Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Tempo mutacji SARS-CoV-2 jest szybsze, niż się wydawało

Rekomendowane odpowiedzi

Tempo mutacji wirusa SARS-CoV-2 jest znacznie szybsze niż uważano. Nowa mutacja pojawia się niemal co tydzień, informują naukowcy z Uniwersytetów w Bath i Edynburgu. To zaś oznacza, że nowe odmiany patogenu mogą pojawiać się częściej niż przypuszczano.

Jeszcze do niedawna naukowcy uważali, że nowe mutacje pojawiają się mniej więcej raz na dwa tygodnie. Jednak prace przeprowadzone przez specjalistów z Milner Centre for Evolution na University of Bath i MRC Human Genomic Unit na Uniwersytecie w Edynburgu wykazały, że podczas wcześniejszych badań naukowcy przeoczyli wiele mutacji, które miały miejsce, ale nigdy nie zostały wychwycone.

Mutacje zachodzą w wirusie np. w wyniku błędu w czasie kopiowania genomu gdy wirus się replikuje. Większość tych zmian to mutacje szkodliwe dla samego wirusa, które zmniejszają jego szanse na przetrwanie. Tego typu mutacje są szybko usuwane, więc bardzo łatwo je przeoczyć.

Brytyjscy uczeni wzięli pod uwagę zjawisko szybko usuwanych mutacji i na tej podstawie oszacowali, że tempo mutowania wirusa jest szybsze niż przypuszczano. To zaś wskazuje na potrzebę izolacji i dokładniejszego przebadania osób, które przez dłuższy czas zmagają się z infekcją. Nasze odkrycie oznacza, że jeśli choruje dłużej niż przez kilka tygodni, to w jego organizmie może pojawić się nowy wariant wirusa, mówi profesor Laurence Hurst z University of Bath. Uczony dodaje, że wariant Alfa prawdopodobnie pojawił się właśnie u pacjenta, którego układ odpornościowy przez dłuższy czas nie był w stanie oczyścić organizmu z wirusa.

U zdecydowanej większości osób zakażonych organizm na tyle szybko radzi sobie z wirusem, że nie zdąży on zbytnio zmutować. To oznacza, że ryzyko, iż nowy wariant wyewoluuje w organizmie pojedynczego pacjenta, jest niewielkie. Jednak odkrycie, że wirus mutuje szybciej, oznacza, że szanse pojawienia się nowego wariantu rosną.

Naukowcy postanowili sprawdzić też, dlaczego niektóre mutacje szybko są usuwane. Wykorzystali przy tym pewien trik. Podczas II wojny światowej Amerykanie tracili dużo samolotów latających nad Niemcami. Chcieli więc sprawdzić, w którym miejscu należy wzmocnić samoloty. Oglądali więc powracające samoloty, patrzyli w których miejscach są dziury po pociskach wroga. Na tej podstawie stwierdzili, że wzmocnić należy miejsca, gdzie dziur nie ma. Gdyż to trafienie w te miejsca powodowały, że samolot spadał i nie wracał do bazy – wyjaśnia Hurst.

Naukowcy wykorzystali więc dostępne obecnie bazy danych, w których znajduje się olbrzymia liczba zsekwencjonowanych genomów SARS-CoV-2. Stwierdzili, że te miejsca w których nie zauważono mutacji, są zapewne miejscami, gdzie mutacje są niebezpieczne dla wirusa. Większość takich miejsc negatywnej selekcji była łatwa do przewidzenia. Można się było domyślić, że niepożądane z punktu widzenia wirusa są te miejsca, gdzie mutacje spowodują np. złe funkcjonowanie białek, w tym chociażby białka S.

