Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Dwa rekordy temperatury w Antarktyce: jeden uznany, jeden odrzucony
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Naukowcy z Barcelony i Corku opublikowali najbardziej szczegółową mapę podmorskich kanionów Antarktyki. Zawiera ona 332 kaniony, niektóre z nich o głębokości ponad 4000 metrów. Katalog, wspólne dzieło uczonych z Universitat de Barcelona i University College Cork, zawiera informacje o pięciokrotnie większej liczbie kanionów niż poprzednie podobne zestawy danych. A w towarzyszącym mu artykule na łamach Marine Geology uczeni wykazali, że kaniony mogą mieć większe niż przypuszczano znaczenie dla cyrkulacji wód oceanicznych, zmniejszania się pokrywy morskiego lodu oraz zmian klimatu.
Kaniony odgrywają niezwykle istotną rolę w transporcie osadów i substancji odżywczych z wybrzeży do głębokich partii oceanów, łączą płytkie i głębokie obszary oceanów, tworzą bogate siedliska dla morskiego życia. Dotychczas na całym globie zidentyfikowano około 10 000 podmorskich kanionów, jednak prawdopodobnie jest ich znacznie więcej. Pomimo ich wielkiego wpływu na ekologię, geologię czy oceanografię, struktury te są słabo znane, szczególnie leżące w obszarach poarnych.
Kaniony w Arktyce i Antarktyce są podobne do kanionów z innych obszarów planety, ale zwykle są większe i głębsze z powodu długotrwałego oddziaływania lodu oraz olbrzymich ilości osadów transportowanych przez lodowce z szelfu kontynentalnego, mówi David Amblàs. Ponadto antarktyczne kaniony tworzą się głównie w wyniku działalności prądów zawiesinowych, gdzie gęstsza od otoczenia zawiesina gwałtownie spływa w dół pod wpływem grawitacji. Te silne prądy, zasilane w osady przez lodowce, rzeźbią w dnie wielkie kaniony.
Zdaniem naukowców, najbardziej interesującym aspektem ich badań jest odnotowanie różnic pomiędzy kanionami powstającymi w dwóch ważnych regionach Antarktyki. W Antarktyce Wschodniej kaniony są bardziej rozbudowane, rozgałęzione, tworząc wielkie systemy o przekroju w kształcie litery U. To sugeruje, że powstały w wyniku długotrwałego oddziaływania lodowców i wielkiego wpływu procesów erozji i sedymentacji. Z kolei w Antarktyce Zachodniej kaniony są krótsze, mają bardziej strome brzegi, a ich przekrój przypomina literę V. Spostrzeżenie to jest wsparciem dla hipotezy, że lądolód Arktyki Wschodniej – największy lądolód na Ziemi – powstał wcześniej. Dotychczas hipoteza ta miała wsparcie w badaniu osadów, teraz kolejnym dowodem jest geomorfologia dna morskiego.
Antarktyczne kaniony ułatwiają wymianę wody między szelfem kontynentalnym, a głębokimi partiami oceanu. Dzięki nim zimne gęste wody z okolic lądolodu spływają w dół i tworzą AABW (Antarctic Bottom Water), masę wody odgrywającą ważną rolę w światowej cyrkulacji oceanicznej. Ponadto kaniony kierują ciepłe wody, takie jak CDW (Circumpolar Deep Water) z Pacyfiku i Oceanu Indyjskiego w kierunku szelfu Antarktyki, podgrzewając lód i prowadząc do jego topnienia.
Autorzy badań zauważają, że obecne modele cyrkulacji oceanicznej niedokładnie odtwarzają lokalne procesy fizyczne zachodzące między masami wody a kanionami, przez co mają ograniczoną możliwość przewidywania zmian zachodzących w oceanach i atmosferze.
Źródło: The geomorphometry of Antarctic submarine canyons
« powrót do artykułu -
przez KopalniaWiedzy.pl
Krążący wysoko nad Antarktydą wykrywacz promieniowania kosmicznego, zarejestrował nietypowe sygnały, które wykraczają poza nasze obecne rozumienie fizyki cząstek. ANITA (Antarctic Impulsive Transient Antenna) to zespół wyspecjalizowanych anten, które za pomocą balonu wypuszczane były nad Antarktyką i przez około miesiąc krążyły na wysokości do 40 kilometrów, unoszone przez wiatry obiegające kontynent. Celem eksperymentu jest obserwowanie promieniowania kosmicznego po tym, jak dotarło do Ziemi. W trakcie badań co najmniej 2-krotnie zarejestrowano sygnały, które nie pochodzą od promieniowania odbitego przez lód, a kierunek, z którego napłynęły, nie pozwala wyjaśnić ich pochodzenia na gruncie znanych zjawisk fizycznych.
