Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Sztuczny przewód pokarmowy w Instytucie Nauk o Żywieniu Człowieka SGGW
dodany przez
KopalniaWiedzy.pl, w Zdrowie i uroda
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Decydując się na telefon firmy Apple musimy brać pod uwagę duże koszty, które w niego zainwestujemy. Szybko jednak możemy zobaczyć, że płacimy za faktyczną jakość. Porównanie iPhonów w poniższym artykule będzie bardzo przydatne podczas podejmowania decyzji dotyczącej konkretnego modelu.
1. Dlaczego warto wybrać iPhone?
2. Różnice w modelach pro, a iPhone pro max
3. Aparat przedni i tylne aparaty - który model robi najlepsze zdjęcia?
4. W jaką wersję iPhone najlepiej zainwestować?
Dlaczego warto wybrać iPhone?
Zarówno starsze modele jak i nowe smartfony mają wiele cech, które wyróżniają je pośród innych marek. Sprawia to, że wciąż pozostają na szczycie rankingów najlepszych telefonów komórkowych.
Dzieje się to przede wszystkim ze względu na wysoką wydajność urządzenia oraz jego systemu. System przechodzi ciągłe ulepszenia, dzięki czemu można powiedzieć, że usterki są niemal na bieżąco naprawiane, więc nie dochodzi do większych awarii.
Kolejną zaleta iPhone jest duża dbałość o dane klienta. System nie przekazuje do podmiotów trzecich informacji, które w niego wprowadzamy.
Firma corocznie wypuszcza wiele linii swoich telefonów, które nie tylko różnią się od wcześniejszych roczników, ale również między sobą. Pośród nich mamy iPhone XR, iPhone XS, iPhone SE, modele pro oraz wersja pro max.
Różnice w modelach pro, a iPhone pro max
Nawet w przypadku wypuszczonej jednej linii iPhone na rynek dane modele się od siebie różnią. Podstawą są nazwy z cyframi, które nie są rozwinięte. One stanowią zmianę wobec wcześniejszych telefonów.
Modele pro cechują się udoskonaleniami względem podstawowych modeli. Biorąc pod lupę iPhone 13 oraz iPhone 13 pro zobaczymy tak samo silne procesory, ale w przypadku tego drugiego model ma większą wbudowaną pamieć RAM. W modelu pro pojawia się też ekran OLED, który polepsza kolorystykę obrazu.
Modele iPhone z serii pro są mocniejsze i mają bardziej dopracowane funkcje, które uwzględniają poprawienie jakości w przypadku niedoskonałości podstawowej wersji smartfona.
Wyżej stoją modele pro max, które wyróżniają się np. większym obiektywem jak to jest w przypadku iPhone 14 pro max lub iPhone 12 pro max, który wyprzedzał swojego poprzednika 12 pro w dużo lepszych aparatach z mocniejszymi teleobiektywami.
Aparat przedni i tylne aparaty - który model robi najlepsze zdjęcia?
Porównanie modeli przy wyborze nowego smartfona jest też ważne, jeżeli chcemy poznać jego możliwości w kwestii robienia dobrych zdjęć. Technologia stosowana w iPhone daje możliwości równie dobre co w przypadku wysokiej klasy cyfrówek.
Użytkownik ma do dyspozycji nie tylko różnego rodzaju aparaty, ale również aplikację, która pozawala zmieniać style fotograficzne lub obrabiać gotowe zdjęcia.
Najlepsze aparaty zaczynają się od iPhone 12, kiedy opracowane zostają za pomocą technologii Dolby Vision, a ujęcia mogą wykonywać w trybie HDR. Aparaty w modelach pro mają bardzo mocne soczewki, które robią świetne ujęcia małym detalom.
Model 13 pro w dokładny sposób łapie otaczające światło, dając wyraźniejsze efekty na zdjęciach. Proponuje swoim użytkownikom też bardzo przydatny tryb filmowy, który automatycznie zmienia ostrość w kadrach w zależności od dynamiki.
Jak można się spodziewać linia iPhone 14 daje największe możliwości fotografowania zarówno w ładny dzień jak i przy słabym oświetleniu lub nawet zmroku.
