Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Dwa rekordy temperatury w Antarktyce: jeden uznany, jeden odrzucony

Rekomendowane odpowiedzi

Niedawno dowiedzieliśmy się o wyjątkowych upałach, jakie nawiedziły Kanadę i o kolejnych krajowych rekordach temperatury, która w końcu w miejscowości Lytton sięgnęła niemal 50 stopni Celsjusza. Tymczasem Światowa Organizacja Meteorologiczna (WMO) oficjalnie potwierdziła rekord temperatury na Antarktydzie. W lutym ubiegłego roku w argentyńskiej stacji Esperanza na Półwyspie Antarktycznym zanotowano 18,3 stopnia Celsjusza.

Zweryfikowanie pomiaru najwyższej temperatury jest ważne, gdyż pozwala nam zbudować lepszy obraz pogody i klimatu na tym obszarze, stwierdził sekretarz generalny WMO, Petteri Taalas. Półwysep Antarktyczny to jeden z najszybciej ogrzewających się obszarów na Ziemi. W ciągu ostatnich 50 lat średnie temperatury wzrosły tam o 3 stopnie Celsjusza. Nowy rekord jest zatem zgodny z obserwowanym trendem.

W ubiegłym roku John King z British Antarctic Survey mówił To jest ten region Antarktyki, w którym spodziewamy się od czasu do czasu niezwykle wysokich temperatur. Jest to spowodowane gorącymi wiatrami wiejącym z gór na zachód od Stacji Esperanza. Powodują one, że w ciągu kilku godzin temperatura może wzrosnąć nawet o 10 stopni Celsjusza. Samo to zjawisko nie jest niczym niepokojącym. Ale wpisuje się ono we wzorzec zmian na Antarktyce i tym należy się martwić. To najszybciej ocieplający się region Antarktyki, więc nie będę zdziwiony, jeśli w ciągu najbliższych lat obecny rekord znowu zostanie pobity, stwierdzał King.

Weryfikując pomiar rekordowej temperatury, eksperci z WMO przyjrzeli się zarówno warunkom, jakie wówczas panowały, jak i samemu sposobowi przeprowadzenia pomiaru oraz wykorzystanym urządzeniom. Stwierdzili, że utworzony wówczas obszar wysokiego ciśnienia zepchnął wiatr w po zboczach gór. Z wcześniejszych badań wiemy, że takie warunku i sprzyjają szybkiemu wzrostowi temperatury w tym regionie. Odnośnie metod i narzędzi pomiarowych nie zgłoszono żadnych zastrzeżeń.

Jednocześnie WMO uznało za błędny inny, jeszcze wyższy, odczyt z automatycznej brazylijskiej stacji monitorującej umieszczonej na pobliskiej Wyspie Seymoura. W tym samym czasie, gdy padł rekord na Esperanzy, stacja na wyspie wskazał temperaturę 20,75 stopni Celsjusza. Eksperci WMO uznali, że improwizowana osłona radiacyjna na brazylijskiej stacji doprowadziła do nieprawidłowego działania czujnika temperatury powietrza i nie uznali odczytu.