Sygnały radiowe, które odkryliśmy, nadeszły z bardzo ostrego kąta, około 30 stopni spod powierzchni lodu, mówi profesor Stephanie Wissel. Z obliczeń wynika, że taki sygnał musiałby przejść przez tysiące kilometrów skał, z których zbudowana jest Ziemia, ale wówczas byłby niewykrywalny, gdyż zostałby przez Ziemię zaabsorbowany. To interesujący problem, bo obecnie nie potrafimy wyjaśnić, czym jest ten sygnał. Wiemy jednak, że to najprawdopodobniej nie pochodzi z neutrin, dodaje uczona.
Neutrina to cząstki bardzo pożądane przez naukowców. Niosą ze sobą ogrom informacji. W każdej sekundzie przez nasze ciała przechodzą biliony neutrin i nie czynią nam szkody. Neutrina niemal nigdy nie wchodzą w interakcje, trudno więc je wykryć.
Źródłem neutrin mogą być na przykład wydarzenia, do których doszło miliary lat świetlne od nas. Wykrycie takiego neutrina to dla naukowców okazja, by dowiedzieć się czegoś więcej o wydarzeniu, które było jego źródłem.
ANITA ma wykrywać też neutrina. Została umieszczona nad Antarktyką, gdyż tam istnienie najmniejsze ryzyko zakłócenia jej pracy przez inne sygnały. Unoszony przez balon zespół anten skierowany jest w dół i rejestruje wielkie pęki atmosferyczne odbite od lodu. Wielki pęk atmosferyczny, to wywołana pojedynczą cząstką promieniowania atmosferycznego kaskada cząstek powstających w atmosferze Ziemi.
ANITA rejestruje takie pęki odbite od lodu, naukowcy są w stanie przeanalizować sam pęk, jak i pęk odbity od lodu i na tej podstawie określić, jaka cząstka wywołała pęk. Na podstawie kąta odbicia sygnału można zaś określić jego źródło. I tutaj pojawia się problem, gdyż zarejestrowano też sygnały, których nie można prześledzić do źródła. Kąt ich odbicia jest bowiem znacznie bardziej ostry, niż przewidują istniejące modele.
Naukowcy przeanalizowali dane z wielu przelotów, porównali je z modelami matematycznymi, przeprowadzili liczne symulacje i wykluczyli zakłócenia tła i inne źródła sygnałów. Porównali swoje dane z niezależnie zbieranymi danymi innych instrumentów naukowych, takich jak IceCube Experiment czy Pierre Auger Observatory, by sprawdzić, czy i one odebrały podobne nietypowe sygnały. Okazało się, że nie. Dlatego też Wissel i jej koledzy określają znalezione sygnały jako „nietypowe” i wykluczają, by były one spowodowane przez neutrina. Sygnały nie pasują do standardowych modeli fizyki cząstek. Być może wyjaśnieniem tkwi w mniej popularnych teoriach, z których wynika, że sygnały te mogą pochodzić od ciemnej materii, jednak brak na to dowodów.
Obecnie naukowcy budują nowe urządzenie, PUEO. Będzie ono większe i bardziej czułe. Badacze mają nadzieję, że rzuci ono nowe światło na nietypowe sygnały. Sądzę, że przy powierzchni lodu i blisko horyzontu dochodzi do jakichś interesujących zjawisk związanych z rozprzestrzenianiem się sygnałów radiowych. Nie rozumiemy tego. Sprawdzaliśmy różne hipotezy i do niczego nie doszliśmy. To tajemnica. Bardzo się cieszę na myśl o tym, że powstaje bardziej czułe PUEO. Powinniśmy uchwycić więcej takich anomalii, dzięki czemu być może zrozumiemy, z czym mamy do czynienia, dodaje Wissel.
Źródło: Search for the Anomalous Events Detected by ANITA Using the Pierre Auger Observatory, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.134.121003
« powrót do artykułu -
przez KopalniaWiedzy.pl
Niejednokrotnie słyszeliśmy o zagrożeniach związanych z roztapianiem się lądolodów na biegunach. Takie zjawiska jak podnoszenie się poziomu oceanów czy zmiany zasolenia ich wód istnieją w świadomości opinii publicznej. Jednak, jak się dowiadujemy, zmniejszanie się grubości pokryw lodowych może mieć też wpływ na... wulkanizm.
