Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Wrocławscy naukowcy chcą zbadać serce Chopina

Recommended Posts

Naukowcy z wrocławskiej Akademii Medycznej (AM) chcą zabezpieczyć serce Fryderyka Chopina przed zniszczeniem oraz przeprowadzić analizę kodu DNA polskiego pianisty. Serce kompozytora spoczywa w warszawskim kościele Świętego Krzyża. Jak powiedział prof. Tadeusz Dobosz z Zakładu Medycyny Sądowej AM, analiza DNA ma odpowiedzieć m.in. na pytanie, jaka choroba była przyczyną śmierci wielkiego kompozytora. Uważam, że jesteśmy mu to winni. Informacje o jego śmierci na gruźlicę mają charakter legendy i nigdy nie zostały potwierdzone naukowo - podkreślił Dobosz.

Według naukowca, rację mogą mieć ci, którzy uważają, że Chopin chorował nie na gruźlicę, lecz na mukowiscydozę. Jego starsza siostra zmarła na skutek problemów płucnych, być może była to właśnie mukowiscydoza. Jest to choroba genetyczna, więc i Chopin mógł na nią chorować - mówił Dobosz.

Zespół prof. Dobosza chce zbadać serce, ponieważ cmentarz Pere Lachaise w Paryżu, gdzie pochowany jest Chopin, leży na glebie o kwaśnym odczynie i po odkopaniu zwłok mogłoby się okazać, że nie ma już czego badać.

Ponadto konserwacja serca Chopina jest, w opinii profesora, konieczna, gdyż może się ono rozpaść lub wyschnąć. Chcemy, by zostało ono zachowane dla następnych pokoleń - podkreślił Dobosz.

Naukowcy chcą również przeprowadzić tomografię komputerową serca artysty. Być może dzięki niej dowiemy się o Chopinie czegoś nowego - powiedział naukowiec.

Koszt przeprowadzenia badań może wynieść od 15 do 50 tys. złotych.

Wniosek w sprawie badań wraz z prośbą o ich dofinansowanie ma trafić do Ministerstwa Kultury i Dziedzictwa Narodowego jeszcze w kwietniu. Jeśli zostanie on rozpatrzony pozytywnie, naukowcy rozpoczną badania najprawdopodobniej na przełomie 2008 i 2009 r.

Share this post


Link to post
Share on other sites

Czepnę się, okej?  :;)

 

Zamiast "badanie kodu DNA" lepiej byłoby użyć po prostu "badanie DNA" albo "badanie sekwencji DNA" (z naciskiem na to pierwsze). "Kod DNA" sugeruje kod genetyczny, czyli rzecz zgoła inną, niż informacja genetyczna zapisana w DNA u danego osobnika.

 

 

