Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Ciało foki działa jak głośnik. Dzięki temu można je słyszeć pod wodą

Rekomendowane odpowiedzi

Pod wodą nie słychać ludzkiego krzyku. Ale odgłosy wydawane przez foki szare – już owszem. Jakie zjawiska akustyczne decydują o tym, że foki wydobywać mogą dźwięki i na wodzie, i pod jej powierzchnią? Sprawdził to w swoich badaniach dr Łukasz Nowak. Ciało foki działa jak głośnik – streszcza naukowiec.

Z fokami szarymi jest trochę jak ze starym małżeństwem. One rozmawiają ze sobą bardzo rzadko. A konkretne – kiedy przychodzi okres godowy. U fok taki okres występuje tylko na początku roku, tuż po tym, kiedy urodzą się młode foki i samice są gotowe, by ponownie zajść w ciążę. Wtedy komunikacja między samcami, samicami i młodymi jest bardzo ożywiona – opowiada dr Nowak. W swoich badaniach naukowiec skupiał się jednak nie na tym, co te odgłosy oznaczają, ale jak one powstają. Wszystkie swoje nagrania udostępnił w otwartych zbiorach danych.

A to, jak foki wydają dźwięki jest o tyle ciekawe dla akustyków, że zwierzęta żyją trochę w wodzie, a trochę na lądzie. I w przeciwieństwie do człowieka potrafią nie tylko wydawać odgłosy, które świetnie rozchodzą się w powietrzu, ale i odgłosy, które słychać pod wodą – mimo skrajnie dużych różnic między tymi środowiskami. Kolejną interesującą sprawą jest to, że foki szare rozmiarami są porównywalne z człowiekiem, a częstotliwości wydawanych przez nie odgłosów są dobrze odbierane przez ludzkie ucho.

To, jak wydają dźwięki foki, może to stanowić dla nas inspirację, jak budować systemy do podwodnej komunikacji – komentuje akustyk dr Łukasz Nowak z University of Twente (Holandia).

Badacz przestudiował odgłosy wydawane przez foki szare w fokarium w stacji morskiej UG na Helu. Wydzielił trzy różniące się akustyką grupy dźwięków i przedstawił hipotezy, jak dźwięki te mogą być generowane. Jego badania ukazały się w czasopiśmie Bioacustics.

W bazie udostępnionej przez naukowca można obejrzeć filmiki z nagraniami foczych rozmów, a także posłuchać nagrań audio - zarówno odgłosów podwodnych, jak i wydawanych na powierzchni.

Foki musiały się dostosować do komunikacji akustycznej, do porozumiewania się i nad, i pod wodą – zwraca uwagę naukowiec. Tłumaczy, że powietrze i woda stanowią zaś dwa bardzo różne ośrodki pod względem właściwości akustycznych. My, ludzie, zazwyczaj, jeśli chcemy coś powiedzieć, wprawiamy w drgania kolumnę powietrza wydychaną z płuc. Z kolei jamę nosowo-gardłową wykorzystujemy jako filtr, który możemy przestrajać. Nasze układy głosowe stworzone są tak, by emitować dźwięk głównie przez usta - tam skąd uchodzi z nas powietrze. W emisji dźwięku zaś nie mają znaczenia same drgania np. klatki piersiowej – opowiada dr Nowak.

W przypadku wody taka metoda tworzenia dźwięków nie będzie efektywna, bo dźwięk z powietrza generalnie do wody nie przechodzi. W wodzie przenoszą się lepiej dźwięki strukturalne - powstające w drgających ciałach stałych (to np. stuknięcie ręką w drzwi) niż aerodynamiczne – te wywołane wibracją powietrza (np. ludzki głos). Dlatego człowiek mówiący pod wodą praktycznie nie będzie w wodzie słyszalny – zwraca uwagę akustyk.

Dlatego foki, aby przekazywać sobie sygnały dźwiękowe pod wodą, muszą zmienić drgania powietrza na drgania swojego ciała. Tkanki mają właściwości mechaniczne całkiem podobne do właściwości wody. I z nich całkiem dobrze drgania - a więc i dźwięki - do wody się przenoszą. Ciało foki działa więc jak wielki głośnik podwodny – wyjaśnia rozmówca PAP.

Dodaje, że czasem części podwodnych odgłosów fok towarzyszy wydobywanie się bąbelków (a to znaczy, że odgłos powstaje przy wydechu). A części – nie. Naukowiec po strukturze tych ostatnich dźwięków domyśla się, że zwierzęta muszą wtedy przepompowywać powietrze to w jedną, to w drugą stronę. Dźwięk ten jednak wprawia w wibracje ciało foki, a ciało przekazuje te drgania do wody.

