Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

W ostatnim tysiącleciu doszło do gwałtownego zubożenia mikrobiomu człowieka

Rekomendowane odpowiedzi

Utrata różnorodności jelitowej flory bakteryjnej grozi poważnymi konsekwencjami, w tym chronicznymi chorobami. Niewiele jednak wiemy o tym, jak wyglądały mikrobiomy ludzi żyjących w epoce przedprzemysłowej. Wiemy natomiast, jak olbrzymią rolę odgrywa prawidłowy mikrobiom. Tymczasem autorzy najnowszych badań donoszą, że w ostatnim tysiącleciu doszło do poważnego „wymierania” w ludzkim mikrobiomie.

Już wcześniejsze badania wykazały, że społeczeństwa przemysłowe charakteryzuje zarówno mniejsze zróżnicowanie mikrobiomu jak i większe występowanie chorób chronicznych, jak cukrzyca czy otyłość. Dlatego też międzynarodowy zespół naukowy, w skład którego wchodzili specjaliści m.in. z Uniwersytetu Harvarda czy Instytutu Historii Człowieka im. Maxa Plancka, postanowił porównać skład genomu ludzi współczesnych z osobami, żyjącymi przed 1000-2000 lat.

Dotychczas próby rekonstrukcji mikrobiomu ludności sprzed epoki przemysłowej polegały na porównywaniu próbek odchodów współczesnych społeczności zbieracko-łowieckich ze współczesnymi społecznościami przemysłowymi. Badania takie pokazują, że społeczności łowiecko-zbierackie mają znacznie bardziej zróżnicowany mikrobim, a uboższy mikrobiom społeczności przemysłowych jest powiązany z występowaniem chorób cywilizacyjnych, jak np. alergie czy cukrzyca. Jednak badania takie nie dawały odpowiedzi na pytanie, jak bardzo mikrobiom współczesnych łowców-zbieraczy jest podobny do mikrobimu ludzi sprzed epoki przemysłowej.

Autorzy nowych badań dysponowali 8 dobrze zachowanymi niezanieczyszczonymi próbkami kału, datowanymi na lata 0–1000 n.e. Udało im się nie tylko wyizolować z nich genom bakterii, ale odróżnić też genom mikroorganizmów, które mieszkały w jelitach od tych, które znajdowały się w glebie i migrowały do odchodów.

W ten sposób uzyskali 181 genomów, które zarówno pochodziły sprzed wieków, jak i jelit ludzi. Okazało się, że wiele z obecnych w koprolitach bakterii jest podobnych do bakterii z mikrobiomu współczesnych łowców-zbieraczy, a wśród nich są gatunku powiązane z dietą bogatą w błonnik. Jednak zauważono też spore i bardzo ważne różnice. Po pierwsze bakterie z koprolitów nie zawierały markerów antybiotykooporności. Po drugie zaś, mikrobiom ludzi żyjących 1000 i 2000 lat temu był znacznie bardziej zróżnicowany, niż współczesnych łowców-zbieraczy, nie mówiąc już o mikrobiomie społeczeństw przemysłowych. Mieliśmy zaledwie 8 próbek z ograniczonego geograficznie i czasowo obszaru, a i tak aż 38% mikroorganizmów było nam nieznanych, mówi Aleksandar Kostic z Harvard Medical School.

Różnice są naprawdę duże. Na przykład bakterie z rodzaju Treponema nie występują w mikrobiomie osób z krajów uprzemysłowionych i rzadko występują u współczesnych łowców-zbieraczy. Były natomiast obecne w każdej próbce koprolitów. To sugeruje, że nie chodzi tutaj wyłącznie o zmiany diety, mówi Kostic. Uczony ma nadzieję, że w przyszłości uda się określić, w jaki sposób i dlaczego doszło do zniknięcia tych i innych bakterii z ludzkiego mikrobiomu.

Co więcej, obecne badania potwierdzają to, co właśnie zauważyła Christine Warinner, genetyk z Uniwersytetu Harvarda. Jest ona współautorką obecnych badań, a przed kilkoma dniami opublikowała inne badania, w których informuje, że na zębach neandertalczyków i wczesnych H. sapiens znalazła mikroorganizmy, których dotychczas nie znano. Badania takie pokazują, że u ludzi na całym świecie doszło do zmiany mikrobimu. Współczesne społeczności nieprzemysłowe, w tym ich mikrobiomy, nie powinny być uważane za dobre przybliżenie do badania naszych przodków, mówi genetyk Mathieu Groussin z Massachusetts Institute of Technology.