Dane ze stacji Esperanza zostaną wpisane do prowadzonej przez WMO bazy danych zawierające ekstrema klimatyczne i pogodowe. Zawarto tam informacje o najwyższych i najniższych na Ziemi temperaturach, opadach, suszach, prędkościach wiatru i innych, w tym zgonach spowodowanych pogodowymi ekstremami.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Jeszcze do niedawna Antarktyda była jedynym kontynentem, na którym nie znaleziono bursztynu. Właśnie się to zmieniło. Naukowcy z Alfred-Wegener-Institut (AWI) i TU Bergakademie Freiberg opublikowali na łamach Antarctic Science artykuł, w którym informują o odkryciu najbliższych biegunowi południowemu kawałków bursztynu. Dowodzi to, że około 90 milionów lat temu na Antarktydzie rosły drzewa, z których wyciekała żywica.
      Bursztyn znaleziono w rdzeniu pobranym podczas wyprawy badawczej na pokładzie lodołamacza Polarstern w 2017 roku. Rdzeń został pobrany w Zatoce Pine Island z osadów dennych znajdujących się na głębokości 946 metrów. Dokładne współrzędne geograficzne miejsca pochodzenia rdzenia to 73 stopnie 57 minut szerokości geograficznej południowej i 107 stopni 9 minut długości geograficznej zachodniej (73.57°S, 107.09°W).
      Żywica znajdowała się w 5-centymetrowej warstwie węgla brunatnego. Po wysuszeniu, węgiel został pokruszony na 1-milimetrowe kawałki i zbadany pod mikroskopem. Właśnie wtedy zauważono liczne fragmenty bursztynu o długości 0,5–1 mm. Miały one barwę od intensywnie żółtej po brązowawą.
      Analizowane fragmenty dają nam bezpośredni wgląd w warunki naturalne, jakie 90 milionów lat temu panowały w Zachodniej Antarktyce. To również fascynujące szczegółowe uzupełnienie wiedzy o funkcjonowaniu lasu, który opisaliśmy w Nature w 2020 roku, mówi geolog morski Johann P. Klages z AWI. Widzimy więc, że w pewnym momencie swojej historii każdy z siedmiu współczesnych kontynentów zapewniał warunki do życia drzewom wytwarzającym żywicę. Naszym celem jest dowiedzenie się jak najwięcej o tym lesie. Czy dochodziło tam do pożarów, czy w bursztynie znajdziemy ślady życia. Nasze odkrycie pozwala nam na bezpośrednią podróż w czasie, stwierdza uczony.
      Znalezienie bursztynu to kolejny kawałek układanki, dzięki któremu lepiej zrozumiemy bagnisty, pełen drzew iglastych las strefy umiarkowanej, jaki na biegunie południowym istniał we wczesnej kredzie, dodaje Henny Gerschel z TU Bergakademie Freiberg.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      O teleskopie Hubble'a słyszeli chyba wszyscy. Nic w tym dziwnego, gdyż jest to jeden z najważniejszych instrumentów naukowych wykorzystywanych obecnie przez człowieka. Niewiele osób jednak wie, że teleskopy wcale nie muszą spoglądać w niebo. Na Antarktydzie powstaje właśnie niezwykłe urządzenie. Teleskop IceCube (Kostka Lodu), jest budowany wewnątrz lodowej czapy pokrywającej południowy biegun naszej planety. Jego zadaniem jest wykrywanie neutrin.
      Neutrino
      Neutrino to jedna z cząstek elementarnych. Należy ona do grupy leptonów i wyróżniamy trzy typy neutrin: taonowe, mionowe oraz elektronowe. Neutrino ma zerowy ładunek elektryczny i niemal nie ma masy. Cząstka jest tak przenikliwa, że na przykład planety nie stanowią dla niej żadnej przeszkody. W każdej chwili przez nasze ciała, przez budynki i przez samą Ziemię przelatuje niezliczona liczba neutrin. Ich głównym źródłem jest oddziaływanie promieni kosmicznych w górnych warstwach atmosfery. Neutrina emitują też np. gwiazdy i reaktory atomowe.
      Istnienie neutrin zostało przewidziane teoretycznie w 1930 roku przez Wolfganga Pauliego, ale musiało minąć aż 26 lat zanim eksperymentalnie udowodniono, że Pauli się nie mylił.