Inaczej jest jednak, kiedy foka przebywa na powierzchni – wtedy duża część dźwięku wypromieniowana jest przez nozdrza.

Foki szare żyją między wodą a lądem. Komunikują się w zakresie częstotliwości akustycznych, które słyszymy gołym uchem. Właściwości ich układów głosowych – w odróżnieniu np. od delfinów, które posługują się ultradźwiękami – są zbliżone do ludzkich. Dlatego foki były dla mnie inspiracją przy opracowywaniu systemów komunikacji głosowej dla nurków – mówi dr Nowak.

Jego zespół już kilka lat temu opracował taki system komunikacji podwodnej. Obserwując, jak foki wydają dźwięk pomyślałem o układach technicznych, które tłumaczyłyby drgania powietrza na drgania struktur wokół i potem przenoszą dźwięk do wody. Wraz z zespołem zbudowaliśmy działające prototypy urządzeń do komunikacji między nurkami – wspomina. Nurkowie mówili do opracowanego przez Polaków urządzenia, a dźwięk wydobywający się z tego wynalazku rozchodził się w wodzie. Każdy pod wodą mógł go więc usłyszeć bez użycia żadnego dodatkowego sprzętu.

Urządzenie działało, można było dzięki niemu rozmawiać pod wodą. Podjęliśmy się komercjalizacji, ale rozbiliśmy się o etap wdrożeniowy. Projekt umarł – opowiada akustyk.

Dodaje, że choć wtedy zgromadził ogromne ilości danych dotyczących odgłosów fok i miał przypuszczenia, jak one ze sobą się komunikują, to dopiero teraz, w czasie pandemii, miał czas, aby opracować dane i przekuć w publikacje naukową. Dopiero teraz jednak prezentujemy uporządkowaną klasyfikację odgłosów fok i przedstawiamy hipotezy dotyczące generacji tych dźwięków – tłumaczy.

Dr Nowak opowiada, że do badania odgłosów fok szarych zachęcił go prof. Krzysztof Skóra, który był wtedy szefem Stacji Morskiej UG. Badania przerwała jednak śmierć profesora. Dziś stacja Morska nosi imię tego biologa.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z SETI Institute oraz Uniwersytetu Kalifornijskiego w Davis są pierwszymi, którzy zarejestrowali wielkie pierścienie powietrza wypuszczane przez humbaki. Zwierzęta tworzyły je podczas przyjaznej interakcji z ludźmi. Trudno oprzeć się wrażeniu, że pierścienie te przypominają kółka wypuszczane przez palaczy papierosów. Naukowcy przypuszczają, że pierścienie to albo próba zabawy, albo komunikacji z ludźmi.
      Nie od dzisiaj wiemy, że humbaki wykorzystują bańki powietrza do otaczania ławic ryb, na które polują. Ponadto samce głośno wypuszczają powietrze, tworząc widoczne ślady na wodzie, gdy konkurują o samice. Tym razem mamy do czynienia z nieznanym wcześniej zjawiskiem - tworzeniem specyficznych baniek podczas przyjaznej interakcji z ludźmi.
      Humbaki żyją w złożonych społecznościach, wydają różne dźwięki, posługują się bąblami powietrza jak narzędziami, pomagają innym gatunkom atakowanym przez drapieżniki. Teraz widzimy, że wydmuchują w kierunku ludzi pierścienie z powietrza. To może być sposób na interakcję, obserwowanie naszej reakcji i zaangażowanie nas w zabawę lub komunikację, mówi doktor Fred Sharpe.
      Humbaki w przyjazny sposób interesują się łodziami i pływającymi ludźmi. Większość spośród obserwowanych przez nas na całym świecie dziesiątek populacji waleni, podpływała do łodzi i ludzi, wypuszczając bąble, dodaje Jodi Frediani.
      Źródło: Humpback Whales Blow Poloidal Vortex Bubble Rings, https://onlinelibrary.wiley.com/doi/10.1111/mms.70026

