Podwodne wysypiska muszli zmieniają nasze poglądy na historię człowieka i jego związki z morzem
dodany przez
KopalniaWiedzy.pl, w Humanistyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Oceany pochłaniają około 26% dwutlenku węgla emitowanego przez człowieka. Są więc niezwykle ważnym czynnikiem zmniejszającym nasz negatywny wpływ na atmosferę. Większość tego węgla – około 70% – wykorzystuje fitoplankton i inne organizmy żywe. Gdy one giną, resztki ich ciał opadają w postaci przypominającej płatki śniegu. Ten zawierający węgiel „śnieg” zalega na dnie, jest przykrywany osadami i pozostaje bezpiecznie zamknięty na bardzo długi czas, nie trafiając z powrotem do atmosfery. Jednak badania, których wyniki ukazały się właśnie na łamach Science wskazują, że proces ten nie wygląda tak prosto, jak byśmy chcieli.
Grupa naukowców z Uniwersytetu Stanforda, Woods Hole Oceanographic Institution oraz Rutgers University zbudowała specjalny mikroskop, potocznie nazwany Gravity Machine, który pozwala badać mikroorganizmy i inne niewielkie elementy występujące w kolumnie wody o dowolnej długości. Okazało się, że „morski śnieg” nie opada na dno tak szybko, jak sądziła nauka. Mikroskop pozwolił na symulowanie zachowania „śniegu” w środowisku naturalnym i okazało się, że „płatki śniegu” ciągną za sobą śluzowe warkocze, która spowalniają ich opadanie. Czasem warkocze te całkowicie uniemożliwiają opadnięcie i „śnieg” pozostaje zawieszony w górnych częściach kolumny wody. Żyjące tam organizmy mogą go pochłaniać i w procesie oddychania wydalić do wody znajdujący się tam węgiel, a to z kolei zmniejsza tempo pochłaniania przez ocean CO2 z atmosfery.
Mikroskop, za pomocą którego prowadzono badania, wykorzystuje koło o średnicy kilkunastu centymetrów. Do koła naukowcy wlewali wodę pobraną w oceanie na różnych głębokościach. Koło się obracało, a obecne w wodzie mikroorganizmy mogły swobodnie opadać pod wpływem grawitacji. Dzięki ruchowi obrotowemu koła, mikroorganizmy mogły bez końca opadać, w ten sposób możliwe jest symulowanie opadania na dowolną odległość. Temperatura, oświetlenie i ciśnienie wewnątrz koła dobiera jest odpowiednio do symulowanej głębokości, na której „znajduje się” badana próbka. Jednocześnie to, co dzieje się w próbce jest bez przerwy monitorowane za pomocą mikroskopu.
Dzięki takiej konstrukcji instrumentu badawczego zauważono, że poszczególne „płatki śniegu” tworzą, niewidoczną goły okiem, śluzowatą strukturę ciągnącą się na podobieństwo warkocza komety. Odkrycia warkocza dokonano, gdy do próbki dodano niewielkie mikrokoraliki, by zbadać, jak będą one przepływały wokół „płatków”. Zauważyliśmy, że koraliki utknęły w czymś niewidzialnym, co ciągnęło się za płatkami, mówi jeden z badaczy. Bliższe badania pokazały, że ten śluzowaty warkocz dwukrotnie wydłuża czas pobytu „płatków” w górnych 100 metrach kolumny wody.
Odkrycie pokazuje, że proces pochłaniania węgla przez oceany jest bardziej złożony niż sądziliśmy. Jest jednak mało prawdopodobne, by oznaczało ono, że oceany pochłaniają mniej węgla, niż sądzimy. Ilość tego węgla została bowiem określona metodami empirycznymi, więc wpływ warkocza został - choć nieświadomie - uwzględniony.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Archeolodzy morscy z Bournemouth University wydobyli z dna morza dwie średniowieczne płyty nagrobne, które leżały tam niemal 800 lat. Marmurowe płyty stanowiły ładunek jednego z najstarszych wraków znanych z angielskich wybrzeży. Przewożący je statek zatonął w pobliżu Dorset w XIII wieku, za rządów Henryka III. Jednostka znana jest jako „Wrak moździerzy", gdyż przewodziła olbrzymią liczbę moździerzy, również wykonanych z kamienia z półwyspu Purbeck.