Warstwy lodu o grubości tysięcy metrów wywierają olbrzymi nacisk na leżące pod nimi skały. Gdy lód topnieje, nacisk się zmniejsza, co powoduje unoszenie się skał. To zaś zmniejsza ciśnienie wewnątrz komór magmowych leżących pod skorupą ziemską.
Allie N. Coonin z Brown University postanowiła zbadać wraz z kolegami wpływ ruchów izostatycznych spowodowanych topnieniem się lodu Antarktydy na Ryft Zachodnioantarktyczny. To jeden z największych ryftów – rowów tektonicznych – na Ziemi. Naukowcy przyjrzeli się związkom zlodowacenia oraz wulkanizmu w czasie dwóch ostatnich zlodowaceń. Na potrzeby badań uczeni wykorzystali model komory magmowej i symulowali zmniejszanie się lądolodu Antarktydy Zachodniej, zmniejszając wirtualnie ciśnienie wywierane na leżące poniżej lodu skały i komorę magmową. Badali, jak zmniejszenie ciśnienia prowadziło do powiększenia się komory. W takim przypadku ciśnienie otaczających komorę skał staje się mniejsze niż ciśnienie gazu w magmie. Tworzą się pęcherzyki, które wypychają magmę i dochodzi do erupcji.
Symulując komory magmowe o różnej wielkości naukowcy zauważyli, że im większa komora, tym bardziej reaguje ona na skutki zmniejszania się pokrywy lodowej. Krytycznym czynnikiem jest tutaj tempo utraty lodu. Uczeni symulowali to zjawisko do maksymalnej prędkości utraty 3 metrów lodu na rok.
Chcąc zweryfikować wyniki uzyskane w trakcie symulacji, naukowcy przyjrzeli się wulkanom andyjskim z Southern Volcanic Zone w Patagonii. Pomiędzy 35 a 18 tysięcy lat temu narosło tam 1600 metrów lodu. W okresie interglacjału lód ten zaczął topnieć. Doszło wówczas do zwiększonej aktywności wulkanów Calbuco, Mocho-Choshuenco i Puyehue-Coron Caulle.
Zwiększenie wulkanizmu spowodowane roztapianiem lądolodu może uruchomić sprzężenie zwrotne, gdy roztapiający się lód będzie prowadził do zmniejszenia ciśnienia w komorze magmowej i erupcji, która z kolei roztopi więcej lodu, co wywoła kolejną erupcję. Nawet gdyby antropogeniczne ocieplenie natychmiast się zatrzymało, to zmniejszenie grubości pokrywy lodowej, jakiej już doświadczył Ryft Zachodnioantarktycznego, będzie wpływało na tamtejsze wulkany przez setki lub tysiące lat, stwierdzają autorzy badań.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Podczas czwartej kampanii prowadzonej w ramach finansowanego przez Komisję Europejską projektu „Beyond EPICA – Oldest Ice” międzynarodowy zespół naukowy skompletował rdzeń lodowy o długości 2800 metrów, sięgając do podłoża skalnego Antarktydy. Tym samym – po raz pierwszy w historii – zdobyto próbki lodu, w których znajdują się niezwykle ważne informacje dotyczące historii ziemskiego klimatu i atmosfery starsze niż 800 tysięcy lat. Rdzeń zawiera zapis historii klimatu w ciągu ostatnich 1,2 miliona lat, a być może jeszcze dłużej.
Wiercenia prowadzono w odległym miejscu zwanym Little Dome C. W projekt zaangażowanych było 12 instytucji naukowych z 10 krajów Europy. Pozyskali oni dziewiczy lód, z którego można będzie wydobyć uwięzione bąbelki powietrza, odczytać informacje o temperaturach i składzie atmosfery na w ciągu wielu tysiącleci.
To historyczny moment dla badań nad klimatem i środowiskiem. To najdłuższy nieprzerwany zapis danych klimatycznych zamkniętych w rdzeniu lodowym. Może on dostarczyć nowych informacji na temat cyklu węglowego i jego związku z temperaturami na planecie, mówi profesor Carlo Barbante z Uniwersytetu Ca'Foscari w Wenecji. Wstępne badania wydobytego rdzenia wskazują, że rdzeń zawiera zapis o wysokiej rozdzielczości. W 1 metrze skompresowanego lodu może być zapisana historia klimatu obejmująca maksymalnie 13 tysięcy lat.