Było jednak kilka niespodzianek. Proteiny, które wytwarza wirus, są złożone z aminokwasów. Geny wirusa zawierają instrukcje, które aminokwasy i w jakiej kolejności mają się ze sobą łączyć. Zauważyliśmy, że preferowane są mutacje, w których używane są bardziej stabilne aminokwasy, co oznacza, że nie muszą zachodzić często i nie wymagają zbyt wielu zasobów energetycznych. Sądzimy, że dzieje się tak dlatego, iż wirus znajduje się pod duża presją by replikować się szybko. Preferowane są więc bardziej trwałe aminokwasy, bo dzięki temu nie trzeba zbyt długo czekać na dostarczenie odpowiednich zasobów, wyjaśnia główny autor badań, doktor Atahualpa Castillo Morales.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Dzieci i młodzież w wieku 10-19 lat, u których zdiagnozowano COVID-19 są narażone na większe ryzyko rozwoju cukrzycy typu 2. w ciągu 6 miesięcy po diagnozie, niż ich rówieśnicy, którzy zapadli na inne choroby układu oddechowego. Takie wnioski płyną z badań przeprowadzonych przez naukowców z Wydziału Medycyny Case Western Reserve University. Uczeni przeprowadzili metaanalizę wpływu COVID-19 na ryzyko rozwoju cukrzycy typu 2. u dorosłych, a następnie postanowili poszerzyć swoją wiedzę o wpływ infekcji na osoby młodsze.
      Badacze przeanalizowali przypadki 613 602 pacjentów pediatrycznych. Dokładnie połowę – 306 801 – stanowiły osoby, u których zdiagnozowano COVID-19, w drugiej grupie znaleźli się młodzi ludzie, którzy zachorowali na inne choroby układu oddechowego. Poza tym obie grupy były do siebie podobne. Dodatkowo utworzono też dwie podgrupy po 16 469 pacjentów, w których znalazły się osoby z otyłością oraz COVID-19 lub inną chorobą układu oddechowego.
      Naukowcy porównali następnie liczbę nowo zdiagnozowanych przypadków cukrzycy typu 2. w obu grupach. Pod uwagę brano diagnozy, które postawiono miesiąc, trzy miesiące i sześć miesięcy po wykryciu pierwszej z chorób. Okazało się, że ryzyko rozwoju cukrzycy u osób, które zachorowały na COVID-19 było znacznie wyższe. Po 1 miesiącu było ono większe o 55%, po trzech miesiącach o 48%, a po pół roku – o 58%. Jeszcze większe było u osób otyłych. W przypadku dzieci i nastolatków, które były otyłe i zapadły na COVID-19 ryzyko zachorowania na cukrzycę było o 107% wyższe po 1 miesiącu, o 100% wyższe po drugim i o 127% wyższe po pół roku. Największe jednak niebezpieczeństwo związane z rozwojem cukrzycy wisiało nad tymi, którzy z powodu COVID-19 byli hospitalizowani. Ryzyko to było większe – odpowiednio do czasu po diagnozie COVID-19 – o 210%, 174% i 162%.
      Obecnie nie wiadomo, jaki może być związek COVID-19 z cukrzycą. Tym bardziej, że przeprowadzone badania to analiza retrospektywna, która nie pozwala na wykazanie związku przyczynowo-skutkowego. Potrzeba więc dalszych badań, które pozwolą określić, czy zachorowanie na COVID-19 w jakikolwiek sposób wpływa na układy związane z działaniem glukozy czy insuliny w naszym organizmie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wielka bioróżnorodność lasów deszczowych czy raf koralowych to rzecz powszechnie znana. Mało kto jednak zdaje sobie sprawę, jak olbrzymia bioróżnorodność występuje w jego własnym domu. A konkretnie na szczoteczce do zębów i słuchawce od prysznica. Grupa naukowców z Northwestern University odkryła w tych miejscach zaskakująco duże zróżnicowanie wirusów, z czego wiele gatunków nie było dotychczas znanych nauce. Uczeni badali bakteriofagi, zidentyfikowane przez nich organizmy nie są niebezpieczne dla ludzi.