W przypadku kiedy ważny jest dla Ciebie przedni aparat oraz jakość robionych przez niego selfie najlepszym wyborem będzie również model 14.
W jaką wersję iPhone najlepiej zainwestować?
Porównanie iPhone do siebie oraz sprawdzenie możliwości danych modeli to jedno. Najważniejsze jest jednak zastanowienie się, czego oczekujemy od swojego telefonu.
Jak już wcześniej było mówione, iPhone to bardzo pewna i dobra marka, którą ze względu na jakość wybiera co roku tysiące użytkowników. Telefony od tej firmy są bardzo wytrzymałe, a ich funkcje wciąż możliwe do aktualizacji nawet po wyjściu kolejnych serii.
Jeżeli zależy Ci na godnym zaufania telefonie, jednak nie potrzebne są w w nim nowinki technologiczne lub rozbudowane funkcje np. aparatu lub innych aplikacji śmiało możesz kupić stary model iPhone. Obecnie najstarszym modelem będącym sprzedaży w sklepach jest model iPhone 11.
Jest dużo tańszy od najnowszych serii, a jednocześnie pozwala cieszyć się tym co najlepsze możemy dostać od firmy Apple.
Iphone 11 był ostatnim z serii Apple, który posiadał wyświetlacz LCD IPS i łączył się z technologią 4 G. Mimo tego wciąż jest mocnym sprzętem, ma funkcje zabezpieczające przed pyłem i wodą oraz ładowanie bezprzewodowe.
Każda kolejna seria jest udoskonalana, a możliwości jakie daje poszerzają się. Działają dzięki technologii 5 G i cieszą oko wyświetlaczem OLED.
Model z serii 12 posiada mocniejszy procesor, który zwiększa jego wydajność oraz polepsza działanie.
Iphone 13 niewiele różnią się w porównaniu z 12. Ich ekran jest jaśniejszy, mają większej pojemności baterię oraz lepsze aparaty.
Najnowsze modele 14 mają największą baterię, która pozwala na aż 6 godzin więcej czasu pracy telefonu. Co więcej posiadają program, który powiadamia służby w razie wypadku.
Jeżeli jesteś przekonany do zakupu iPhone, wejdź na stronę https://www.euro.com.pl/telefony-komorkowe,_Apple.bhtml i poznaj dostępne modele.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Yale University sądzą, że możliwe byłoby wykorzystanie roślin do... badaniach chorób psychicznych u ludzi. I nie tylko tak sądzą, ale nawet poczynili pierwszy ważny krok w kierunku takich badań. Na łamach Cellular and Molecular Life Sciences opisali gen, który jest bardzo podobny u roślin oraz ssaków i który w obu grupach wpływa na zachowanie.
Wiele lat temu zainteresowałem się ideą mówiącą, że w każdym żywym organizmie musi do pewnego stopnia istnieć jakaś homologia, jakieś podobieństwo w tym, czym są i co robią, mówi profesor medycyny porównawczej Tamas Horvath. Gdy z czasem zaczął badać zachowanie i mitochondria, przypomniał sobie o swoich dawnych zainteresowaniach. Pomyślał, że gdyby zmienić pewne geny mitochondriów u zwierząt i zobaczyć, jak wpłynęło to na zachowanie, a następnie dokonać podobnych zmian w roślinach i porównać ich zachowanie, to być może udałoby się lepiej zrozumieć ludzkie zachowanie na podstawie badań roślin. A jeśli byłoby to możliwe, to być może w kolejnym kroku udałoby się stworzyć np. roślinny model schizofrenii.
Stworzenie takiego modelu oznaczałoby, że mielibyśmy alternatywną grupę organizmów żywych – nie tylko ssaki – na której można by badać podstawy ludzkiego zachowania, mówi Horvath, przypominając, że celem medycyny porównawczej jest właśnie badanie, jak modele tworzone na podstawie innych gatunków mogą być użyte do badania ludzi.
Horvath i jego zespół zaczęli więc badać gen FMT (Friendly Mitochondria) w rzodkiewniku pospolitym oraz bardzo podobny gen myszy, CLUH (Clustered mitochondria homolog).