Odpowiednią lokalizację do wierceń wybraliśmy wykorzystując najnowocześniejsze techniki badania lodu falami radiowymi oraz modele płynięcia lodu. Szczególnie imponujący jest fakt, że wykorzystane przez nas technologie wykazały, że na głębokości od 2426 do 2490 metrów powinien znajdować się zapis obejmujący okres od 800 tysięcy do 1,2 miliona lat temu. I tak właśnie było, cieszy się jeden z czołowych ekspertów w tej dziedzinie, profesor Frank Wilhelms z Uniwersytetu w Göttingen i Instytutu Alfreda Wegenera. Ostatnie 210 metrów rdzenia, znajdujące się poniżej lodu zawierającego zapis sprzed ponad 1,2 miliona lat, to stary lód, silnie zdeformowany, który prawdopodobnie uległ wymieszaniu lub ponownemu zamrożeniu. To lód nieznanego pochodzenia. Jego szczegółowe badania pozwolą nam zweryfikować teorie dotyczące zachowania ponownie zamarzającego lodu pod lądolodem Antarktydy i umożliwią lepsze zbadania historii lądolodu Antarktyki Wschodniej, dodaje uczony.
Rdzenie wydobyte podczas „Beyond Epica – Oldest Ice” zostaną przewiezione do Europy na pokładzie lodołamacza Laura Bassi. Podczas transportu będą przechowywane w temperaturze -50 stopni Celsjusza, co jest poważnym wyzwaniem technologicznym i logistycznym. Konieczne było stworzenie wyspecjalizowanych kontenerów i odpowiednie wykorzystanie morskich i powietrznych środków transportowych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Utrata lodu morskiego w Antarktyce prowadzi do większego wydzielania ciepła z oceanu do atmosfery oraz do zwiększonej liczby burz, donoszą naukowcy z British Antarctic Survey. Autorzy badań, którymi kierowali uczeni z brytyjskiego Narodowego Centrum Oceanografii (NOC), skupili się na zbadaniu skutków rekordowo małego zasięgu lodu pływającego w Antarktyce zimą 2023 roku.
Badania warstwy atmosfery znajdującej się bezpośrednio nad powierzchnią oceanu pokazały, że po utracie lodu ocean oddaje do atmosfery dwukrotnie więcej ciepła niż wcześniej. Ma to znaczenie dla obu stron miejsca styku wód oceanicznych z atmosferą. Z jednej strony w atmosferze, szczególnie na wyższych szerokościach geograficznych Oceanu Południowego, pojawia się więcej burz – w niektórych miejscach jest ich nawet o 7 więcej w miesiącu – z drugiej zaś strony chłodniejsze wody powierzchniowe oceanu stają się gęstsze niż wcześniej. Autorzy badań ostrzegają, że może mieć to nieznane obecnie konsekwencje dla głębokich prądów oceanicznych. Gęste wody z powierzchni mogą się zanurzać i zaburzać te prądy.
Miejsca, w których pojawiają się te nowe gęste wody powierzchniowe znajdują się dość daleko od tych miejsc szelfu w Antarktyce, gdzie tworzą są najgęstsze i najgłębsze prądy oceaniczne. Jednak ochładzanie się i spowodowane tym zanurzanie wód z regionów wcześniej pokrytych przez lód może doprowadzić do wynurzenia się ciepłych wód, które były dotychczas utrzymywane z dala od lodu i spowodować w przyszłości przyspieszone topnienie lodu. Pilnie potrzebujemy nowych analiz tego zjawiska i sprzężenia zwrotnego, by zrozumieć, jak masowa utrata lodu w 2023 roku i w roku bieżącym, wpłyną na cyrkulację wody w Oceanie Południowym. To kluczowe zagadnienie do zrozumienia mechanizmu pochłaniania ciepła i węgla przez ocean oraz roztapiania lodów Antarktyki, mówi współautor badań, doktor Andrew Meijers.
Profesor Simon Josey z NOC dodaje, że jest jeszcze zbyt wcześnie, by przesądzać, czy rok 2023 i jego rekordowo niski poziom lodu morskiego oznacza fundamentalną zmianę w ilości antarktycznego lodu morskiego. Jednak nasze badania pokazują, że jeśli w przyszłości dojdzie do równie silnych zmian, to należy spodziewać się ekstremalnych zjawisk.
Powinniśmy więcej uwagi przywiązywać do badań związku pomiędzy utratą lodu pływającego na Antarktyce, utratą ciepła przez oceany i zmianami pogodowymi. Skutki tych zjawisk mogą być bowiem odczuwane daleko poza Antarktyką.
Autorzy badań obawiają się, że jeśli do tak dużej utraty lodu będzie dochodziło w kolejnych latach, zmiany będą coraz bardziej dramatyczne i może to przyspieszyć utratę lodu w Antarktyce.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.