niemu wiedza pozwala łączyć to, co wiemy o ewolucji Układu Słonecznego z ewolucją innych systemów planetarnych. To niezwykle zaskakująca planeta. Zwykle planety zawierające tak dużo skał powinny tworzyć gazowe olbrzymy, jak Jowisz, którego gęstość jest podobna do gęstości wody. Tymczasem TOI-1853b ma rozmiary Neptuna, ale jest gęstsza niż stal. Wykazaliśmy, że taka planeta może powstać, jeśli doszło do wysokoenergetycznych zderzeń innych planet, podsumowuje Jingyao Dou z Bristolu.
Teraz badacze chcą jeszcze dokładniej przyjrzeć się TOI-1853b, spróbować dokładnie określić jej skład i poszukać ewentualnych resztek atmosfery.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dwóch naukowców z Japonii, Patryk Sofia Lykawka i Takashi Ito, zaprezentowali wyliczenia, które mogą wskazywać, że w Pasie Kuipera znajduje się planeta wielkości Ziemi. Dziewiąta Planeta, zwana też Planetą X, jest od wielu lat przedmiotem poszukiwań. Przynajmniej od czasu, gdy w 2016 roku dwóch profesorów z Caltechu (California Institute of Technology), zaprezentowali pracę, z której wynikało, że orbity 13 odległych obiektów z Pasa Kupiera ma nietypowe podobne orbity, a można je wyjaśnić obecnością planety.
Od czasu opublikowania pracy uczonych z Caltechu odkryto kolejne obiekty, których orbity pasowałyby do hipotezy o obecności nieznanej planety, rozpoczęto jej poszukiwania w średniowiecznych tekstach, pojawiła się też hipoteza, że w Układzie Słonecznym krąży pierwotna czarna dziura, a nie nieznana planeta.
Patryk Sofia Lykawka z Uniwersytetu Kindai oraz Takashi Ito z Narodowego Obserwatorium Astronomicznego Japonii i Uniwersytetu Technologii w Chiba opublikowali w The Astronomical Journal pracę, w której opisują właściwości obiektów z Pasa Kuipera, które wskazują na obecność planety.
Wykorzystaliśmy symulację komputerową problemu wielu ciał, by zbadać wpływ hipotetycznej planety w Pasie Kuipera na strukturę orbit obiektów transneptunowych znajdujących się w odległości większej niż 50 jednostek astronomicznych. Do stworzenia naszego modelu wykorzystaliśmy dane obserwacyjne, w tym dobrej jakości dane z Outer Solar System Origins Survey. Stwierdziliśmy, że obecność podobnej do Ziemi planety (o masie od 1,5 do 3 mas Ziemi), znajdującej się na odległej (półoś wielka ok. 250–500 j.a., peryhelium ok. 200 j.a.) orbicie o nachyleniu orbity wynoszącym ok. 30 stopni może wyjaśnić trzy podstawowe właściwości odległych obiektów z Pasa Kuipera: znaczącej populacji obiektów transneptunowych o orbitach poza wpływem grawitacyjnym Neptuna, znaczącą populację obiektów o wysokim nachyleniu orbity (> 45 stopni) oraz istnienie obiektów o wyjątkowo nietypowych orbitach (np. Sedna). Ponadto obecność proponowanej planety jest zgodna ze zidentyfikowanymi długoterminowo stabilnymi obiektami transneptunowymi, pozostającymi w rezonansie 2:1, 5:2, 3:1, 4:1, 5:1 i 6:1 z Neptunem. Ta populacja stabilnych obiektów jest często pomijana w innych badaniach, czytamy w artykule.
Pas Kuipera znajduje się za orbitą Neptuna, w odległości 30–50 jednostek astronomicznych od Ziemi. Zawiera on wiele małych obiektów. To właśnie w nim znajduje się Pluton. Mianem obiektów transneptunowych określa się okrążające Słońce planetoidy znajdujące się poza orbitą Neptuna.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Teleskop Webba zaobserwował szczegóły zawierających krzemiany chmur w atmosferze odległej planety. W jej atmosferze bez przerwy dochodzi do mieszania, wznoszenia i opadania materiału w 22-godzinym cyklu. Wynikiem tego są tak olbrzymie zmiany jasności, że wspomniana planeta jest najbardziej zmiennym znanym nam obiektem o masie planetarnej.
Naukowcy, na czele których stoi Brittany Miles z University of Arizona, zauważyli też wyjątkowo wyraźne sygnały świadczące o obecności wody, metanu i tlenku węgla oraz dowód na występowanie w atmosferze dwutlenku węgla. Tym samym Teleskop Webba wykrył największą liczbę molekuł zauważonych jednorazowo w atmosferze egzoplanety.
Wspomniana egzoplaneta, VHS 1256 b, znajduje się w odległości 40 lat świetlnych od Ziemi o okrąża 2 gwiazdy. Okres jej obiegu wynosi ponad 10 000 lat. VHS 1256 b znajduje się około 4-krotnie dalej od swoich gwiazd, niż Pluton od Słońca. To czyni ją idealnym celem dla obserwacji za pomocą Webba. Dobiegające z niej światło nie miesza się ze światłem z jej gwiazd macierzystych, mówi Miles. Uczona dodaje, że w górnych partiach temperatura jej atmosfery sięga 830 stopni Celsjusza.
Webb zauważył też dwa rodzaje ziaren krzemianów w chmurach. Mniejsze mogą być wielkości cząstek dymu, większe zaś są jak bardzo gorące miniaturowe ziarenka piasku. VHS 1256 b ma bardzo słabą grawitację, dlatego też chmury występują bardzo wysoko w jej atmosferze, co pozwala na ich obserwację. Drugą przyczyną tak gwałtownych zjawisk w atmosferze jest młody wiek planety. Naukowcy szacują, że uformowała się ona zaledwie 150 milionów lat temu i przez najbliższy miliard lat będzie się schładzała i zmieniała.
Wiele z cech, które zaobserwowano na VHS 1256 b zauważono wcześniej na innych planetach. Jednak w ich przypadku wymagało to wielu obserwacji za pomocą różnych teleskopów. Tutaj zaś Teleskop Webba dostarczył wszystkich informacji jednocześnie. A to nie wszystko. Naukowcy uważają, że przez najbliższe miesiące i lata, analizując dane dostarczone przez Webba, będą zdobywali kolejne informacje. Mamy tutaj olbrzymią ilość danych uzyskanych w niedługim czasie. Czujemy olbrzymi potencjał i mamy nadzieję na wiele odkryć w danych, zebranych w ciągu zaledwie kilku godzin obserwacji, cieszy się Beth Biller z Uniwersytetu w Edynburgu.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.