Mitochondria regulują ważne funkcje życiowe, jak metabolizm, i są kluczowe dla zdrowia. Zarówno u roślin, jak i u ludzi, źle funkcjonujące mitochondria mogą wpłynąć na rozwój i pojawienie się licznych chorób. U ludzi mają wpływ na rozwój m.in. chorób neurodegeneracyjnych.
Grupa Horvatha zbadała rośliny z prawidłowo funkcjonującym FMT, rośliny pozbawione FMT oraz rośliny z nadaktywnym FMT. Okazało się, że gen ten wpływa na wiele elementów rośliny, w tym na kiełkowanie, długość systemu korzeniowego, czas kwitnienia czy wzrost liści. Jednak nie tylko. Naukowcy przeanalizowali również dwie ważne reakcje badanych roślin.
Pierwszą z nich była reakcja na obecność nadmiernej ilości soli. Zbyt dużo soli może zabić roślinę, więc rośliny rozwinęły zachowania pomagające jej unikać. Gdy w środowisku pojawia się nadmiar soli, rośliny zatrzymują kiełkowanie, opóźniają kwitnienie, zatrzymują rozrastanie się systemu korzeniowego. Okazało się, że FMT jest krytycznym elementem regulującym te zachowania.
Drugi typ zachowania roślin, jaki został zbadany, to ich ruchy bazujące na rytmie dobowym. "Rośliny są niezwykle wrażliwe na rytm dobowy, gdyż światło jest krytycznym źródłem energii, wyjaśnia Horvath. W przypadku rzodkiewnika rytm dobowy decyduje o poruszaniu się liści za dnia i w nocy. W ciągu dnia liście są bardziej płaskie i bardziej wystawione na słońce. Nocą liście się unoszą. Badania wykazały, że FMT reguluje zarówno zakres, jak i tempo ruchu liści.
Następnie uczeni, chcąc przełożyć swoje spostrzeżenia na świat zwierząt, badali cały szereg zachowań myszy, obserwując m.in. zwierzęta ze zredukowaną aktywnością CLUH. Okazało się, że myszy, u których CLUH było mniej aktywne, przebywały krótsze odcinki i poruszały się wolniej.
Reakcja myszy była podobna do reakcji roślin. Doszło do zmiany tempa i ogólnej lokomocji. To bardzo proste porównanie, ale pokazuje, że mamy tutaj do czynienia z obecnym w mitochondriach mechanizmem, który odpowiada za podobne funkcje u zwierząt i roślin, wyjaśnia Horvath.
Naukowcy mówią, że to ekscytujący pierwszy krok, gdyż rośliny takie jak rzodkiewnik mają bardzo wiele genów i procesów komórkowych, które są podobne do genów i procesów komórkowych u ssaków.
Naszym długoterminowym celem jest stworzenie katalogu podobieństw pomiędzy roślinami a zwierzętami i wykorzystanie go do szukania odpowiedzi na pytania naukowe. Być może w przyszłości rośliny będą służyły jako organizmy modelowe w badaniach behawioralnych, stwierdza Horvath.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Pracownicy Victoria and Albert Museum poinformowali o znalezieniu prawdopodobnego odcisku palca Michała Anioła. Odcisk zauważono na woskowym modelu, którego autorstwo przypisywane jest wielkiemu artyście. Konserwatorzy mówią, że stał się on widoczny dzięki zmianom temperatury i wilgotności w miejscu przechowywania dzieła.
O odkryciu po raz pierwszy poinformowano publicznie w serialu dokumentalnym BBC Two „Secrets of the Museum”. Odcisk palca dostrzeżono niedawno, gdy w zamkniętym z powodu pandemii muzeum postanowiono przenieść model Młodego niewolnika z cieplejszego wyższego piętra, do chłodniejszego podziemnego magazynu. Konserwatorzy zaczęli się bowiem obawiać o stan rzeźby, stojącej na co dzień w galerii od strony południowej. Gdy po pięciu miesiącach w magazynie rzeźba wróciła do galerii, na jej pośladku zauważono odcisk palca.
