Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Kanadyjczycy zidentyfikowali trzy szybko obracające się „niedokończone gwiazdy”

Rekomendowane odpowiedzi

Naukowcy z Western University odkryli trzy najszybciej obracające się brązowe karły, obiekty zwane czasem nieudanymi gwiazdami. To masywne obiekty znajdujące się pomiędzy planetami a gwiazdami. Są bardziej masywne niż planety, ale zbyt mało masywne by mogły zachodzić w nich przemiany wodoru w hel. Teraz Megan Tannock i Stanimir Metchey informują o zidentyfikowaniu brązowych karłów, które obracają się blisko limitu prędkości, powyżej którego mogą zostać rozerwane.

Odkryte przez Kanadyjczyków obiekty mają średnicę podobną do Jowisza, ale są od niego od 40 do 70 razy bardziej masywne. Każdy z nich wykonuje pełny obrót w ciągu zaledwie godziny. Dotychczas najszybszy znany brązowy karzeł obracał się w ciągu 1,4 godziny. Jowiszowi zaś pełen obrót zajmuje 10 godzin. Z dokonanych obliczeń wynika, że prędkość obrotowa wspomnianych karłów wynosi aż 100 km/s czyli 360 000 km/h. Dla porównania, Jowisz obraca się z prędkością 12,6 km/s (45 360 km/h).

Wydaje się, że dotarliśmy do granicy prędkości obrotowej brązowych karłów, mówi Tannock. Pomimo intensywnych poszukiwań naukowcom nie udało się dotychczas znaleźć szybciej obracających się brązowych karłów. Szybszy obrót mógłby spowodować ich rozerwanie.

Wspomniane brązowe karły zostały odkryte przez teleskop 2MASS, który działał do 2001 roku. Kanadyjczycy dokonali pomiarów prędkości karłów wykorzystując dane z Teleskopu Kosmicznego Spitzera (zakończył on swoją misję w styczniu 2020), a następnie potwierdzli je za pomocą naziemnych Gemini North i Magellan.

Brązowe karły, podobnie jak gwiazdy i planety, obracają się wokół własnej osi. W miarę jak stygną i się kurczą, obracają się coraz szybciej. Dotychczas udało się zmierzyć prędkość obrotową około 80 tego typu obiektów. Są wśród nich takie, które wykonują pełny obrót poniżej 2 godzin, jak i takie, które potrzebują na to kilkudziesięciu godzin.

Przy takiej różnorodności tempa obrotu naukowców zdziwił fakt, że trafili na trzy obiekty obracają się niemal z tą samą prędkością około 1 obrotu na godzinę. Właściwości tej nie można w tej chwili łączyć ze wspólnymi znanymi cechami fizycznymi. Jeden z karłów jest gorący, drugi zimy, a temperatura trzeciego mieści się pomiędzy tymi dwoma. Różnica temperatur wskazuje zaś, że są w różnym wieku. Uczeni nie wykluczają, że to przypadkowa zbieżność. Karły niemal osiągnęły maksymalną prędkość obrotu. Jeśli ją przekroczą, zostaną rozerwane przez siły odśrodkowe.

Specjaliści uważają, że brązowe karły składają się głównie z wodoru i helu. Są też znacznie bardziej gęste niż olbrzymie planety. Wodór w jądrach brązowych karłów jest poddany tak wysokiemu ciśnieniu, że zachowuje się jak metal. Występują w nim swobodne elektrony. Zmieniają one sposób dystrybucji ciepła we wnętrzu karła, a wraz z bardzo szybkim obrotem może to wpływać na rozkład w nim masy. Stan wodoru czy jakiegokolwiek innego gazu poddanego tak wielkim ciśnieniom to dla nas zagadka. Nawet w najbardziej zaawansowanych laboratoriach trudno jest uzyskać taki stan materii, stwierdza Metchev.