Operacja wyciągnięcia płyt trwała, leżących na głębokości 7 metrów, trwała dwie godziny. Mniejsza z nich zachowała się w świetnym stanie. Ma 1,5 metra długości i waży około 70 kilogramów. Większa, 200-kilogramowa, rozpadła się na dwie części. Oryginalnie miała około 2 metrów długości.
Na obu płytach wyrzeźbiono krzyże. Badacze sądzą, że płyty miały być wiekami trumien lub pomnikami nagrobnymi wysokiej rangą urzędników kościelnych. Statek zatonął w czasach największego rozwoju przemysłu kamieniarskiego w Purbeck. W tym czasie kamienne płyty nagrobne były bardzo popularnymi pomnikami biskupów i arcybiskupów we wszystkich katedrach i klasztorach Anglii. Takie płyty możemy znaleźć na przykład w Opactwie Westminsterskim oraz Katedrach w Canterbury i Salisbury, mówi Tom Cousins, który kierował pracami archeologicznymi. Płyty zostały przetransportowane do pracowni konserwatorskiej, gdzie specjaliści je oczyszczą i usuną z nich sól.
„Wrak moździerzy” został zauważony w 1982 roku, gdy uznano go za przeszkodę, górę śmieci na dnie morskim. Dopiero w 2019 roku lokalny szyper zwrócił nań uwagę Toma Cousinsa i archeologów. Badania pokazały, że marynarz miał rację i to nie zwykłe śmieci, a ważny zabytek, który zdradza nowe informacje na temat XIII-wiecznego kamieniarstwa.
Marmur z Purbeck był wydobywany w pobliżu zamku Corfe. Wśród historyków istnieje spór co do tego, jak wiele pracy wykonywano na miejscu, a ile robiono w Londynie. Teraz widzimy, że niewątpliwie przedmioty były wykonywane ne miejscu. Jednak płyty nagrobne nie są wypolerowane, nie nadano im zwyczajowego połysku, dodaje Cousins.
Archeolodzy będą nadal badali wrak i mają nadzieję, że z czasem uda się wydobyć zagrzebane w piasku drewniane pozostałości statku. Tom chce też wykorzystać zabytek w pracy dydaktycznej, nauczania studentów archeologii podwodnej. Zacząłem już uczyć nurkowania studentów drugiego roku. Na trzecim roku chcę ich zabrać nad morze, by zdobyli pierwsze doświadczenia w archeologii podwodnej, mówi uczony.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Teleskop Webba wykrył w atmosferze planety K2-18b molekuły zawierające węgiel, w tym metan oraz dwutlenek węgla. Odkrycie to kolejna wskazówka, że K2-18b może być planetą hiaceańską (hycean planet). To termin zaproponowany niedawno przez naukowców z Uniwersytetu w Cambridge na określenie hipotetycznej klasy planet. Pochodzi od połączenia słów „wodór” (hydrogen) i „ocean”. Oznacza potencjalnie nadające się do zamieszkania gorące planety pokryte oceanami, które posiadają bogatą w wodór atmosferę. Zdaniem brytyjskich uczonych mogą być bardziej powszechne niż planety typu ziemskiego.
Jeśli przyjmiemy, że planety hiaceańskie rzeczywiście istnieją i stanowią nową klasę planet, oznacza to, że ekosfera – czyli obszar wokół gwiazdy, w którym istniejące planety mogą podtrzymać życie – jest większy, niż ekosfera oparta wyłącznie na istnieniu wody w stanie ciekłym.
K2-18b krąży w ekosferze chłodnego karła K2-18 znajdującego się w odległości 120 lat świetlnych od Ziemi w Gwiazdozbiorze Lwa. Jest ona 8,6 razy bardziej masywna od Ziemi. Rozmiary plasują ją pomiędzy wielkością Ziemi a Neptuna. W Układzie Słonecznym nie istnieje żaden „mini-Neptun”, dlatego słabo rozumiemy takie światy. Jeśli zaś K2-18b jest rzeczywiście planetą hiaceańską, jeśli taki typ planet istnieje, mogą być one dobrym celem poszukiwania życia. Tradycyjnie życia poszukiwaliśmy na mniejszych skalistych planetach, jednak atmosfery większych światów hiaceańskich jest łatwiej badać, mówi Nikku Madhusudhan z Uniwersytetu w Cambridge. Kierował on pracami zespołu, który zaproponował istnienie światów hiaceańskich. Właśnie zresztą na podstawie badań K2-18b.
