Sign in to follow this
Followers
0
-
Similar Content
-
By KopalniaWiedzy.pl
Autorzy nowych badań przeprowadzonych przez NASA wykazali, że utrata lodu szelfowego w Antarktyce jest dwukrotnie większa niż pokazywały dotychczasowe dane. W ramach badań powstała m.in. pierwsza mapa cielenia się lodowców szelfowych.
Czynnikiem, który w największym stopniu wpływa na niepewność przewidywania wzrostu poziomu oceanów jest zwiększanie się tempa utraty lodu w Antarktyce. Naukowcy z Jet Propulsion Laboratory opublikowali właśnie dwa badania dotyczące ubywania lodu w Antarktyce w ostatnich dekadach.
Autorzy jednego z badań, które opisano na łamach Nature, stworzyli mapę cielenia się antarktycznych lodowców szelfowych w ciągu ostatnich 25 lat. Cielenie się lodowców szelfowych to nic innego, jak odłamywanie się fragmentów lodowca, tworzących następnie góry lodowe. Autorzy mapy zauważyli, że tempo cielenia się było szybsze, niż tempo przyrastania lodu w lodowcach.
Od 1997 roku antarktyczne lodowce szelfowe utraciły 12 bilionów ton lodu. Dotychczas sądzono, że strata ta jest dwukrotnie mniejsza. Utrata lodu osłabiła lodowce szelfowe i spowodowała, że lądolód szybciej spływa do oceanu.
Autorzy drugich badań, opublikowanych w Earth System Science Data, szczegółowo pokazali jak woda roztapiająca lód Antarktyki od spodu, wdziera się coraz bardziej w głąb pokrywy lodowej. W niektórych miejscach Antarktyki Zachodniej jest ona już dwukrotnie dalej od krawędzi niż jeszcze dekadę temu. Oba powyższe badania dają najbardziej szczegółowy obraz zmian zachodzących na Antarktyce.
Antarktyka kruszy się na brzegach. A gdy lodowce szelfowe ulegają osłabieniu i rozpadnięciu, potężne lodowce na lądzie stałym spływają coraz szybciej i przyspieszają wzrost poziomu oceanów, mówi Chad Greene, lider zespołu badającego cielenie się lodowców szelfowych. Musimy pamiętać, że lodowce szelfowe są najważniejszym czynnikiem wpływającym na stabilność lądolodu Antarktydy. Są też jednak czynnikiem najbardziej wrażliwym, gdyż są podmywane przez wody oceaniczne.
Spływające z Antarktydy lodowce tworzą potężne lodowce szelfowe o grubości do 3 kilometrów i szerokości 800 kilometrów. Działają one jak bufory, utrudniające spływanie lądolodu. Gdy cykl utraty masy (cielenia się) i jej przyrostu równoważy się, lodowce szelfowe są stabilne, ich wielkość w dłuższym terminie jest stała i spełniają swoją rolę bufora. Jednak w ostatnich dekadach ocieplające się wody oceaniczne zaczęły destabilizować lodowce szelfowe Antarktyki, coraz bardziej podmywając je i roztapiając. Lodowce stają się więc cieńsze i słabsze.
Od kilku dekad dokonywane są regularne satelitarne pomiary grubości lodowców szelfowych Antarktyki, jednak dane te trudno interpretować. Wyobraźmy sobie, że oglądamy zdjęcia satelitarne i próbujemy na nich odróżnić od siebie białą górę lodową, biały lodowiec szelfowy, biały lód pływający i białą chmurę. To zawsze było trudne zadanie. Teraz jednak dysponujemy wystarczająco dużą ilością danych z różnych czujników satelitarnych, dzięki którym możemy powiedzieć, jak w ostatnich latach zmieniało się wybrzeże Antarktyki, mówi Greene.
Uczony wraz ze swoim zespołem połączył zbierane od 1997 roku dane z czujników pracujących w zakresie światła widzialnego, podczerwieni i z radarów. Na tej podstawie powstała mapa pokazująca linię brzegową lodowców szelfowych. Jej twórcy stwierdzili, że cielenie się lodowców szelfowych daleko przewyższa przyrosty ich masy, a utrata lodu jest tak duża, że jest mało prawdopodobne, by do końca wieku lodowce szelfowe mogły odzyskać swój zasięg sprzed roku 2000. Jest wręcz przeciwnie, należy spodziewać się dalszych strat, a w ciągu najbliższych 10-20 lat może dojść do wielkich epizodów cielenia się.