Poza tym opinia naukowców, że są winni zmarłemu człowiekowi rozgrzebanie jego serca w celu zaspokojenia własnych ambicji jest moim zdaniem naprawdę żenująca.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Dyski twarde i inne systemy zapisywania danych przechowują obecnie olbrzymią ilość informacji. Jednak urządzenia te, podobnie jak niegdyś taśmy magnetyczne czy dyskietki, mogą z czasem odejść do lamusa przez co stracimy dostęp do danych, które na nich gromadzimy. Dlatego też naukowcy opracowali metodę zapisu danych w DNA żywego organizmu. Ten rodzaj „pamięci masowej” w przewidywalnym czasie raczej nie stanie się przestarzały.
      Seth Shipman z Uniwersytetu Kalifornijskiego w San Francisco, który nie był zaangażowany w prace, chwali osiągnięcie swoich kolegów z Columbia University, ale zaznacza, że minie dużo czasu, zanim tego typu systemy trafią do praktycznego użytku.
      Naukowcy nie od dzisiaj mówią o przechowywaniu danych w DNA. Kwas deoksyrybonukleinowy to bardzo atrakcyjne medium. Umożliwia on ponad 1000-krotnie gęstsze upakowanie danych niż w najbardziej wydajnych dyskach twardych, co oznacza, że na przestrzeni wielkości ziarna soli można by zapisać 10 filmów kinowych. Ponadto, jako że DNA jest centralnym elementem systemów biologicznych można się spodziewać, że z czasem technologie zapisu i odczytu danych w będą coraz tańsze i coraz doskonalsze.
      Dotychczas by zapisać dane w DNA naukowcy zamieniali ciąg zer i jedynek na kombinacje par bazowych DNA, następnie dane kodowano w DNA. Jednak jako że dokładność syntezy DNA zmniejsza się wraz z długością, syntetyzuje się DNA o długości 200-300 par bazowych. Każdy z takich fragmentów otrzymuje unikatowy identyfikator, dzięki czemu wiadomo, gdzie znajdują się konkretne dane. To bardzo kosztowna metoda. Zapisanie 1 megabita informacji kosztuje nawet 3500 USD, a fiolki z DNA mogą z czasem ulegać degradacji.
      Dlatego też naukowcy próbują zapisywać dane w DNA żywych organizmów, które przekazują informacje pomiędzy pokoleniami.
      W 2017 roku zespół Harrisa Wanga z Columbia University wykorzystał technikę CRISPR do rozpoznawania sygnałów biologicznych, takich jak obecność fruktozy. Gdy naukowcy dodali fruktozę do komórek E. coli, zwiększyła się ekspresja genów w cząsteczkach pozachromosomowego DNA zwanych plazmidami.
      Następnie komponenty, które bronią bakterię przed wirusami, pocięły plazmid o zbyt dużej ekspresji genów, a jego część trafiła do konkretnej części bakteryjnego DNA, która zapamiętuje ataki wirusów. Ten dodatkowy element reprezentował cyfrowe „1”. Gdy sygnału z fruktozy nie było, mieliśmy do czynienia z cyfrowym „0”.
      Jednak, jako że w ten sposób można było przechowywać tylko kilka bitów danych, Wand i jego koledzy zastąpili obecnie system oparty na fruktozie systemem elektrycznym. Tak zmodyfikowali bakterię E. coli, że dochodzi w niej do wzrostu ekspresji w plazmidach w reakcji na przyłożone napięcie elektryczne. W ten sposób udało się elektrycznie zakodować w bakteryjnym DNA do 72 bitów danych i zapisać wiadomość „Hello world!”. Uczeni wykazali też, że mogą dodać E. coli do standardowej mieszaniny mikroorganizmów glebowych i później zsekwencjonować całość by odczytać zakodowaną wiadomość.
      Wang podkreśla, że to dopiero początek badań. Nie zamierzamy konkurować w obecnymi systemami przechowywania danych. Przed naukowcami wiele pracy. Muszą np. znaleźć sposób, by uchronić informacje przed degradacją spowodowaną mutacjami bakterii w trakcie podziałów.