Wspomniana woskowa figura to niewielki model nigdy niedokończonej marmurowej rzeźby, która miała zdobić grobowiec Juliusza II, jednego z najpotężniejszych papieży w dziejach, który pozostawił po sobie wspaniałe dziedzictwo kulturowe i polityczne. To on założył Muzea Watykańskie, zlecił wykonanie fresków zdobiących Kaplicę Sykstyńską, był mecenasem Michała Anioła czy Rafaela Santiego.
Woskowa figura znajdująca się w Victoria and Albert Museum to trzeci z sześciu modeli. Projekt grobowca został zamówiony w 1505 roku. Rzeźba miała stanowić wolno stojący element większej struktury składającej się z ponad 40 rzeźb naturalnej wielkości, które miały stanąć w Bazylice św. Piotra w Rzymie. Juliusz II zmarł w 1513 roku, a w 1516 roku ostatecznie zaprojektowano jego grobowiec i zaplanowano umieszczenie na nim Młodego niewolnika.
Michał Anioł, tworząc swoje dzieła, wykonywał olbrzymią liczbę rysunków i modeli z wosku, gliny i terakoty. Wiele z nich niszczył, jednak z czasem rosło zainteresowanie jego procesem twórczym, a sam artysta zyskał rozgłos, co skłoniło mu współczesnych do kolekcjonowania rysunków i modeli mistrza. Jednym z takich kolekcjonerów był przyjaciel, malarz i biograf Michała Anioła, Giorgio Vasari.
Wspomniany model Młodego niewolnika powstał pomiędzy rokiem 1516 a 1519. Ma 17,6 centymetra wysokości. Różni się on od znanej nam niedokończonej rzeźby, co pokazuje, że Michał Anioł z czasem zmienił jej koncepcję.
Niezwykle ambitny projekt grobowca Juliusza II nigdy nie został zrealizowany. W obecnej, znacznie skromniejszej formie, został wzniesiony w 1545 roku.
« powrót do artykułu -
przez KopalniaWiedzy.pl
We wnętrzu każdego protonu bądź neutronu znajdują się trzy kwarki związane gluonami. Dotychczas często zakładano, że dwa z nich tworzą trwałą parę: dikwark. Teraz wydaje się jednak, że żywot dikwarków w fizyce dobiega końca. To jeden z wniosków płynących z nowego modelu zderzeń protonów z protonami bądź jądrami atomowymi, w którym uwzględniono oddziaływania gluonów z morzem wirtualnych kwarków i antykwarków.
W fizyce pojawienie się nowego modelu teoretycznego nierzadko oznacza kłopoty dla starych koncepcji. Nie inaczej jest w przypadku opisu zderzeń protonów z protonami bądź jądrami atomowymi, zaproponowanego przez naukowców z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie. W najnowszym modelu niebagatelną rolę odgrywają interakcje gluonów emitowanych przez jeden proton z morzem wirtualnych kwarków i antykwarków, pojawiających się i znikających wewnątrz drugiego protonu bądź neutronu.
Gluony są nośnikami oddziaływania silnego, jednego z czterech fundamentalnych oddziaływań przyrody. Wiąże ono kwarki w zlepki, na przykład w protony i neutrony. Pod wieloma względami oddziaływanie silne różni się od pozostałych. Na przykład nie słabnie ono, lecz rośnie wraz z odległością między cząstkami. Co więcej, w przeciwieństwie do fotonów gluony przenoszą pewien ładunek (malowniczo nazywany kolorem) i mogą oddziaływać między sobą.
Dominująca część reakcji jądrowych – w tym większość zderzeń protonów z protonami bądź jądrami atomowymi – to procesy, w których cząstki jedynie się „muskają” wymieniając gluony. Zderzenia tego typu są nazywane przez fizyków miękkimi i sprawiają im niemały kłopot, gdyż opisująca je teoria nie jest policzalna z zasad pierwszych. Z konieczności wszystkie dzisiejsze modele procesów miękkich są więc mniej lub bardziej fenomenologiczne.
Sami początkowo chcieliśmy tylko sprawdzić, jak dotychczasowe narzędzie, znane jako Dualny Model Partonów, radzi sobie z bardziej precyzyjnymi danymi eksperymentalnymi dotyczącymi zderzeń protonu z protonem oraz protonu z jądrem węgla, wspomina prof. dr hab. Marek Jeżabek (IFJ PAN). Błyskawicznie się okazało, że nie idzie mu najlepiej. Postanowiliśmy więc na bazie starego modelu, rozwijanego od ponad czterech dekad, spróbować stworzyć coś z jednej strony dokładniejszego, z drugiej bliższego naturze opisywanych zjawisk.