      Cząsteczki te są bardzo łakomym kąskiem dla astronomów. Podróżują z prędkością światła od źródeł promieniowania, a na swej drodze nie napotykają niemal żadnych przeszkód. Neutrina powstają np. we wnętrzach gwiazd i bez najmniejszych problemów przemierzają przestrzeń kosmiczną. Badanie neutrin pozwala więc naukowcom wysnuć wnioski na temat samych źródeł, z których zostały wyemitowane.
      Z tego, co wiemy obecnie, zdecydowana większość istniejących neutrin pochodzi z samych początków wszechświata, powstały w momencie Wielkiego Wybuchu.
      IceCube
      Neutrina badane są od kilkudziesięciu lat i od lat naukowcy opracowują nowe metody ich obserwacji. Teoretycy od dawna uważają, że do obserwacji neutrin pochodzących z bardzo odległych źródeł potrzebny jest instrument długości co najmniej kilometra. Takim instrumentem ma być IceCube. Na miejsce jego budowy wybrano Antarktydę, gdyż jej lody są wyjątkowo czyste i wolne od źródeł promieniowania. Nic nie powinno więc zakłócać pracy niezwykłego teleskopu.
      Będzie się on składał z co najmniej 4200 modułów optycznych zawieszonych na 70 pionowych linach, a te z kolei będą umieszczone na głębokości od 1450 do 2450 metrów pod powierzchnią lodu. Na samej powierzchni znajdzie się kopuła zbudowana z co najmniej 280 modułów optycznych. Powierzchnia IceCube'a będzie wynosiła około 1 kilometra kwadratowego. Jak łatwo obliczyć, objętość tego niezwykłego instrumentu naukowego to około 2,5 kilometra sześciennego. Po ukończeniu prac IceCube będzie działał przez 20 lat.