      Mieszkańcy krajów rozwiniętych zdecydowaną większość czasu spędzają w budynkach. Ich zdrowie i dobrostan są powiązane ze środowiskiem wewnątrz tych budynków, w tym z ich mikrobiomami. To dwustronne oddziaływanie. Mikroorganizmy w budynkach wpływają na nas, a my wpływamy na nie. Nasze zachowania, sprzątanie mieszkania, używane środki chemiczne i higieny osobistej, to co jemy, wpływają na skład mikrobiomów. Uczeni z Northwestern zbadali wirusy w domowych biofilmach, skupiając się na słuchawkach od pryszniców oraz szczoteczkach do zębów. Wiemy bowiem, że bakteriofagi, wirusy atakujące bakterie i wysoce specyficzne dla konkretnych ich gatunków, wpływają na strukturę i funkcjonowanie bakteryjnych społeczności. A prysznic czy szczoteczka do zębów to środowiska podlegające dynamicznym zmianom. Zamieszkujące je mikroorganizmy mają do czynienia z ekstremalnymi zmianami temperatur, okresami wysokiej wilgotności oraz wysychania, są wystawione na działanie produktów chemicznych używanych i do higieny osobistej i do utrzymani czystości w łazience.
      Badacze przeprowadzili kompleksową analizę genetyczną mikroorganizmów zamieszkujących 34 szczoteczki do zębów i 92 słuchawki do prysznica. Znaleźli na nich ponad 600 gatunków wirusów, z których wiele nie było dotychczas znanych. Szczoteczki do zębów i słuchawki prysznicowe do siedliska fagów zupełnie odmienne od innych, mówi główna autorka badań, Erica M. Hartmann. Badania pokazały, że szczoteczki i słuchawki są zasiedlone prze różne fagi. Co więcej, każdy z badanych przedmiotów miał własny, unikatowy skład mikroorganizmów. Olbrzymie zróżnicowanie mikroorganizmów zaskoczyło uczonych i pokazało, jak wielu bakteriofagów jeszcze nie znamy.
      Po co jednak badać mikroorganizmy, które nie są szkodliwe dla człowieka? Fagi są interesujące z punktu widzenia biotechnologii i medycyny. Penicylina pochodzi z pleśni na chlebie. Być może kolejny rewolucyjny antybiotyk zostanie stworzony z czegoś, co żyje na twojej szczoteczce do zębów, wyjaśnia Hartmann.
      Uczona dodaje, że projekt badawczy rozpoczął się od zwykłej ciekawości. Jesteśmy otoczeni mikroorganizmami. Jednak ściany czy stoły to dla nich trudne środowisko. Preferują one miejsca, gdzie jest woda. A ta powszechnie występuje na szczoteczkach do zębów i słuchawkach.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Tegoroczną Nagrodę Nobla w dziedzinie fizjologii lub medycyny otrzymali Katalin Karikó i Drew Weissmann za odkrycia, które umożliwiły opracowanie efektywnych szczepionek mRNA przeciwko COVID-19. W uzasadnieniu przyznania nagrody czytamy, że prace Karikó i Wiessmanna w olbrzymim stopniu zmieniły rozumienie, w jaki sposób mRNA wchodzi w interakcje na naszym układem odpornościowym". Tym samym laureaci przyczynili się do bezprecedensowo szybkiego tempa rozwoju szczepionek, w czasie trwania jednego z największych zagrożeń dla ludzkiego życia w czasach współczesnych.
      Już w latach 80. opracowano metodę wytwarzania mRNA w kulturach komórkowych. Jednak nie potrafiono wykorzystać takiego mRNA w celach terapeutycznych. Było ono nie tylko niestabilne i nie wiedziano, w jaki sposób dostarczyć je do organizmu biorcy, ale również zwiększało ono stan zapalny. Węgierska biochemik, Katalin Karikó, pracowała nad użyciem mRNA w celach terapeutycznych już od początku lat 90, gdy była profesorem na University of Pennsylvania. Tam poznała immunologa Drew Weissmana, którego interesowały komórki dendrytyczne i ich rola w układzie odpornościowym.