      Ze szczegółami można zapoznać się na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Choroby układu krążenia są główną przyczyną zgonów na świecie. Lepsze zrozumienie mechanizmów tych chorób pozwoliłoby na uratowanie wielu ludzi. Niezbędnym elementem jest tutaj zaś zrozumienie procesów molekularnych zachodzących w komórkach zdrowego serca. Naukowcy stworzyli właśnie wielką szczegółową mapę zdrowego mięśnia sercowego.
      Mapa powstała w ramach wielkiej inicjatywy Human Cell Atlas, której celem jest opisanie każdego typu komórek znajdujących się w ludzkim organizmie. Autorzy atlasu serca przeanalizowali niemal 500 000 indywidualnych komórek. Dzięki temu powstał najbardziej szczegółowy opis ludzkiego serca. Pokazuje on olbrzymią różnorodność komórek i ich typów. Jego autorzy scharakteryzowali sześć regionów anatomicznych serca. Opisali, w jaki sposób komórki komunikują się ze sobą, by zapewnić działanie mięśnia sercowego.
      Badania przeprowadzono na podstawie 14 zdrowych ludzkich serc, które uznano za nienadające się do transplantacji. Naukowcy połączyli techniki analizy poszczególnych komórek, maszynowego uczenia się oraz techniki obrazowania, dzięki czemu mogli stwierdził, które geny były aktywne, a które nieaktywne w każdej z komórek.
      Uczonym udało się zidentyfikować różnice pomiędzy komórkami w różnych regionach serca. Stwierdzili też, że w każdym obszar mięśnia sercowego zawiera specyficzny dla siebie zestaw komórek, co wskazuje, że różne obszary serca mogą różnie reagować na leczenie.
      Projekt ten to początek nowego sposobu rozumienia budowy serca na poziomie komórkowym. Dzięki lepszemu poznaniu różnic pomiędzy różnymi regionami serca możemy zacząć rozważać wpływ wieku, trybu życia oraz chorób i rozpocząć nową epokę w kardiologii, mówi współautor badań Daniel Reichart z Harvard Medical School.
      Po raz pierwszy tak dokładnie przyjrzano się ludzkiemu sercu, dodaje profesor Norbert Hubner z Centrum Medycyny Molekularnej im. Maxa Delbrücka. Poznanie pełnego spektrum komórek serca i ich aktywności genetycznej są niezbędne do zrozumienia sposobu funkcjonowania serca oraz odkrycia, w jaki sposób reaguje ono na stres i choroby.
      Ze szczegółami badań można zapoznać się w artykule Cells of the adult human heart, opublikowanym na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fryderyk Chopin pisał w sposób zróżnicowany. Na kopertach zawsze kaligraficznie, do rodziny zwykle dużo mniej czytelnie, zdecydowanie drobniejszym pismem. Często robił dopiski na marginesach, nie podpisywał się pełnym imieniem i nazwiskiem. Jak zmieniał się charakter pisma kompozytora w czasie jego życia?
      Zakończono kryminalistyczne badania rękopisów Fryderyka Chopina ze zbiorów Muzeum F. Chopina w Warszawie. W projekcie brali udział eksperci Katedry Kryminalistyki Uniwersytetu Warszawskiego (UW), Polskiego Towarzystwa Kryminalistycznego (PTK) oraz samego Muzeum. Naukowcy badali, jak w trakcie życia kompozytora zmieniał się grafizm, czyli charakter jego pisma i jakie czynniki mogły mieć na to wpływ.
      Wzorzec graficzny
      Do tej pory nie prowadzono tak zaawansowanych badań pismoznawczych nad rękopisami kompozytora. Prawdopodobnie jest to największa na świecie kolekcja rękopisów Fryderyka Chopina, które pierwszy raz zostały zbadane w sposób kryminalistyczny. Przebadano wszystkie 143 dokumenty ze zbiorów warszawskiego Muzeum. Łącznie to 349 stron listów, notatek czy zapisków z kalendarzyków. Głównie listy do znajomych i rodziny, dedykacje muzyczne, ale również oficjalna korespondencja.
      Dzięki badaniom ekspertów kryminalistyki z UW, PTK i Muzeum powstały wzorce graficzne pisma ręcznego Fryderyka Chopina. Wcześniej ustalenie autentyczności dokumentów związanych z kompozytorem było trudne, ponieważ nie istniał katalog cech i właściwości graficznych charakterystycznych dla pisma F. Chopina.