      Uczeni mają nadzieję, że odpowie on na tak fundamentalne pytania, jak warunki fizyczne rozbłysków gamma czy też pozwoli zbadać naturę fotonów pochodzących z pozostałości po supernowej w gwiazdozbiorze Kraba oraz z nieodległych galaktyk. Być może IceCube pozwoli również potwierdzić teorię strun.
      Obecnie IceCube składa się z 40 lin. Do stycznia 2009 roku przybędzie 9 kolejnych. Rok później mają być już 63 liny, a w marcu 2010 roku urządzenie osiągnie pełną gotowość operacyjną. We wrześniu 2010 roku zakończony zostanie główny etap budowy IceCube'a.
      Obecnie budżet projektu wynosi 271 milionów dolarów. W pracach bierze udział około 200 naukowców i 29 instytucji.
      O skali przedsięwzięcia niech świadczą liczby. Wywiercenie w lodzie każdego z 70 otworów o średniej głębokości 2454 metrów trwa średnio 48 godzin (pierwszy otwór wiercono przez 57 godzin). W tym czasie usuwane jest 757 metrów sześciennych lodu i zużyciu ulega około 2400 litrów paliwa. W każdym otworze umieszczana jest lina. Operacja ta trwa 11 godzin. Praca nie jest łatwa, gdyż Antarktyda to najzimniejsze, najbardziej wietrzne i najbardziej suche miejsce na Ziemi. W niektórych jej punktach nie padało od tysięcy lat, a średnie temperatury na Biegunie Południowym wynoszą latem około -37 stopni Celsjusza. Rekord ciepła na Biegunie to -13,8 stopnia Celsjusza. Rekord zimna na Antarktydzie to -89 stopni Celsjusza.
      Najsilniejsze podmuchy wiatru zanotowano w lipcu 1972 roku. Naukowcy z francuskiej bazy Dumont d'Urville poinformowali wówczas, że wiatr wial z prędkością 320 kilometrów na godzinę. Na Antarktydzie znajduje się też największa pustynia na świecie, a rekordowy zanotowany spadek temperatury wyniósł 36 stopni w ciągu 12 minut.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W ciągu najbliższych trzech dekad głębinowa cyrkulacja antarktyczna może spowolnić o ponad 40%, stwierdzają naukowcy z Uniwersytetu Nowej Południowej Walii. Taka zmiana będzie niosła ze sobą poważne konsekwencje dla oceanów i klimatu.
      Zimna woda, która zanurza się pod powierzchnię oceanu w pobliżu Antarktyki napędza najgłębszą cyrkulację oceaniczną. Rozprowadza ona ciepło, węgiel, tlen i składniki odżywcze po całym światowym oceanie. Ma to wpływ na klimat, poziom mórz oraz produktywność ekosystemów morskich.
      Nasz model pokazuje, że jeśli emisja węgla będzie odbywała się na tym samym poziomie, co obecnie, to w ciągu 30 lat cyrkulacja głębinowa zwolni o ponad 40% i wszystko będzie zmierzało do załamania, mówi główny autor badań, profesor Matthew England.
      Każdego roku około 250 bilionów ton zimnej, słonej, bogatej w tlen wody zanurza się głęboko w ocean w pobliżu Antarktydy. Woda ta płynie następnie na północ, dostarczając tlen i składniki odżywcze do Oceanów Indyjskiego, Spokojnego i Atlantyckiego. Jeśli oceany miałyby płuca, to byłoby jedno z nich, wyjaśnia England. Ta głęboka cyrkulacja antarktyczna była relatywnie stabilna przez ostatnie setki tysięcy lat. Jednak modele klimatyczne wskazują, że wraz z emisją dwutlenku węgla, będzie ona słabła.
      Gdy tak się stanie, wody oceaniczne położone na głębokości ponad 4000 metrów czeka stagnacja. Substancje odżywcze zostaną uwięzione w głębinach oceanicznych, a to zmniejszy ich ilość dostępną w płytszych warstwach oceanu, wyjaśnia England. Wykorzystany model pokazuje, że spowolnienie cyrkulacji spowoduje szybkie ogrzewanie się głębokich wód oceanicznych. Bezpośrednie pomiary potwierdzają, że już obecnie mamy do czynienia z ogrzewaniem się głębokich partii oceanu, przypomina współautor badań, doktor Steve Rintoul.
      Autorzy badań zauważyli, że topienie się lodów wokół Antarktyki powoduje, że wody oceaniczne są mniej gęste, co spowalnia ich cyrkulację. A wszystko wskazuje na to, że na obu biegunach będzie ubywało lodu. Nasze badania pokazują, że roztapianie się lodów ma olbrzymi wpływ na cyrkulację zwrotną, która reguluje klimat na Ziemi, dodaje doktor Adele Morrison. Mówimy o potencjalnym długoterminowym zniknięciu niezwykle ważnego mechanizmu. Tak głębokie zmiany w przepływie ciepła, tlenu, węgla i składników odżywczych będą miały głęboki, negatywny, trwający wiele wieków wpływ na oceany, dodaje England.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Autorzy nowych badań przeprowadzonych przez NASA wykazali, że utrata lodu szelfowego w Antarktyce jest dwukrotnie większa niż pokazywały dotychczasowe dane. W ramach badań powstała m.in. pierwsza mapa cielenia się lodowców szelfowych.