Badania te pokazują, że jeszcze w niedalekiej przyszłości nasze organizmy były zasiedlone przez znacznie bardziej zróżnicowane społeczności mikroorganizmów i mogły nie mieć czasu, by dostosować się do ich braku.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Dzikie szympansy spożywają dziennie 14 gramów etanolu. Biorąc pod uwagę masę ich ciała, to odpowiednik ponad dwóch drinków. Takie wnioski płyną z pierwszych badań, podczas których udało się zmierzyć zawartość etanalu w owocach dostępnych szympansom w ich naturalnym środowisku w Afryce. Nie wiemy, czy małpy celowo spożywają bardziej dojrzałe owoce, z większą zawartością alkoholu. Jednak ich powszechna dostępność w środowisku sugeruje, że alkohol jest zwykłą częścią ich diety i że prawdopodobnie był też częścią diety przodków człowieka.
      Uczeni z USA i Wybrzeża Kości Słoniowej pobrali próbki owoców z Ngogo w Ugandzie i Taï na Wybrzeżu Kości Słoniowej. Owoce zawierały 0,26% alkoholu wagowo. Prymatolodzy badający szympansy w tych miejscach stwierdzili, że zwierzęta zjadają średnio dziennie 4,5 kilograma owoców, co stanowi około 75% ich diety. Na tej podstawie badacze mogli wyliczyć ilość spożywanego alkoholu.
      Jeśli szympansy wybierają losowo owoce, tak jak my to robiliśmy, to 14 gramów jest ich przeciętnym dziennym spożyciem. Jeśli jednak wybierają bardziej dojrzałe owoce, to te 14 gramów stanowi ostrożnie wyliczoną dolną granicę spożycia, mówi profesor Robert Dudley z Uniwersytetu Kalifornijskiego w Berkeley.
      Zwierzęta spożywają alkohol w owocach stopniowo przez cały dzień i nie wykazują żadnych objawów z tym wiązanych. Jednak ciągłe wystawienie na oddziaływanie alkoholu wskazuje, że tak samo było z naszymi przodkami. To jednocześnie wskazówka, że codziennych dawek alkoholu brakuje zarówno w diecie szympansów trzymanych w niewoli, jak i ludzi. Prawdopodobnie ludzka skłonność do spożywania alkoholu wzięła się z tej codziennej ekspozycji, na jaką byli wystawieni nasi wspólni przodkowie z szympansami, dodaje Aleksey Maro z UC Berkeley.
      Profesor Dudley już 20 lat temu zaczął podejrzewać, że H. sapiens lubi alkohol, gdyż odziedziczył to zamiłowanie po przodkach. Przed 11 laty opisał swoją teorię w książce The Drunken Monkey: Why We Drink and Abuse Alcohol. Spotkała się ona z krytyką ze strony wielu naukowców, przede wszystkim prymatologów, którzy stwierdzili, że naczelne nie jedzą sfermentowanych owoców.
      Jednak z czasem podejście innych specjalistów zaczęło się zmieniać. Pojawiało się coraz więcej doniesień o małpach jedzących sfermentowane owoce, publikowano artykuły dotyczące trzymanych w niewoli naczelnych i ich skłonności do alkoholu. Na przykład w 2016 roku naukowcy z Dartmouth University donieśli, że gdy palczakom madagaskarskim i kukangom oferowano sok z różną zawartością alkoholu, zwierzęta najpierw wypijały ten, gdzie alkoholu było najwięcej.
      Nie tylko ssaki lubią alkohol. Pół roku temu Dudley i jego zespół opublikowali wyniki badań, z których dowiadujemy się, że w piórach 10 z 17 gatunków ptaków, które zbadali, znajdowały się metabolity wtórne alkoholu. To wskazuje, zdaniem uczonego, że alkohol spożywają wszystkie zwierzęta, których podstawę diety stanowią owoce.
      Dudley uważa, że zwierzęta mogą celowo wybierać bardziej dojrzałe owoce, gdyż dostarczają one więcej energii, a dodatkowo alkohol może zwiększać przyjemność z jedzenia. Niewykluczone też, że dzielenie się owocami z wysoką zawartością alkoholu ma znacznie przy zacieśnianiu więzi społecznych u zwierząt.
      Badacze zauważyli, że najchętniej jedzone przez szympansy owoce – Ficusa mucuso w Ngogo oraz Parinari excelsa w Taï – zawierają najwięcej alkoholu ze wszystkich, jakie spożywają. Całe grupy samców gromadzą się w koronach F. mucuso i jedzą owoce zanim wybiorą się na wspólny patrol swojego terytorium. Z kolei owoce P. excelsa są chętnie jedzone też przez słonie, o których wiadomo, że pociąga je alkohol.