Obecne modele mówią, że maksymalna prędkość obrotowa brązowego karła to 50 do 80 procent szybciej niż 1 obrót na godzinę. Być może jednak modele te nie oddają całego obrazu. Może istnieć nieznanym nam czynnik, który powoduje, że brązowe karły nie mogą obracać się szybciej niż te, które zaobserwowaliśmy, dodaje Metchev.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Teleskop Webba najprawdopodobniej odkrył planetę o masie Saturna, krążącą wokół pobliskiej młodej gwiazdy TWA 7. Jeśli odkrycie się potwierdzi, będzie to pierwsza egzoplaneta odkryta przez JWST metodą obrazowania bezpośredniego oraz najlżejsza planeta odkryta kiedykolwiek tą techniką. Odkrycia dokonano za pomocą urządzenia MIRI (Mid-Infrared Instrument), które zarejestrowało źródło słabego promieniowania podczerwonego w dysku otaczającym gwiazdę. Źródło znajduje się w odległości około 50 jednostek astronomicznych od TWA 7. Odpowiada to spodziewanej pozycji planety i wyjaśnia kluczowe cechy dysku.
      Badacze z Francji, USA, Irlandii i Niemiec wykorzystali koronograf do przesłonięcia blasku gwiazdy, chcąc w ten sposób zauważyć słabiej świecące obiekty w jej pobliżu. Dzięki zaawansowanym algorytmom przetwarzającym obraz zauważyli w pobliżu słabe źródło promieniowania. Naukowcy wykluczyli, że może być to obiekt z Układu Słonecznego znajdujący się w tej samej części nieboskłonu. Istnieje niewielkie prawdopodobieństwo, że źródłem promieniowania jest galaktyka w tle, jednak zdobyte dowody wskazują na planetę.
      Zaobserwowany obiekt znajduje się w przerwie jednego z trzech pierścieni pyłu otaczających TWA 7. Jasność obiektu, jego barwa, odległość od gwiazdy i pozycja w pierścieniu są zgodne z teoretycznymi przewidywaniami dotyczącymi młodych chłodnych planet o masie Saturna, które oczyszczają dysk protoplanetarny ze szczątków.
      Dotychczasowe analizy wskazują, mamy do czynienia z młodą planetą, której masa wynosi 0,3 masy Jowisza, czyli jest 100-krotnie większa od Ziemi i odpowiada masie Saturna. Jej temperatura to 47 stopni Celsjusza.
      TWA 7, znana jako CE Antilae, to młody (ok. 6,4 miliona lat) czerwony karzeł oddalony od nas o około 34 parseki (ok. 110 lat świetlnych). Znajduje się w asocjacji TW Hydrae. Otaczający ją dysk protoplanetarny jest niemal całkowicie zwrócony w naszą stronę, co czyni go idealnym obiektem badań dla Webba.
      Źródło: Evidence for a sub-Jovian planet in the young TWA 7 disk, https://www.nature.com/articles/s41586-025-09150-4