      Czynnikiem, który w największym stopniu wpływa na niepewność przewidywania wzrostu poziomu oceanów jest zwiększanie się tempa utraty lodu w Antarktyce. Naukowcy z Jet Propulsion Laboratory opublikowali właśnie dwa badania dotyczące ubywania lodu w Antarktyce w ostatnich dekadach.
      Autorzy jednego z badań, które opisano na łamach Nature, stworzyli mapę cielenia się antarktycznych lodowców szelfowych w ciągu ostatnich 25 lat. Cielenie się lodowców szelfowych to nic innego, jak odłamywanie się fragmentów lodowca, tworzących następnie góry lodowe. Autorzy mapy zauważyli, że tempo cielenia się było szybsze, niż tempo przyrastania lodu w lodowcach.
      Od 1997 roku antarktyczne lodowce szelfowe utraciły 12 bilionów ton lodu. Dotychczas sądzono, że strata ta jest dwukrotnie mniejsza. Utrata lodu osłabiła lodowce szelfowe i spowodowała, że lądolód szybciej spływa do oceanu.
      Autorzy drugich badań, opublikowanych w Earth System Science Data, szczegółowo pokazali jak woda roztapiająca lód Antarktyki od spodu, wdziera się coraz bardziej w głąb pokrywy lodowej. W niektórych miejscach Antarktyki Zachodniej jest ona już dwukrotnie dalej od krawędzi niż jeszcze dekadę temu. Oba powyższe badania dają najbardziej szczegółowy obraz zmian zachodzących na Antarktyce.
      Antarktyka kruszy się na brzegach. A gdy lodowce szelfowe ulegają osłabieniu i rozpadnięciu, potężne lodowce na lądzie stałym spływają coraz szybciej i przyspieszają wzrost poziomu oceanów, mówi Chad Greene, lider zespołu badającego cielenie się lodowców szelfowych. Musimy pamiętać, że lodowce szelfowe są najważniejszym czynnikiem wpływającym na stabilność lądolodu Antarktydy. Są też jednak czynnikiem najbardziej wrażliwym, gdyż są podmywane przez wody oceaniczne.
      Spływające z Antarktydy lodowce tworzą potężne lodowce szelfowe o grubości do 3 kilometrów i szerokości 800 kilometrów. Działają one jak bufory, utrudniające spływanie lądolodu. Gdy cykl utraty masy (cielenia się) i jej przyrostu równoważy się, lodowce szelfowe są stabilne, ich wielkość w dłuższym terminie jest stała i spełniają swoją rolę bufora. Jednak w ostatnich dekadach ocieplające się wody oceaniczne zaczęły destabilizować lodowce szelfowe Antarktyki, coraz bardziej podmywając je i roztapiając. Lodowce stają się więc cieńsze i słabsze.
      Od kilku dekad dokonywane są regularne satelitarne pomiary grubości lodowców szelfowych Antarktyki, jednak dane te trudno interpretować. Wyobraźmy sobie, że oglądamy zdjęcia satelitarne i próbujemy na nich odróżnić od siebie białą górę lodową, biały lodowiec szelfowy, biały lód pływający i białą chmurę. To zawsze było trudne zadanie. Teraz jednak dysponujemy wystarczająco dużą ilością danych z różnych czujników satelitarnych, dzięki którym możemy powiedzieć, jak w ostatnich latach zmieniało się wybrzeże Antarktyki, mówi Greene.
      Uczony wraz ze swoim zespołem połączył zbierane od 1997 roku dane z czujników pracujących w zakresie światła widzialnego, podczerwieni i z radarów. Na tej podstawie powstała mapa pokazująca linię brzegową lodowców szelfowych. Jej twórcy stwierdzili, że cielenie się lodowców szelfowych daleko przewyższa przyrosty ich masy, a utrata lodu jest tak duża, że jest mało prawdopodobne, by do końca wieku lodowce szelfowe mogły odzyskać swój zasięg sprzed roku 2000. Jest wręcz przeciwnie, należy spodziewać się dalszych strat, a w ciągu najbliższych 10-20 lat może dojść do wielkich epizodów cielenia się.
      Z kolei autorzy drugich badań wykorzystali niemal 3 miliardy rekordów z siedmiu różnych rodzajów instrumentów, by stworzyć najbardziej szczegółową bazę danych zmian wysokości lodowców. Użyli przy  przy tym danych z pomiarów radarowych i laserowych, które pozwalają na mierzenie z dokładnością do centymetrów. Pomiary te pokazały, jak długoterminowe trendy klimatyczne oraz doroczne zmiany pogodowe wpływają na lód. Pokazały nawet, jak zmienia się wysokość lodowców gdy regularnie napełniają się i opróżniają podlodowe jeziora położone wiele kilometrów pod powierzchnią lodu. Takie subtelne zmiany, w połączeniu z lepszym rozumieniem długoterminowych trendów, pozwoli nam lepiej zrozumieć procesy, wpływające na utratę masy lodu, a to z kolei umożliwi lepsze przewidywanie przyszłych zmian poziomu oceanów, stwierdził lider grupy badawczej, Johan Nilsson.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...