      Więcej o szympansach spożywających alkohol: Ethanol ingestion via frugivory in wild chimpanzees.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W naszych ustach żyją setki gatunków grzybów i bakterii. Naukowcy z Langone Health Uniwersytetu Nowojorskiego stwierdzili, że łączna obecność 27 z tych gatunków aż 3,5-krotnie zwiększa ryzyko zachorowania na jeden z najbardziej śmiercionośnych nowotworów – raka trzustki.
      Naukowcy już dawno zauważyli, że u osób mniej dbających o higienę jamy ustnej rak trzustki występuje częściej. Jakiś czas temu odkryto, że dzieje się tak, gdyż bakterie połykane wraz ze śliną mogą trafić do trzustki, która bierze udział w trawieniu. Dotychczas nie było jednak wiadomo, które bakterie przyczyniają się do rozwoju nowotworu.
      W najnowszym numerze JAMA Oncology ukazała się analiza genetyczna mikrobiomu śliny 122 000 zdrowych osób. Nasze badania rzuciły nowe światło na związki mikrobiomu ust i raka trzustki, stwierdził główny autor badań, doktor Yixuan Meng. To najszerzej zakrojone i najbardziej szczegółowe badania tego typu. Wykazały one, że grzyby z rodzaju Candida mogą odgrywać rolę w rozwoju raka trzustki. Uczeni znaleźli pochodzące z ust Candida w próbkach z guzów tego nowotworu.
      Po przeanalizowaniu DNA mikrobiomu ust badacze przez 9 lat śledzili losy badanych. W tym czasie u 445 z nich zdiagnozowano raka trzustki. Naukowcy porównali więc ich mikrobiom ust z mikrobiomem innych 445 zdrowych osób ze swojej oryginalnej próby 122 000. W ten sposób zidentyfikowali 27 gatunków grzybów i bakterii, z których każdy w jakiś sposób wpływał na ryzyko rozwoju nowotworu, a ich łączne występowanie zwiększało to ryzyko ponad 3-krotnie.
      Badacze stworzyli też narzędzie pozwalające na dokonanie oceny ryzyka. Dzięki niemu, wykonując profil bakterii i grzybów z ust, onkolodzy będą mogli wyłowić osoby, które należy poddać szczególnemu nadzorowi ze względu na ryzyko rozwoju raka trzustki.
      Mycie i nitkowanie zębów może nie tylko pomóc w uniknięciu paradontozy, ale może chronić też przed rakiem, stwierdził profesor Richard Hayes, jeden z autorów badań. Teraz naukowcy planują sprawdzić, czy i wirusy z jamy ustnej mogą przyczyniać się do nowotworów oraz czy konkretny mikrobiom ust może wpływać na szanse przeżywalności pacjentów. Już wcześniej ten sam zespół dostarczył dowodów na związek pomiędzy niektórymi bakteriami jamy ustnej, a zwiększonym ryzykiem nowotworów głowy i szyi.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wysoki odsetek ludzi cierpiących na zaburzenia ze spektrum autyzmu to skutek tego, w jaki sposób ewoluowaliśmy, uważają autorzy artykułu opublikowanego na łamach Molecular Biology and Evolution. Wielu naukowców uważa, że autyzm i schizofrenia mogą być zaburzeniami dotykającymi wyłącznie ludzi. Bardzo rzadko bowiem u zwierząt innych niż H. sapiens obserwuje się zachowania identyfikowane z tymi chorobami.
      Dzięki postępom w analizie RNA pojedynczych komórek wiemy, że komórki mózgu ssaków są bardzo zróżnicowane, a w mózgu ludzi zaszły szybkie zmiany genetyczne, których nie obserwujemy u innych ssaków.
      Autorzy najnowszych badań, Alexander L. Starr i Hunter B. Fraser z Uniwersytetu Stanforda przeanalizowali niedawno opublikowane bazy danych zawierające informacje z sekwencjonowania pojedynczych jąder komórkowych (scRNA-seq) w trzech różnych obszarach mózgu. Zauważyli, że najpowszechniej występujące w zewnętrznej warstwie mózgu neurony L2/3 IT ewoluowały u ludzi wyjątkowo szybko w porównaniu z innymi małpami. A co najbardziej zaskakujące, ta błyskawiczna ewolucja wiązała się z olbrzymimi zmianami w genach, które powiązane są z autyzmem. Prawdopodobnie cały proces napędzany był selekcją naturalną właściwą wyłącznie dla rodzaju Homo.