Obecność w atmosferze tej planety dużych ilości metanu i dwutlenku węgla przy braku amoniaku wspiera hipotezę, że istnieje tam ocean przykryty bogatą w wodór atmosferę. Jakby tego było mało, wstępne dane przekazane przez Webba mogą wskazywać na obecność w atmosferze siarczku dimetylu (DMS). Na Ziemi związek ten jest wytwarzany wyłącznie przez organizmy żywe, a większość DMS obecnego w atmosferze naszej planety zostało wyemitowane przez fitoplankton. Jednak ewentualne potwierdzenie istnienia tego związku w atmosferze K2-18b wymaga dalszych badań.
Mimo, że planeta znajduje się w ekosferze, a jej atmosfera zawiera molekuły z węglem, nie oznacza to jeszcze, że może na niej istnieć życie. Promień K2-18b jest o 2,6 razy większy od promienia Ziemi. To oznacza, że jej wnętrze prawdopodobnie stanowi lód poddany wysokiemu ciśnieniu, na jego powierzchni znajduje się ocean, a planetę otacza atmosfera cieńsza niż atmosfera Ziemi. Temperatura oceanu może być zbyt wysoka, by mogło powstać w nim życie. Być może jest na tyle wysoka, że nie ma tam wody w stanie ciekłym.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Po raz czwarty z rzędu światowe oceany pobiły rekordy ciepła. Kilkunastu naukowców z Chin, USA, Nowej Zelandii, Włoch opublikowało raport, z którego dowiadujemy się, że w 2022 roku światowe oceany – pod względem zawartego w nich ciepła – były najcieplejsze w historii i przekroczyły rekordowe maksimum z roku 2021. Poprzednie rekordy ciepła padały w 2021, 2020 i 2019 roku. Oceany pochłaniają nawet do 90% nadmiarowego ciepła zawartego w atmosferze, a jako że atmosfera jest coraz bardziej rozgrzana, coraz więcej ciepła trafia do oceanów.
Lijing Cheng z Chińskiej Akademii Nauk, który stał na czele grupy badawczej, podkreślił, że od roku 1958, kiedy to zaczęto wykonywać wiarygodne pomiary temperatury oceanów, każda dekada była cieplejsza niż poprzednia, a ocieplenie przyspiesza. Od końca lat 80. tempo, w jakim do oceanów trafia dodatkowa energia, zwiększyło się nawet 4-krotnie.
Z raportu dowiadujemy się, że niektóre obszary ocieplają się szybciej, niż pozostałe. Swoje własne rekordy pobiły Północny Pacyfik, Północny Atlantyk, Morze Śródziemne i Ocean Południowy. Co gorsza, naukowcy obserwują coraz większą stratyfikację oceanów, co oznacza, że wody ciepłe i zimne nie mieszają się tak łatwo, jak w przeszłości. Przez większą stratyfikację może pojawić się problem z transportem ciepła, tlenu i składników odżywczych w kolumnie wody, co zagraża ekosystemom morskim. Ponadto zamknięcie większej ilości ciepła w górnej części oceanów może dodatkowo ogrzać atmosferę. Kolejnym problemem jest wzrost poziomu wód oceanicznych. Jest on powodowany nie tylko topnieniem lodu, ale również zwiększaniem objętości wody wraz ze wzrostem jej temperatury.
Ogrzewające się oceany przyczyniają się też do zmian wzorców pogodowych, napędzają cyklony i huragany. Musimy spodziewać się coraz bardziej gwałtownych zjawisk pogodowych i związanych z tym kosztów. Amerykańska Administracja Oceaniczna i Atmosferyczna prowadzi m.in. statystyki dotyczące gwałtownych zjawisk klimatycznych i pogodowych, z których każde przyniosło USA straty przekraczające miliard dolarów. Wyraźnie widać, że liczba takich zjawisk rośnie, a koszty są coraz większe. W latach 1980–1989 średnia liczba takich zjawisk to 3,1/rok, a straty to 20,5 miliarda USD/rok. Dla lat 1990–1999 było to już 5,5/rok, a straty wyniosły 31,4 miliarda USD rocznie. W ubiegłym roku zanotowano zaś 18 takich zjawisk, a straty sięgnęły 165 miliardów dolarów.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Największe zwierzę, jakie kiedykolwiek żyło na Ziemi, pochłania olbrzymią liczbę najmniejszych kawałków plastiku, donoszą naukowcy z Uniwersytetu Stanforda. Płetwal błękitny i inne walenie wchłaniają więcej mikroplastiku, niż dotychczas sądzono. I niemal cały mikroplastik, jaki trafia do ich organizmów, pochodzi z ich pokarmu, a nie z wody, którą filtrują.