      Efektem współpracy obojga naukowców było spostrzeżenie, że komórki dendrytyczne rozpoznają uzyskane in vitro mRNA jako obcą substancję, co prowadzi co ich aktywowania i unicestwienia mRNA. Uczeni zaczęli zastanawiać się, dlaczego do takie aktywacji prowadzi mRNA transkrybowane in vitro, ale już nie mRNA z komórek ssaków. Uznali, że pomiędzy oboma typami mRNA muszą istnieć jakieś ważne różnice, na które reagują komórki dendrytyczne. Naukowcy wiedzieli, że RNA w komórkach ssaków jest często zmieniane chemicznie, podczas gdy proces taki nie zachodzi podczas transkrypcji in vitro. Zaczęli więc tworzyć różne odmiany mRNA i sprawdzali, jak reagują nań komórki dendrytyczne.
      W końcu udało się stworzyć takie cząsteczki mRNA, które były stabilne, a po wprowadzeniu do organizmu nie wywoływały reakcji zapalnej. Przełomowa praca na ten temat ukazała się w 2005 roku. Później Karikó i Weissmann opublikowali w 2008 i 2010 roku wyniki swoich kolejnych badań, w których wykazali, że odpowiednio zmodyfikowane mRNA znacząco zwiększa produkcję protein. W ten sposób wyeliminowali główne przeszkody, które uniemożliwiały wykorzystanie mRNA w praktyce klinicznej.
      Dzięki temu mRNA zainteresowały się firmy farmaceutyczne, które zaczęły pracować nad użyciem mRNA w szczepionkach przeciwko wirusom Zika i MERS-CoV. Gdy więc wybuchła pandemia COVID-19 możliwe stało się, dzięki odkryciom Karikó i Weissmanna, oraz trwającym od lat pracom, rekordowo szybkie stworzenie szczepionek.
      Dzięki temu odkryciu udało się skrócić proces, dzięki czemu szczepionkę podajemy tylko jako stosunkowo krótką cząsteczkę mRNA i cały trik polegał na tym, aby ta cząsteczka była cząsteczką stabilną. Normalnie mRNA jest cząsteczką dość niestabilną i trudno byłoby wyprodukować na ich podstawie taką ilość białka, która zdążyłaby wywołać reakcję immunologiczną w organizmie. Ta Nagroda Nobla jest m.in. za to, że udało się te cząsteczki mRNA ustabilizować, podać do organizmu i wywołują one odpowiedź immunologiczną, uodparniają nas na na wirusa, być może w przyszłości bakterie, mogą mieć zastosowanie w leczeniu nowotworów, powiedziała Rzeczpospolitej profesor Katarzyna Tońska z Uniwersytetu Warszawskiego.
      Myślę, że przed nami jest drukowanie szczepionek, czyli dosłownie przesyłanie sekwencji z jakiegoś ośrodka, który na bieżąco śledzi zagrożenia i na całym świecie produkcja już tego samego dnia i w ciągu kilku dni czy tygodni gotowe preparaty dla wszystkich. To jest przełom. Chcę podkreślić, że odkrycie noblistów zeszło się z możliwości technologicznymi pozwalającymi mRNA sekwencjonować szybko, tanio i dobrze. Bez tego odkrycie byłoby zawieszone w próżni, dodał profesor Rafał Płoski z Warszawskiego Uniwersytetu Medycznego.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Podczas pandemii SARS-CoV-2 widzieliśmy olbrzymie spektrum manifestacji klinicznych zarażenia wirusem, od infekcji bezobjawowych po zgony. Naukowcy z Instytutu Pasteura, francuskiego Narodowego Centrum Badań Naukowych we współpracy ze specjalistami z całego świata przyjrzeli się przyczynom różnic w reakcji układu odpornościowego na SARS-CoV-2 wśród różnych populacji. Wykazali, że utajona infekcja cytomegalowirusem oraz czynniki genetyczne miały swój udział w manifestacjach reakcji organizmu na koronawirusa.