      Starr i Fraser uważają, że wyniki ich badań bardzo silnie wskazują, że podczas ewolucji człowieka doszło do pojawienia się genów odpowiedzialnych za autyzm. Jednak przyczyny takiej zmiany nie są jasne. Nie wiemy, jakie korzyści z tych genów mogli odnosić nasi przodkowie. Niewiele bowiem wiemy o anatomii mózgu, połączeniach między neuronami czy zdolnościach poznawczych przodków H. sapiens. Badacze spekulują, że być może geny powodujące autyzm odpowiadają też za spowolnienie rozwoju, dzięki czemu nasze mózgi po urodzeniu rozwijają się wolniej niż na przykład mózgu szympansów. Warto też zauważyć, że autyzm i schizofrenia często zaburzają właściwe człowiekowi umiejętności wytwarzania i rozumienia mowy.
      Być może geny, które powodują autyzm, dały nam korzyść w postaci spowolnienia rozwoju mózgu, co umożliwiło wykształcenie się złożonego języka oraz bardziej złożonych procesów myślowych. Nasze badania wskazują, że te same zmiany genetyczne, które spowodowały, że ludzki mózg jest unikatowy, powodują też, że jest bardziej neuroróżnorodny, mówi Starr.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W ciągu milionów lat u naszych przodków doszło do radykalnej zmiany miednicy, dzięki czemu my możemy poruszać się na dwóch nogach w postawie wyprostowanej. Przez długi czas szczegóły tej zmiany pozostawały tajemnicą, aż niedawno na łamach Nature naukowcy z USA, Wielkiej Brytanii i Irlandii opisali dwie zmiany genetyczne, które doprowadził do tej rewolucji.
      Wykazaliśmy, że w tym zakresie doszło do całkowitej zmiany mechaniki. Nie ma tutaj analogii do żadnych innych naczelnych. Wyewoluowanie czegoś zupełnie nowego, przejście od płetw do nog czy pojawienie się skrzydeł nietoperzy z palców wymaga olbrzymich zmian w rozwoju. U ludzi doszło do takich samych masowych zmian w przypadku miednicy, mówi profesor Terence Capellini z Uniwersytetu Harvarda.
      Od dawna wiadomo, że H. sapiens ma unikatową budowę miednicy. U naszych najbliższych krewniaków kości biodrowe są wysokie, wąskie i ustawione w kierunku przednio-tylnym, co pomaga w zakotwiczeniu dużych mięśni umożliwiających wspinaczkę po drzewach. U ludzi kości te obróciły się na boki i rozchyliły. Przyczepione do nich mięśnie umożliwiają przenoszenie ciężaru wyprostowanego ciała z jednej nogi na drugą.
      Po analizie dziesiątków tkanek ludzkich płodów i muzealnych okazów naczelnych, naukowcy doszli do wniosku, że ewolucja miednicy naszych przodków przebiegała w dwóch głównych etapach. Najpierw płytka wzrostu uległa obróceniu o 90 stopni, dzięki czemu kości biodrowe rosły wszerz, a nie na wysokość, a później doszło do zmian harmonogramu tworzenia kości w życiu embrionalnym.
      Na wczesnych etapach rozwoju płytka wzrostowa kości biodrowej człowieka formuje się – jak u innych naczelnych – według osi wzrostu przebiegającej od głowy do ogona. Jednak około 53. dnia rozwoju dochodzi do radykalnej zmiany. Płytki wzrostowe u ludzi obracają się prostopadle względem pierwotnej osi, co prowadzi do skrócenia i poszerzenia kości biodrowej.
      Kolejną zmianą jest harmonogram tworzenia się kości. Zwykle powstają one wokół pierwotnego centralnego ośrodka kostnienia, w środkowej części kości. Jednak w przypadku miednicy kostnienie rozpoczyna się w tylnej części kości krzyżowej i rozprzestrzenia promieniście. Kostnienie wnętrza jest opóźnione o 16 tygodni w porównaniu z innymi naczelnymi, co pozwala zachować naszej miednicy swój wyjątkowych kształt w trakcie wzrostu. Miednica o takim kształcie, jaką mamy, pojawia się w 10. tygodniu życia płodowego.
      Naukowcy zidentyfikowali ponad 300 genów, które biorą udział w utworzeniu się naszej wyjątkowej miednicy. Najważniejsze z nich to SOX9 i PTH1R, odpowiedzialne za zmianę kierunku wzrostu oraz RUNX2, który kontroluje zmianę kostnienia.