Uczeni ze Stanforda opublikowali na łamach Nature Communications wyniki badań, w czasie których skupili się na płetwalach błękitnych, płetwalach zwyczajnych oraz humbakach i ilości mikroplastiku, który trafia do ich organizmów. Naukowcy stwierdzili, że zwierzęta żerujące u wybrzeży Kalifornii pożywiają się głównie na głębokościach od 50 do 250 metrów. To jednocześnie ten obszar wód oceanicznych, w którym występuje najwięcej mikroplastiku. Na podstawie badań uczeni oszacowali, że każdego dnia przeciętny płetwal błękitny pochłania około 10 milionów kawałków mikroplastiku.
Płetwale błękitne znajdują się niżej w łańcuchu pokarmowym, niż można by wnioskować z rozmiarów ich ciała. To oznacza, że są bliżej oceanicznego plastiku. Łączy je z nim jedno kryl. Kryl pochłania plastik, płetwale zjadają kryl, mówi współautor badań Matthew Savoca.
Humbaki żywią się głównie rybami i pochłaniają codziennie około 200 000 kawałków mikroplastiku, chociaż te osobniki, które jedzą głównie kryl, spożywają dziennie do 1 miliona fragmentów. Z kolei płetwale zwyczajne, których dietę stanowi i kryl i ryby, mogą codziennie wchłaniać od 3 do 10 milionów kawałków mikroplastiku. Savoca zauważa, że w jeszcze gorszej sytuacji są te zwierzęta, które żerują w bardziej zanieczyszczonych wodach, jak np. Morze Śródziemne.
Co więcej, mikroplastik trafia do organizmów waleni głównie z pożywieniem, a nie z filtrowaną przez nie wodą. A to dodatkowy powód do zmartwień. Specjaliści obawiają się, że przez mikroplastik walenie mogą nie otrzymywać odpowiedniej ilości składników spożywczych. Musimy przeprowadzić dodatkowe badania, by dowiedzieć się, czy kryl, który wchłonął mikroplastik, nie ma przypadkiem mniej tłuszczu, podobnie zresztą nie wiemy, czy mikroplastik zjadany przez ryby nie powoduje, że są one mniej pożywne. Pochłaniając mikroplastik zwierzęta te mogą bowiem otrzymywać sygnał, że już się najadły, stwierdza główna autorka badań, Shirel Kahane-Rapport. Jeśli ryby i kryl są mniej tłuste, oznacza to, że każde polowanie – które związane jest z dużym wydatkiem energetycznym – przynosi waleniom mniej kalorii, co może być dla nich szkodliwe. Jeśli obszar, w którym polują, jest pełen żywności, ale jest to żywność uboga w składniki odżywcze, to polowanie jest marnowaniem energii, zjadają śmieci. To tak, jakby trenować do maratonu, odżywiając się w tym czasie żelkami, dodaje Kahane-Rapport.
Goldbogen Lab, w którym prowadzono badania, od ponad dekady zbiera i analizuje dane dotyczące waleni. Naukowcy badają jak wiele walenie jedzą, w jaki sposób się odżywiają, dlaczego są tak duże, jak pracują ich serca. Teraz zakres badań rozszerzono o mikroplastik, który jest coraz poważniejszym problemem w morzach i oceanach. Mamy tutaj zwierzęta, których populacja z olbrzymim trudem odradza się po okresie polowań, a które muszą mierzyć się z wieloma innymi problemami wywoływanymi przez człowieka, piszą autorzy badań.
Problem plastiku w morskim łańcuchu pokarmowym znany jest od 50 lat. Dotychczas mikroplastik został znaleziony w organizmach co najmniej 1000 morskich gatunków. Jego wpływ na walenie jest szczególnie niepokojący, gdyż zwierzęta ta pochłaniają jego olbrzymie ilości.
Uczeni będą chcieli zbadać, co dzieje się z mikroplastikiem trafiającym do organizmów waleni. Może on podrażniać żołądek. Może trafiać do krwioobiegu. A może jest w całości wydalany. Tego wciąż nie wiemy, przyznaje Kahane-Rapport. Naukowcy zbadają też, jak mikroplastik wpływa na wartość odżywczą gatunków kluczowych nie tylko dla waleni, ale i innych zwierząt ważnych z ekologicznego punktu widzenia.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.