Zbudowany w IFJ PAN Model Wymiany Gluonów (Gluon Exchange Model, GEM) także ma charakter fenomenologiczny. Bazuje jednak nie na analogiach do innych zjawisk fizycznych, lecz opiera się bezpośrednio na istnieniu kwarków i gluonów oraz na ich fundamentalnych własnościach. Co więcej, GEM bierze pod uwagę istnienie w protonach i neutronach nie tylko trójek kwarków głównych (walencyjnych), ale także morza ciągle powstających i anihilujących par wirtualnych kwarków i antykwarków. Ponadto uwzględniono w nim ograniczenia wynikające z zasady zachowania liczby barionowej. W uproszczeniu mówi ona, że liczba barionów (czyli m.in. protonów i neutronów) istniejących przed i po zakończeniu oddziaływania musi pozostać niezmieniona. Ponieważ każdy z kwarków przenosi liczbę barionową (równą 1/3), zasada ta pozwala lepiej wnioskować, co się dzieje z kwarkami i wymienianymi między nimi gluonami.
GEM pozwolił nam zbadać nowe scenariusze przebiegu zdarzeń z udziałem protonów i neutronów, podkreśla dr hab. Andrzej Rybicki (IFJ PAN) i przechodzi do szczegółów: Wyobraźmy sobie na przykład, że w trakcie miękkiego zderzenia proton-proton jeden z nich emituje gluon, który trafia w drugi, lecz nie w jego kwark walencyjny, a w jakiś przez ułamek chwili istniejący kwark z wirtualnego morza. Gdy taki gluon zostanie zaabsorbowany, tworzące parę kwark morski i antykwark morski przestają być wirtualne i się materializują w inne cząstki w pewnych stanach końcowych. Zwróćmy uwagę, że w tym scenariuszu nowe cząstki powstają mimo faktu, że kwarki walencyjne jednego z protonów pozostały nietknięte.
Krakowski model gluonowy prowadzi do ciekawych spostrzeżeń, z których dwa są szczególnie godne uwagi. Pierwsze dotyczy pochodzenia protonów dyfrakcyjnych, obserwowanych w zderzeniach protonów. Są to szybkie protony, które wybiegają z miejsca kolizji pod niewielkimi kątami. Dotychczas sądzono, że nie mogą się one produkować w procesach związanych z wymianą koloru i że za ich powstawanie odpowiada inny mechanizm fizyczny. Teraz się okazuje, że obecność protonów dyfrakcyjnych można doskonale wytłumaczyć właśnie oddziaływaniem gluonu wyemitowanego przez jeden proton z kwarkami morskimi drugiego protonu.
Nie mniej ciekawe jest kolejne spostrzeżenie. Wcześniej przy opisie zderzeń miękkich przyjmowano, że dwa spośród trzech kwarków walencyjnych protonu czy neutronu są ze sobą związane tak trwale, że tworzą „molekułę” nazywaną dikwarkiem. Istnienie dikwarku było hipotezą, za którą nie wszyscy fizycy oddaliby bezkrytycznie głowę, niemniej koncept był szeroko stosowany – co teraz zapewne się zmieni. Model GEM skonfrontowano bowiem z danymi eksperymentalnymi opisującymi sytuację, w której proton zderza się z jądrem węgla oddziałując po drodze z dwoma lub więcej proto¬nami/neutronami. Okazało się, że aby pozostać w zgodzie z pomiarami, w ramach nowego modelu w przynajmniej połowie przypadków trzeba założyć dezintegrację dikwarku.
Wiele zatem wskazuje, że dikwark w protonie czy neutronie nie jest obiektem mocno związanym. W szczególności może być tak, że dikwark istnieje tylko efektywnie, jako przypadkowa konfiguracja dwóch kwarków tworzących tak zwany kolorowy antytryplet – i gdy tylko może, natychmiast się rozlatuje, mówi dr Rybicki.