      Wiemy, że głównym czynnikiem ryzyka zgonu jest zaawansowany wiek. Dodatkowymi są płeć męska, choroby współistniejące i czynniki genetyczne oraz immunologiczne. Naukowcy badający wpływ różnych czynników na odpowiedź organizmu na SARS-CoV-2 pobrali próbki krwi od 222 zdrowych ochotników zamieszkujących region od Afryki Środkowej i Europy Zachodniej po Azję Wschodnią. Wykorzystali technikę sekwencjonowania RNA do określenia, w jaki sposób 22 różne rodzaje komórek krwi reaguja na obecność koronawirusa. Następnie połączyli tak uzyskane informacje z wynikami badań układu odpornościowego i genomu osób, od których pobrano krew.
      Naukowcy zidentyfikowali około 900 genów, których reakcja na obecność wirusa była różna u różncyh populacji. Za pomocą statystycznych analiz genetycznych uczeni wykazali, że różnice te wynikają z różnic w składzie krwi. Proporcje poszczególnych typów komórek są różne u różnych populacji. Wiadomo jednak, że na skład krwi mają też wpływ czynniki zewnętrze. Jednym z nich jest infekcja cytomegalowirusem. W Afryce Środkowej jest on obecny u 99% populacji, w Azji Wschodniej u 50% ludzi, a w Europie jego nosicielem jest 32% mieszkańców. Z badań wynika, że utajona infekcja tym wirusem ma wpływ na reakcję organizmu na SARS-CoV-2.
      Ponadto zidentyfikowano około 1200 genów, których ekspresja w warunkach zarażenia SARS-CoV-2 jest różna w różnych populacjach i jest kontrolowana przez czynniki genetyczne i zależy od częstotliwości alleli regulujących te geny. Na ten czynnik miała wpływ presja selekcyjna z przeszłości. Wiemy, że czynniki zakaźne miały olbrzymi wpływ na przeżycie człowieka i wywierały silną presję selekcyjną, która ukształtowała różnice genetyczne na poziomie całych populacji. Wykazaliśmy, że presja selekcyjna z przeszłości wpłynęła na odpowiedź immunologiczną na SARS-CoV-2. Jest to widoczne szczególnie u osób pochodzących z Azji Wschodniej. Około 25 000 lat temu koronawirusy wywarły silną presję selekcyjna na te populacje, mówi Maxime Rotival.
      Na przebieg infekcji miały też wpływ geny odziedziczone po neandertalczykach. Stanowią one ok. 2% genomu mieszkańców kontynentów innych niż Afryka i mamy coraz więcej dowodów na to, że wpływają one na naszą obecność odporność na infekcję. Nie tylko zresztą na nią. Mają też wpływ na to, czy palimy papierosy i pijemy alkohol. Teraz naukowcy zidentyfikowali dziesiątki genów, które zmieniają reakcję na infekcję, a ich obecność to skutek krzyżowania się H. sapiens z neandertalczykiem.
      Wykazaliśmy istnienie związku pomiędzy dawnymi wydarzeniami mającymi wpływ na ewolucję, jak selekcja naturalna czy krzyżowanie się z neandertalczykami, a obecnymi różnicami populacyjnymi w reakcji na infekcję, dodaje profesor Lluis Quintana-Murci.
      Szczegóły badań zostały opisane w artykule Dissecting human population variation in single-cell responses to SARS-CoV-2 opublikowanym na łamach Nature.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dżuma trapi ludzkość od 5000 lat. W tym czasie wywołująca ją Yersinia pestis ulegała wielokrotnym zmianom, zyskując i tracąc geny. Około 1500 lat temu, niedługo przed jedną z największych pandemii – dżumą Justyniana – Y. pestis stała się bardziej niebezpieczna. Teraz dowiadujemy się, że ostatnio bakteria dodatkowo zyskała na zjadliwości. Pomiędzy wielkimi pandemiami średniowiecza, a pandemią, która w XIX i XX wieku zabiła około 15 milionów ludzi, Y. pestis została wzbogacona o nowy niebezpieczny element genetyczny.