      Zdaniem autorów badań, zmiany ewolucyjne umożliwiające nam pionową postawę, rozpoczęły się między 5 a 8 milionów lat temu od reorientacji płytki wzrostowej. Natomiast proces opóźnienia kostnienia pojawił się w ciągu ostatnich 2 milionów lat. Zmiany te trwały bardzo długo, a w ich przebiegu znaczenie miały np. takie wydarzenia jak pojawienie się dużego mózgu. Ewolucja musiała „wybrać” pomiędzy dwiema korzyściami - wąską miednicą umożliwiającą sprawne poruszanie się po drzewach, a szeroką, pozwalającą na urodzenie dziecka z dużym mózgiem.
      Najstarsza skamieniała miednica, na której widać zachodzące zmiany w kierunku dwunożności i postawy wyprostowanej, należy etiopskiego Ardipiteka sprzed 4,4 milionów lat.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ibuprofen i paracetamol to najpowszechniej używane na świecie środki przeciwbólowe stosowane bez recepty. Najnowsze badania przeprowadzone na University of South Australia sugerują, że napędzają one jedno z największych zagrożeń zdrowotnych dla ludzkości: antybiotykooporność. Uczeni z Australii chcieli sprawdzić interakcje zachodzące pomiędzy lekami nie będącymi antybiotykami, ciprofloksacyną, która jest antybiotykiem o szerokim spektrum działania oraz bakterią E. coli. I odkryli wysoce niepokojący wpływ ibuprofenu i paracetamolu na bakterię.
      Antybiotykooporność od lat uważana jest za jedno z największych zagrożeń dla ludzkości. Powszechne i nadmierne stosowanie antybiotyków u ludzi oraz zwierząt hodowlanych powoduje, że coraz więcej szkodliwych mikroorganizmów zyskuje oporność na coraz liczniejsze antybiotyki. Specjaliści obawiają się, że w przyszłości może dojść do sytuacji, w której coraz więcej osób będzie umierało na choroby zakaźne, które jeszcze niedawno nie były śmiertelnym zagrożeniem, gdyż mieliśmy zwalczające je antybiotyki. Z badań, które ukazały się w 2022 roku w piśmie The Lancet dowiadujemy się, że w 2019 roku antybiotykooporne bakterie zabiły 1,27 miliona osób, a w sumie przyczyniły się do śmierci 4,95 miliona ludzi. Największe śmiertelne żniwo zebrały Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii i Pseudomonas aeruginosa.
      Antybiotyki od dawna są główną obroną przed chorobami zakaźnymi, jednak ich nadmierne i niepotrzebne stosowanie doprowadziło do pojawienia się na całym świecie antybiotykoopornych bakterii, mówi główna autorka nowych badań, profesor Rietie Venter. Ma to szczególne znaczenie w domach opieki społecznej, gdzie osobom starszym z większym prawdopodobieństwem przepisuje się wiele leków, nie tylko antybiotyków, ale również środków przeciwbólowych, nasennych czy obniżających ciśnienie. W ten sposób powstaje idealne środowisko, w którym bakterie mikrobiomu mogą stać się oporne na antybiotyki, dodaje uczona.
      Naukowcy z Australii zauważyli, że gdy obok ciprofloksacyny – stosowanej w leceniu infekcji skóry, układu moczowego i układu pokarmowego – podaje się też ibuprofen czy paracetamol, u bakterii E. coli pojawia się więcej mutacji niż wówczas, gdy podaje się sam antybiotyk. W wyniku tych mutacji bakterie szybciej się namnażają i są bardziej oporne na działanie antybiotyków. A co gorsza, nie tylko na działanie ciprofloksacyny, ale szerokiego spektrum antybiotyków różnych klas.
      Badacze oceniali 9 leków powszechnie stosowanych w domach opieki społecznej: ibuprofen, diklofenak, paracetamol, furosemid, metforminę, tramadol, atorwastatynę, temazepam i pseudoefedrynę. Ich badania wykazały, że mechanizm nabywania antybiotykooporności jest bardzo złożony i nie ma związku wyłącznie z antybiotykami.

      Badania zostały opublikowane w artykule The effect of commonly used non-antibiotic medications on antimicrobial resistance development in Escherichia coli.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...