      Profilowanie w kryminalistyce polega na opisaniu cech osoby poszukiwanej, np. potencjalnego sprawcy przestępstwa. My też przyjęliśmy takie założenie. Próbowaliśmy stworzyć coś w rodzaju profilu pisma ręcznego Fryderyka Chopina. Dowiedzieć się, czym się ono charakteryzuje. Wykonaliśmy badania dotyczące budowy liter czy sposobu ich wiązania, a także analizę sposobu kreślenia przez kompozytora własnych podpisów – mówi prof. Tadeusz Tomaszewski z Katedry Kryminalistyki UW, kierownik projektu.
      Jak pisał Chopin?
      Na obraz pisma, dynamikę pisania czy też inne właściwości pisma, np. konstrukcję liter, mógł mieć wpływ m.in. wiek, stan psychofizyczny, język, w jakim pisał kompozytor (pisał po polsku i po francusku) albo rodzaj rękopisu (list czy notatka). Istotny był też adresat. Czy Chopin pisał dla siebie, czy była to oficjalna korespondencja albo listy przeznaczone dla osób zaprzyjaźnionych lub rodziny – dodaje prof. Tomaszewski.
      Eksperci sprawdzali obraz pisma i cechy konstrukcyjne poszczególnych liter. Początkowo Chopin pisał tak, jak go nauczono. Korzystał z dostępnych wtedy wzorców kaligraficznych. Z badań kryminalistycznych wynika, że z biegiem lat w piśmie kompozytora następowały uproszczenia konstrukcji liter (choć sama budowa znaków graficznych co do zasady nie ulegała zmianie), w tym szczególnie widoczny jest zanik elementów ozdobnych i tzw. adiustacji początkowych i końcowych w majuskułach. W przypadku podpisów widać odchodzenie od podpisów rozwiniętych i czytelnych oraz częste stosowanie podpisów skróconych czy nawet nieczytelnych paraf – mówi prof. Tadeusz Tomaszewski. Podpis Chopina przybierał różne formy, czasem kompozytor stawiał same inicjały, czasem pisał jedynie nazwisko, a w korespondencji do przyjaciół podpisywał się np. "Twój stary" (w domyśle Twój stary przyjaciel). Ciekawe jest również to, że na żadnym z badanych dokumentów kompozytor nie podpisał się pełnym imieniem i nazwiskiem.
      Podejrzany dokument
      Biegli pismoznawcy posługują się zwykle lupą i mikroskopem, przeprowadzają badania optyczne i fizykooptyczne. Do oceny nietypowych dokumentów lub właściwości związanych z podłożem bądź środkiem kryjącym (tutaj był to inkaust lub ołówek) potrzebują jednak bardziej zaawansowanego sprzętu. Podczas badań technicznych, dzięki którym można było ustalić, czy dokumenty są kopiami, czy zawierają jakieś retusze, oznaki usuwania lub nadpisywania, znaleziono jeden materiał zawierający dziwne ślady.
      Żeby go zbadać, przetransportowaliśmy do Muzeum specjalistyczny sprzęt kryminalistyczny (m.in. najwyższej klasy urządzenie zwane wideospektrokomparatorem), gdyż ze względów bezpieczeństwa i ochrony samych dokumentów nie można było takich badań przeprowadzić w laboratorium. Wspomniany "podejrzany" dokument zawierał cechy dziwne, wyskrobanie pewnych elementów, powielenie linii czy ich retusz. Wskazuje to na wysokie prawdopodobieństwo dokonywania poprawek pierwotnego zapisu i podpisu przez inną osobę niż sam kompozytor – wyjaśnia profesor.
      Być może w przyszłości możliwe będzie kontynuowanie badań nad tym rękopisem za pomocą zaawansowanej aparatury naukowej, która znajduje się w Centrum Nauk Biologiczno-Chemicznych UW. Chcielibyśmy również, przy pomocy Narodowego Instytutu Fryderyka Chopina i za jego zgodą, wydać publikację naukową dotyczącą przeprowadzonych badań – zapowiada kierownik projektu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Bez cienia wątpliwości wykazaliśmy, że w żywych komórkach powstają poczwórne helisy DNA. To każe nam przemyśleć biologię DNA, mówi Marco Di Antonio z Imperial College London (CL). Naukowcy po raz pierwszy w historii znaleźli poczwórne helisy DNA w zdrowych komórkach ludzkiego organizmu. Dotychczas takie struktury znajdowano jedynie w niektórych komórkach nowotworowych. Udawało się je też uzyskać podczas eksperymentów w laboratorium.