Z kolei autorzy drugich badań wykorzystali niemal 3 miliardy rekordów z siedmiu różnych rodzajów instrumentów, by stworzyć najbardziej szczegółową bazę danych zmian wysokości lodowców. Użyli przy przy tym danych z pomiarów radarowych i laserowych, które pozwalają na mierzenie z dokładnością do centymetrów. Pomiary te pokazały, jak długoterminowe trendy klimatyczne oraz doroczne zmiany pogodowe wpływają na lód. Pokazały nawet, jak zmienia się wysokość lodowców gdy regularnie napełniają się i opróżniają podlodowe jeziora położone wiele kilometrów pod powierzchnią lodu. Takie subtelne zmiany, w połączeniu z lepszym rozumieniem długoterminowych trendów, pozwoli nam lepiej zrozumieć procesy, wpływające na utratę masy lodu, a to z kolei umożliwi lepsze przewidywanie przyszłych zmian poziomu oceanów, stwierdził lider grupy badawczej, Johan Nilsson.
« powrót do artykułu -
By KopalniaWiedzy.pl
Znajdujący się na Biegunie Południowym wielki detektor neutrin IceCube zarejestrował wysokoenergetyczne wydarzenie, które potwierdziło istnienie zjawiska przewidzianego przed 60 laty i wzmocniło Model Standardowy. Wydarzenie to zostało wywołane przez cząstkę antymaterii o energii 1000-krotnie większej niż cząstki wytwarzane w Wielkim Zderzaczu Hadronów (LHC).
Ponad 4 lata temu, 8 grudnia 2016 roku wysokoenergetyczne antyneutrino elektronowe wpadło z olbrzymią prędkością w pokrywę lodową Antarktydy. Jego energia wynosiła gigantyczne 6,3 petaelektronowoltów (PeV). Głęboko w lodzie zderzyło się ono z elektronem, doprowadzając do pojawienia się cząstki, która szybko rozpadła się na cały deszcz cząstek. Ten zaś został zarejestrowany przez czujniki IceCube Neutrino Observatory.
IcCube wykrył rezonans Glashowa, zjawisko, które w 1960 roku przewidział późniejszy laureat Nagrody Nobla, Sheldon Glashow. Pracujący wówczas w Instytucie Nielsa Bohra w Kopenhadze naukowiec opublikował pracę, w której stwierdził, że antyneutrino o odpowiedniej energii może wejść w interakcje z elektronem, w wyniku czego dojdzie do pojawienia się nieznanej jeszcze wówczas cząstki. Cząstką tą był odkryty w 1983 roku bozon W.
Po odkryciu okazało się, że ma on znacznie większą masę, niż przewidywał Glashow. Wyliczono też, że do zaistnienia rezonansu Glashowa konieczne jest antyneutrino o energii 6,3 PeV. To niemal 1000-krotnie większa energia niż nadawana cząstkom w Wielkim Zderzaczu Hadronów. Żaden obecnie działający ani obecnie planowany akcelerator nie byłby zdolny do wytworzenia tak wysokoenergetycznej cząstki.
IceCube pracuje od 2011 roku. Dotychczas obserwatorium wykryło wiele wysokoenergetycznych zdarzeń, pozwoliło na przeprowadzenie niepowtarzalnych badań. Jednak zaobserwowanie rezonansu Glashowa to coś zupełnie wyjątkowego. Musimy bowiem wiedzieć, że to dopiero trzecie wykryte przez IceCube wydarzenie o energii większej niż 5 PeV.
Odkrycie jest bardzo istotne dla specjalistów zajmujących się badaniem neutrin. Wcześniejsze pomiary nie dawały wystarczająco dokładnych wyników, by można było odróżnić neutrino od antyneutrina. To pierwszy bezpośredni pomiar antyneutrina w przepływających neutrinach pochodzenia astronomicznego, mówi profesor Lu Lu, jeden z autorów analizy i artykułu, który ukazał się na łamach Nature.
Obecnie nie jesteśmy w stanie określić wielu właściwości astrofizycznych źródeł neutrin. Nie możemy np. zmierzyć rozmiarów akceleratora czy mocy pól magnetycznych w rejonie akceleratora. Jeśli jednak będziemy w stanie określić stosunek neutrin do antyneutrin w całym strumieniu, bo będziemy mogli badać te właściwości, dodaje analityk Tianlu Yaun z Wisconsin IceCube Particle Astrophysics Center.
Sheldon Glashow, który obecnie jest emerytowanym profesorem fizyki na Boston University mówi, że aby być absolutnie pewnymi wyników, musimy zarejestrować kolejne takie wydarzenie o identycznej energii. Na razie mamy jedno, w przyszłości będzie ich więcej.