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      TOI-6894 to gwiazda jakich wiele, nieduży czerwony karzeł o masie pięciokrotnie mniejszej od masy Słońca. Astronomowie nie spodziewają się, by wokół tak niewielkich gwiazd krążyły duże planety. Podczas ich formowania nie powinno być bowiem warunków do powstania wielkich planet. Jednak uczeni z University College London i University of Warwick dokonali zdumiewającego odkrycia, którego nie potrafią wytłumaczyć.
      Wokół TOI-6894 krąży bowiem gazowy olbrzym TOI-6894b o średnicy większej od średnicy Saturna. To odkrycie będzie przełomem w zrozumieniu procesu formowania się gazowych olbrzymów, stwierdzają odkrywcy. Planeta TOI-6894b, zauważona dzięki Very Large Telescope, jest gazowym olbrzymem o niewielkiej gęstości. Przy średnicy większej od Saturna jej masa jest o połowę mniejsza niż olbrzyma z Układu Słonecznego. A jej gwiazda macierzysta to najmniej masywna gwiazda przy której zauważono dużą planetę.
      To interesujące odkrycie. Nie rozumiemy, jak gwiazda o tak niskiej masie doprowadziła do powstania tak masywnej planety. To właśnie jeden z celów poszukiwań egzoplanet. Znajdując układy planetarne różne od Układu Słonecznego, możemy przetestować nasze modele i lepiej zrozumieć, jak powstał nas własny system planetarny, mówi doktor Vincent Van Eylen z UCL.
      Zgodnie z najszerzej akceptowaną teorią dotyczącą formowania się gazowych olbrzymów, powstają one z dysku akrecyjnego wokół gwiazdy. Znajdujący się tam materiał gromadzi się, tworząc jądro, a gdy staje się ono wystarczająco masywne, zaczyna przyciągać gazy, tworzące atmosferę gazowego olbrzyma. Początkowo proces ten jest powolny, jednak gdy masa atmosfery dorównuje już masie jądra, dochodzi do gwałtownego zasysania gazu z dysku akrecyjnego, a im większa masa, tym proces ten jest szybszy.
      Wedle tej teorii utworzenie się gazowych olbrzymów wokół gwiazd o niskiej masie jest trudniejsze, gdyż w ich dysku protoplanetarnym nie ma wystarczająco dużo materiału. Odkrycie TOI-6894b wskazuje, że taki model nie jest dokładny i potrzebne są alternatywne teorie. Być może formowanie się planety przebiegało stopniowo, jej jądro nie było nigdy tak masywne, by rozpoczął się proces gwałtownego zasysania gazu. Być może zaś planeta powstała w grawitacyjnie niestabilnym dysku, który rozpadł się na fragmenty i utworzył planetę. Naukowcy rozważyli oba te scenariusze i uznali, że żaden z nich nie wyjaśnia do końca powstania TOI-6894b. Kwestia więc pozostaje otwarta.
      Innym interesującym aspektem nowo odkrytej planety jest temperatura jej atmosfery. Jest ona bowiem niezwykle chłodna. Większość pozasłonecznych gazowych olbrzymów to gorące Jowisze, których atmosfera ma temperaturę 1000–2000 kelwinów. Tymczasem temperatura TOI-6894b to zaledwie 420 kelwinów.
      Źródło: A transiting giant planet in orbit around a 0.2-solar-mass host star, https://www.nature.com/articles/s41550-025-02552-4