      Teraz okazuje się, że poczwórna helisa DNA może występować też w żywych, zdrowych komórkach ludzkiego ciała. Dotychczas struktury takiej, zwanej G-kwadrupleks (G4-DNA), nie zauważono w żywych komórkach, gdyż technika ich wykrywania wymagała zabicia badanej komórki. Teraz naukowcy z Uniwersytetu w Cambridge, ICL oraz Uniwersytetu w Leeds opracowali nowy znacznik fluorescencyjny, który przyczepia się go G4-DNA w żywych komórkach. To zaś pozwala na śledzenie formowania się tej struktury i badania roli, jaką odgrywa ona w komórce.
      Odkrycie poczwórnej helisy w komórkach, możliwość prześledzenia jej roli i ewolucji otwiera nowe pole badań nad postawami biologii i może przydać się w opracowaniu metod leczenia wielu chorób, w tym nowotworów.
      Teraz możemy obserwować G4 w czasie rzeczywistym w komórkach, możemy badać jej rolę biologiczną. Wiemy, że struktura ta wydaje się bardziej rozpowszechniona w komórkach nowotworowych. Możemy więc sprawdzić, jaką odgrywa ona rolę, spróbować ją zablokować, co potencjalnie może doprowadzić do pojawienia się nowych terapii, stwierdzają autorzy najnowszych badań.
      Naukowcy sądzą, że do formowania się kwadrupleksu dochodzi po to, by czasowo otworzyć helisę, co ułatwia różne procesy, jak np. transkrypcja.
      Wydaje się, że G4 jest częściej powiązana z genami biorącymi udział w pojawianiu się nowotworów. Jeśli struktura ta ma związek z chorobami nowotworowymi, to być może uda się opracować leki blokujące jej formowanie się.
      Już wcześniej ten sam zespół naukowcy wykorzystywał przeciwciała i molekuły, które były w stanie odnaleźć i przyczepić się do G4. Problem jednak w tym, że środki te musiały być używane w bardzo wysokich stężeniach, co groziło zniszczeniem DNA. To zaś mogło prowadzić do formowania się G4, zatem technika, której celem było wykrywanie G4 mogła de facto powodować jego tworzenie się, zamiast znajdować to, co powstało w sposób naturalny.
      Czasem naukowcy potrzebują specjalnych próbników, by obserwować molekuły wewnątrz żywych komórek. Problem w tym, że próbniki te mogą wchodzić w interakcje z obserwowanym obiektem. Dzięki mikroskopii jednocząsteczkowej jesteśmy w stanie obserwować próbniki w 1000-krotnie mniejszym stężeniu niż wcześniej. W tym przypadku próbnik przyczepia się do G4 w ciągu milisekund, nie wpływa na jej stabilność, co pozwala na badanie zachowania G4 w naturalnym środowisku bez wpływu czynników zewnętrznych.
      Dotychczasowe badania wykazały, że G4 forumuje się i znika bardzo szybko. To sugeruje, że jest to tymczasowa struktura, potrzebna do wypełnienia konkretnych funkcji, a gdy istnieje zbyt długo może być szkodliwa dla komórek.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gdy przypatrzymy się strukturze nici DNA czy RNA zauważymy, że zawsze są one skręcone w prawo. Nigdy w lewo. Z biologicznego czy chemicznego punktu widzenia nie ma żadnego powodu, dla którego we wszystkich formach życia widać taką regułę. Wszystkie znane reakcje chemiczne powodują powstanie molekuł skręconych zarówno w prawo, jak i w lewo. Ta symetria jest czymś powszechnym. Nie ma też żadnego powodu, dla którego skręcone w lewo DNA miałoby być w czymkolwiek gorsze, od tego skręconego w prawo. A jednak nie istnieje lewoskrętne DNA. To tajemnica, która wymaga wyjaśnienia.