Krakowski model wymiany gluonów – „nasz klejnot”, jak mówią z przymrużeniem oka obaj autorzy wykorzystując grę słów w języku angielskim (wyraz „gem” można bowiem tłumaczyć jako „klejnot” bądź „cacko”) – w prostszy i bardziej spójny sposób wyjaśnia szerszą klasę zjawisk niż dotychczasowe narzędzia opisu zderzeń miękkich. Obecne wyniki, zaprezentowane w artykule opublikowanym na łamach czasopisma „Physics Letters B”, mają ciekawe implikacje dla zjawisk anihilacji materii z antymaterią, w których mogłoby dochodzić do anihilacji antyprotonu na więcej niż jednym protonie/neutronie w jądrze atomowym. Dlatego autorzy przedstawili już pierwsze, wstępne propozycje dotyczące przeprowadzenia nowych pomiarów w CERN z użyciem wiązki antyprotonów.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Columbia University i Weill Cornell Medicine podważyli właśnie wyniki całej dekady badań nad barierą krew-mózg. Donoszą, że komórki wykorzystywane do przeprowadzania tego typu badań nie są tym, czym się wydawało.
Jednocześnie jednak uczeni odkryli sposób na poprawienie błędów, co daje nadzieję na stworzenie lepszego modelu bariery krew-mózg, dzięki czemu lepiej można będzie badać powstawanie chorób neurodegeneracyjnych i opracowywać leki zdolne do przekroczenia bariery.
Bariera krew-mózg jest trudna do badania na ludziach, a pomiędzy ludźmi i zwierzętami istnieje sporo różnić w jej budowie. Dlatego też bardzo przydaje się możliwość badań tej bariery in vitro, mówi jeden z autorów najnowszych badań, profesor Dritan Agalliu z Columbia University.
Model bariery in vitro został stworzony w 2012 roku. Wykorzystano w tym celu indukowane pluripotencjalne komórki macierzyste. Mają one zdolność do przekształcania się w niemal każdy typ komórek, w tym komórki wyścielające naczynia krwionośne w mózgu i rdzeniu kręgowym, które zapobiegają przedostawaniu się do centralnego układu nerwowego potencjalnie niebezpiecznych substancji
Agalliu już wcześniej zauważył, że komórki wykorzystywane in vitro jako model bariery mózg-krew nie zachowują się jak normalne komórki śródbłonka obecne w mózgu. To wzbudziło moje podejrzenia. Zacząłem przypuszczać, że protokół wytwarzania komórek na potrzeby badań in vitro prowadzi do powstania nie takich komórek, jakie potrzebujemy, mówi uczony. Okazało się, że w tym samym czasie koledzy z Weill Cornell Medicine nabrali podobnych podejrzeń, więc połączyliśmy siły, by zbadać tę kwestię.
Szczegółowa analiza wykazała, że komórkom produkowanym na potrzeby badań in vitro brakuje wielu kluczowych białek obecnych w naturalnych komórkach śródbłonka. Bardziej przypominały one tkankę nabłonkową, która w mózgu nie występuje.
Naukowcy zidentyfikowali też trzy geny, które po aktywacji prowadzą do pojawienia się komórek bardziej przypominających komórki śródbłonka. Obecnie naukowcy pracują nad uzyskaniem komórek jak najbardziej podobnych do komórek śródbłonka obecnych w mózgu.
Błędna identyfikacja komórek śródbłonka ludzkiego mózgu może być problemem również w przypadku innych typów komórek wytwarzanych z komórek pluripotencjalnych, takich jak astrocyty czy perycyty, mówi Agalliu. Uczony przypomina, że protokoły wytwarzania takich komórek zostały opracowane zanim jeszcze pojawiły się technologie pozwalające na badania i identyfikację pojedynczych komórek. Błędy w identyfikacji komórek bo duży problem, z którym społeczność naukowa musi sobie poradzić, by móc prowadzić badania nad takimi komórkami, jakie występują w ludzkim mózgu. To pozwoli nam wykorzystywać takie komórki do oceny genetycznych czynników ryzyka rozwoju chorób neurologicznych i opracowania leków poprawiających funkcjonowanie bariery krew-mózg, stwierdza Agalliu.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.