      Naukowcy z Uniwersytetu Chrystiana Albrechta w Kilonii i Instytutu Biologii Ewolucyjnej im. Maxa Plancka przeanalizowali genom Y. pestis od neolitu po czasy współczesne. Mieli dostęp m.in. do szkieletów 42 osób, które zostały pochowane pomiędzy XI a XVI wiekiem na dwóch duńskich cmentarzach parafialnych.
      Wcześniejsze badania pokazały, że na początkowych etapach ewolucji patogen nie posiadał genów potrzebnych do efektywnej transmisji za pośrednictwem pcheł. Taka transmisja jest typowa dla współczesnej dżumy dymieniczej. W wyniku ewolucji Y. pestis znacząco zwiększyła swoją wirulencję, co przyczyniło się do wybuchu jednych z najbardziej śmiercionośnych pandemii w historii ludzkości, mówi doktor Joanna Bonczarowska z Instytutu Klinicznej Biologii Molekularnej na Uniwersytecie w Kilonii. Podczas naszych badań wykazaliśmy, że przed XIX wiekiem żaden ze znanych szczepów Y. pestis nie posiadał elementu genetycznego znanego jako profag YpfΦ, dodaje uczona. Profag, jest to nieczynna postać bakteriofaga, fragment DNA wirusa, który został włączony do materiału genetycznego zaatakowanej przez niego bakterii.
      Te szczepy Y. pestis, które mają w swoim materiale genetycznym YpfΦ, są znacznie bardziej śmiercionośne, niż szczepy bez tego profaga. Nie można więc wykluczyć, że to jego obecność przyczyniła się do wysokiej śmiertelności podczas pandemii z XIX/XX wieku.
      Naukowcy z Kilonii chcieli szczegółowo poznać mechanizm zwiększonej wirulencji Y. pestis z profagiem YpfΦ. W tym celu przyjrzeli się wszystkim białkom kodowanym przez tę bakterię. Okazało się, że jedno z nich jest bardzo podobne do toksyn znanych z innych patogenów.
      Struktura tego białka jest podobna do enterotoksyny wytwarzanej przez Vibrio cholerae (ZOT - zonula occludens toxin), która ułatwia wymianę szkodliwych substancji pomiędzy zainfekowanymi komórkami i uszkadza błonę śluzową oraz nabłonek, dodaje Bonczarowska. Uczona wraz z zespołem będą w najbliższym czasie badali wspomniane białko, gdyż jego obecność prawdopodobnie wyjaśnia zjadliwość współczesnych szczepów Y. pestis.
      Badacze zwracają uwagę, że szybka ewolucja patogenu zwiększa ryzyko pandemii. Nabywanie nowych elementów genetycznych może spowodować, że pojawią się nowe objawy. To zaś może prowadzić do problemów z postawieniem diagnozy i opóźnienia właściwego leczenia, które jest kluczowe dla przeżycia. Co więcej, niektóre szczepy Y. pestis już wykazują oporność na różne antybiotyki, co dodatkowo zwiększa zagrożenie, stwierdza doktor Daniel Unterweger, który stał na czele grupy badawczej. Naukowcy przypominają, że u innych bakterii również odkryto elementy podobne do YpfΦ, co może wskazywać na ich zwiększoną wirulencję.
      Zrozumienie, w jaki sposób patogen zwiększał swoją szkodliwość w przeszłości, a czasem robił to skokowo, pomoże nam w wykrywaniu nowych jego odmian i w zapobieganiu przyszłym pandemiom, wyjaśnia cel badań profesor Ben Krause-Kyora z Instytutu Klinicznej Biologii Molekularnej.
      Dżuma to wciąż jedna z najbardziej niebezpiecznych chorób. Śmiertelność w przypadku szybko nieleczonej choroby wynosi od 30% (dżuma dymienicza) do 100% (odmiana płucna). Obecnie najczęściej występuje w Demokratycznej Republice Konga, Peru i na Madagaskarze. Zdarzają się jednak zachorowania w krajach wysoko uprzemysłowionych. Na przykład w USA w 2020 roku zanotowano 9 zachorowań, z czego zmarły 2 osoby.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...