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astronomowie nazywają Jowisza „architektem” Układu Słonecznego. Jego potężne pole grawitacyjne odegrało ważną rolę w ukształtowaniu orbit pozostałych planet, wpłynęło na kształt ich dysków protoplanetarnych. Teraz profesorowie Konstantin Batygin z California Institute of Technology i Fred C. Adam z University of Michigan poinformowali na łamach Nature Astronomy, że w przeszłości Jowisz był znacznie większy i wywierał znacznie silniejsze oddziaływanie grawitacyjne.
      Naszym celem jest zrozumienie, skąd się wzięliśmy. Żeby to wiedzieć, musimy poznać wczesne fazy formowania się planet. To prowadzi nas do zrozumienia, a jaki sposób swój obecny kształt nabył nie tylko Jowisz, ale cały Układ Słoneczny, stwierdza Batygin.
      Naukowcy przyjrzeli się niewielkim księżycom Jowisza, Amaltei i Tebe. Orbity obu są nieco nachylone względem Jowisza, naukowcy wykorzystali je do obliczenia pierwotnej wielkości Jowisza. Z obliczeń tych wynika, że 3,8 miliona lat po tym, jak uformowały się pierwsze planety skaliste Układu Słonecznego, Jowisz miał dwukrotnie, a może nawet dwuipółkrotnie, większą średnicę niż obecnie. Jego pole magnetyczne było zaś 50-krotnie silniejsze niż obecnie. Nasze obliczenia są całkowicie zgodne z teorią o formowaniu się olbrzymich planet i pozwalają na wgląd w system Jowisza pod koniec istnienia mgławicy przedsłonecznej - czytamy na łamach Nature Astronomy.
      Ważnym aspektem badań jest oparcie się przez naukowców na danych, które nie są obarczone takim poziomem niepewności jak zwykle używane modele, w których przyjmuje się założenia odnośnie przejrzystości gazu, tempa akrecji czy masy jądra formującej się planety. Batygin i Adams wykorzystali dynamikę orbitalną księżyców Jowisza oraz moment pędu samej planety, czyli wartości, które można bezpośrednio zmierzyć.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Kosmiczny Jamesa Webba (JWST) pozwala na oglądanie kosmosu tak dokładnie, jak nigdy wcześniej. Dostarczył wielu danych, które zaskoczyły naukowców i zmusiły ich do uściślenia obowiązujących teorii, przyczynił się do pojawienia nowych hipotez, ma udział w interesujących odkryciach. Lior Shamir z Kansas State University poinformował na łamach Monthly Notices of the Royal Astronomical Society o kolejnej zaskakującej obserwacji. Uczony zauważył, że zdecydowana większość galaktyk spiralnych obraca się w tę samą stronę, przeciwną względem obrotu Drogi Mlecznej.
      Jeśli kierunek obrotu galaktyk byłby przypadkowy, to liczba galaktyk obracających się zgodnie z ruchem wskazówek zegara powinna być mniej więcej taka sama, co liczba galaktyk obracających się w stronę przeciwną. Tymczasem gdy Shamir przeanalizował dane dotyczące 263 galaktyk obserwowanych przez Webba w ramach programu James Webb Space Telescopce Advanced Deep Extragalactic Survey (JADES) okazało się, że 2/3 z nich (158) obraca zgodnie z ruchem wskazówek zegara, a obrót 1/3 (105) zachodzi w kierunku przeciwnym. To od razu rzuca się w oczy. Nie trzeba mieć specjalnych zdolności czy wiedzy, by zobaczyć, że liczby są tak bardzo różne. Dzięki JWST każdy może to zobaczyć, dziwi się Shamir.
      To nie pierwszy raz gdy Shamir, ale też i inni uczeni, zauważają taki rozdźwięk. W swojej pracy Shamir wspomina na przykład o galaktykach obrazowanych w ramach SDSS (Sloan Digital Sky Survey). Badania ponad 36 000 galaktyk również pokazują nierównowagę i – co interesujące – im bardziej galaktyki są od nas oddalone, tym nierównowaga ta większa.
      Wracając jednak do obecnych badań, Shamir stwierdza, że istnieją dwa możliwe wyjaśnienia zaobserwowanego zjawiska. Być może wszechświat obracał się w momencie narodzin. Wyjaśnienie to jest zgodne z teoriami takimi jak kosmologia czarnej dziury, zgodnie z którą cały wszechświat znajduje się wewnątrz czarnej dziury. Jeśli jednak rzeczywiście wszechświat obracał się w momencie narodzin, to oznacza, że obowiązujące teorie są niekompletne, mówi Shamir.
      Ziemia, wraz z Układem Słonecznym, krążą wokół centrum Drogi Mlecznej. Efekt Dopplera powoduje, że galaktyki obracające się w przeciwnym kierunku, niż obrót Ziemi względem centrum naszej galaktyki, będą wydawały się nam jaśniejsze. Tutaj może tkwić kolejne z możliwych wyjaśnień naszej zagadki. Astronomowie powinni brać pod uwagę wpływ prędkości obrotowej Drogi Mlecznej – zjawisko to się pomija, gdyż powszechnie uważa się, że jego wpływ jest pomijalny – na pomiary dotyczące innych galaktyk.
      Jeśli rzeczywiście w tym tkwi problem, to musimy inaczej skalibrować instrumenty do obserwacji głębokich partii kosmosu. Zmiana kalibracji i pomiarów odległości pozwoliłaby też rozwiązać kilka ważnych zagadek kosmologicznych, takich jak prędkość rozszerzania się wszechświata czy istnienie galaktyk, które – zgodnie z obecnymi pomiarami – są starsze od wszechświata, mówi Shamir.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...