Niedawno ogłoszono, że przez najbliższych kilka lat IceCube będzie udoskonalany, a jego kolejna wersja – IceCube-Gen2 – będzie w stanie dokonać większej liczby tego typu pomiarów.
« powrót do artykułu -
By KopalniaWiedzy.pl
Biolodzy mówią, że znalezienie organizmów żywych na morskim dnie pod lodem Antarktyki burzy nasze wyobrażenia o tym, w jaki sposób organizmy żywe mogą przetrwać w środowisku, do którego nie ma dostępu światła słonecznego.
Uczeni wwiercili się pod 900-metrowy Lodowiec Szelfowy Flichnera-Ronne i opuścili kamerę, by zbadać osady morskie. Ze zdumieniem zauważyli żyjące tam zwierzęta. Na nagranym wideo widać 16 gąbek oraz 22 inne niezidentyfikowane zwierzęta, w tym prawdopodobnie wąsonogi. Po raz pierwszy w takim miejscu zauważono osiadłe zwierzęta.
Jest wiele powodów, dla których nie powinno ich tam być, mówi Huw Griffiths z British Antarctic Survey. Sfilmowane zwierzęta żyją w wodach o temperaturze -2 stopni Celsjusza. Odżywiają się filtrując pokarm z wody. Problem w tym, że odwiertów dokonano 240 kilometrów od otwartych wód, gdzie mogą przetrwać organizmy polegające na fotosyntezie. A to one właśnie stanowią pożywienie dla gąbek i wąsonogów. To jednak nie wszystko, mówi Griffiths. Dzięki znajomości rozkładu prądów morskich w okolicy wiemy, że najbliższe miejsce, gdzie woda wypływa z głębin na powierzchnię, a więc gdzie odbywa się fotosynteza i żyją organizmy będące pokarmem dla gąbek znajduje się w odległości... 600 kilometrów.
Obecnie nie wiadomo, czy zauważone zwierzęta to gatunki znane czy nieznane. Nie wiadomo też, jak długo żyją. Niektóre z antarktycznych gąbek szklanych liczą sobie tysiące lat. Nie wiadomo też, jak często się odżywiają. Może być to raz na rok, ale równie dobrze raz na sto lat. Niemal wszystkie zauważone gąbki znaleziono na jednym kamieniu. Tylko jedna, samotna, była na innym.
Odkrycie wskazuje, że najbardziej nieprzyjazne środowiska Antarktyki również zawierają życie. Jego zbadanie może pozwolić nam na odpowiedź na pytanie, jak wyglądało życie przed setkami milionów lat, gdy Ziemia była śnieżną kulą.
« powrót do artykułu -
By KopalniaWiedzy.pl
W kalifornijskiej Dolinie Śmierci zanotowano najwyższą temperaturę na Ziemi. W Furnace Creek termometry pokazały 54,4 stopnia Celsjusza. Pomiar został zweryfikowany przez US National Weather Service. Poprzedni wiarygodny rekord temperatury na Ziemi pochodził z 2013 roku, wynosił 54 stopnie Celsjusza i również padł w Dolinie Śmierci.
Obecnie zachodnie wybrzeża USA zmagają się z falami upałów, które spowodowały dwudniowe wyłączenia prądu w Kalifornii, gdyż doszło do awarii jednej z elektrowni.
Brandi Stewart, która pracuje w Parku Narodowym Doliny Śmierci od 5 lat mówi, że latem w pracy zmaga się z olbrzymimi upałami. W sierpniu stara się w ogóle nie wychodzić z budynku. Gdy tylko wyjdziesz, czujesz jakby setki suszarek do włosów dmuchało ci prosto w twarz. Czujesz żar wokół siebie. jakby się weszło do piekarnika, ten żar jest wszędzie.
Przed 100 laty w Dolinie Śmierci zanotowano podobno temperaturę 56,6 stopnia Celsjusza. Obecnie jednak wielu ekspertów kwestionuje ten odczyt, wraz z innymi zanotowanymi tamtego lata. Jak mówi Christopher Burt, który zajmuje się historią badań pogodowych, inne dane z regionu z tego samego okresu nie zgadzają się z takim odczytem. Innym rekordem miało być 55 stopni Celsjusza odnotowane w Tunezji w 1931 roku. Burt również i to podaje w wątpliwość. Mówi, że ta temperatura, podobnie jak inne dane z Afryki z okresu kolonialnego są mało wiarygodne.
Wspomniana wcześniej fala upałów rozciąga się od Arizony po stan Waszyngton. Właśnie osiąga ona swój szczyt. W najbliższym czasie temperatury powinny spadać, jednak jeszcze przez co najmniej 10 dni należy spodziewać się upałów.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.