      Wielu naukowców sądzi, że taka struktura DNA i RNA pojawiła się przez przypadek, że skręcony w prawo genom był może nieco częstszy i w toku ewolucji wyparł ten skręcony w lewo. Naukowcy od ponad 100 lat zastanawiają się nad tym problemem.
      Niedawno na łamach Astrophysical Journal Letters ukazała się interesująca teoria, której autorzy twierdzą, że o takim, a nie innym kształcie genomu zadecydował... kosmos. Ich praca wskazuje na wpływ czynnika, który zdecydował o kierunku skręcenia genomu, a którego nie braliśmy dotychczas pod uwagę. Wydaje się to bardzo dobrym wytłumaczeniem, mówi Dimitar Sasselov, astronom z Harvard University i dyrektor Origins of Life Initiative.
      Twórcami nowej niezwykle interesującej hipotezy są Noemie Globus, astrofizyk wysokich energii z New York University i Center For Computational Astrophysics na Flatiron Institure oraz Roger Blandford, były dyrektor Kavli Institute for Particle Astrophysics and Cosmology na Uniwersytecie Stanforda. Oboje spotkali się w 2018 roku i w miarę, jak dyskutowali różne kwestie, zwrócili uwagę, że promieniowanie kosmiczne ma podobną prawostronną preferencję jak DNA. Takie wydarzenia jak rozpad cząstek zwykle nie wykazują preferencji, przebiegają równie często w prawo, jak i w lewo. Jednak rzadkim wyjątkiem od reguły są tutaj piony. Rozpad naładowanych pionów odbywa się według oddziaływań słabych. To jedyne oddziaływanie podstawowe o znanej asymetrii. Gdy piony uderzają w atmosferę, rozpadają się, tworząc cały deszcz cząstek, w tym mionów. Wszystkie miony mają tę samą polaryzację, która powoduje, że z nieco większym prawdopodobieństwem jonizują jądra atomów w genomie skręconym w prawo.
      Pierwsze ziemskie organizmy, które prawdopodobnie były czymś niewiele więcej niż nagim materiałem genetycznym, zapewne występowały w dwóch odmianach. Z genomem skręconym w lewo lub w prawo. Globus i Blandford wyliczyli, że w sytuacji promieniowania kosmicznego skręcającego w prawo, cząstki uderzające w ziemię z nieco większym prawdopodobieństwem wybijały elektron z genomu skręconego w prawo niż w lewo. Miliony czy miliardy cząstek promieniowania kosmicznego były potrzebne, by wybić jeden elektron z jednego genomu. Ale ta minimalna przewaga mogła wystarczyć. Wybicie elektronu prowadziło do mutacji. Zatem promieniowanie kosmiczne było dodatkowym czynnikiem wymuszającym ewolucję. Dzięki niemu genom skręcony w prawo rozwijał się nieco szybciej. Z czasem zyskał przewagę konkurencyjną nad genomem skręconym w lewo.
      Uczeni nie chcą jednak poprzestać na hipotezie. Pani Globus skontaktowała się z Davidem Deamerem, biologiem i inżynierem z University of California w Santa Cruz. Ten podpowiedział jej, że najprostszym testem, jaki przychodzi mu do głowy, będzie wykorzystanie standardowego testu Amesa. To metoda diagnostyczna sprawdzająca siłę oddziaływania mutagenu na bakterie. Deamer zaproponował, by zamiast poddawać bakterie działaniu związku chemicznego, zacząć je bombardować mionami i sprawdzić, czy wywoła to u nich przyspieszone mutacje.
      Jeśli eksperyment się powiedzie i pod wpływem mionów DNA bakterii będzie ulegało szybszym mutacjom, będzie do bardzo silne poparcie dla hipotezy Globus i Blandforda. Nie wyjaśni to jednak, dlaczego w ogóle pojawił się materiał genetyczny skręcony w lewo lub w prawo.
      To będzie bardzo trudny element do udowodnienia. Jeśli jednak ta hipoteza zyska potwierdzenie, będziemy mieli jeszcze jeden, niezwykle interesujący, mechanizm ewolucyjny, mówi Jason Dworkin, astrobiolog z Goddard Space Flight Center.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...