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Jeśli Twój pies uwielbia się kąpać i z chęcią wskakuje do wody na spacerze, nie powinien być zabezpieczany nakładanymi na skórę środkami przeciwko pchłom i kleszczom. Badania pokazały bowiem, że jeśli stosujemy takie środki, to natychmiast po tym, jak pies wejdzie do wody, jego skóra i futro mogą uwalniać duże ilości substancji szkodliwych dla zwierząt wodnych i zwierząt, które je jedzą, jak na przykład ptaki. Co więcej, te substancje mogą się uwalniać nawet przez 28 dni od ich nałożenia.
      Początkowo środki nakładane na skórę psa były uważane za bezpieczne, jednak w 2011 roku Europejska Agencja Leków opublikowała sugestię, że mogą być szkodliwe dla zwierząt wodnych przez 48 godzin po nałożeniu. Jednak były to tylko przypuszczenia, które nie opierały się na eksperymentach.
      Dopiero teraz grupa badaczy przeprowadziła badania na kilkudziesięciu psach, u których stosowano albo fipronil albo imidaklopryd. Okazało się, że nawet po 28 dniach ilość szkodliwych substancji trafiających do wody z ciała dużego psa może być na tyle duża, że ich stężenie przekroczy bezpieczny poziom w 100 metrach sześciennych wody. Jeśli więc w stawie często kąpią się psy, poziom zanieczyszczeń pochodzący ze środków, którymi są chronione przed pchłami i kleszczami, może być niebezpieczny dla środowiska wodnego.
      Szczegóły badań zostały opublikowane na łamach pisma VetRecord.
      Źródło: Swimming emissions from dogs treated with spot-on fipronil or imidacloprid: Assessing the environmental risk

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ewolucja roślin i ich zapylaczy jest zwykle badana pod kątem sygnałów optycznych i chemicznych. Nauka analizowała, jak i co widzą zapylacze, jakie sygnały chemiczne odbierają oraz w jaki sposób rośliny wykorzystują kolor, kształt oraz substancje chemiczne, by przyciągnąć zapylaczy. Nauka wie też, że zarówno zwierzęta, jak i rośliny, są zdolne do wytwarzania oraz odbierania sygnałów akustycznych. Francesca Barbero z Uniwersytetu w Turynie oraz jej zespół składający się z entomologów, inżynierów dźwięku i fizjologów roślin, postanowili sprawdzić, czy w jakiś sposób rośliny i zapylacze mogą się nawzajem słyszeć i na siebie reagować.
      Naukowcy odtwarzali w pobliżu rosnącego wyżlinu (Antirrhinum) dźwięki wydawane przez zapylającą go makatkę czerwoną i sprawdzali reakcję rośliny. Okazało się, że na sam dźwięk skrzydeł pszczoły, wyżlin zwiększał produkcję cukrów i nektaru, zmieniając przy tym ekspresję genów odpowiedzianych za transport i produkcję tych składników. Zdaniem badaczy, jest to świetny przykład koewolucji roślin i zapylaczy.
      Zdolność do odróżniania od siebie zbliżających się zapylaczy na podstawie sygnałów akustycznych przez nich generowanych może być strategią adaptacyjną. Reagując na sygnał zapylacza – na przykład tego najbardziej efektywnego – rośliny mogą zwiększyć swój sukces reprodukcyjny, jeśli doprowadzą do odpowiedniej modyfikacji jego zachowania, mówi Barbero. Dostarczając owadowi więcej cukru czy nektaru, roślina może – na przykład – skłonić go, by dłużej na niej pozostał.
      Widzimy tutaj, że dźwięk wydawany przez zapylacza, wpływa na zachowanie rośliny. O wiele trudniej jest sprawdzić oddziaływanie w drugą stronę – czy dźwięki roślin mogą wpłynąć na owady. Na przykład czy mogą one przyciągać wybranych zapylaczy. Jeśli okaże się, że tak, to dźwięki można będzie wykorzystywać do przyciągania zapylaczy do upraw.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Flamingi wykorzystują jeden z najbardziej złożonych systemów odżywiania się wśród ptaków. Każdy z nas widział ich niezwykły sposób pobierania pokarmu, w czasie którego ich głowa zwrócona jest do góry nogami. Wiemy, że filtrują pokarm z wody. Jednak, jak się okazuje, nie jest to proces pasywny. Ptaki potrafią odpowiednio kierować strumień wody w stronę dzioba.
      Biolog z Uniwersytetu Kalifornijskiego w Berkeley, Victor Ortega Jiménez, zainteresował się sposobem zdobywania pokarmu przez flamingi gdy odwiedził ogród zoologiczny. Zauważył, że jedzące ptaki drepczą w miejscu. Jednak nie widział, co dzieje się pod wodą. Rozpoczął więc badania, w czasie których najpierw przez kilka tygodni flamingi z zoo były uczone jedzenia z tac wypełnionych wodą. Następnie za pomocą szybkich kamer i laserów obrazowano cały proces. W końcu naukowcy stworzyli na drukarkach 3D modele głów flamingów, by lepiej przyjrzeć się ruchowi wody. W końcu zaś prawdziwy dziób flaminga umocowano na maszynie, które otwierała go i zamykała, a jednocześnie symulowano ruchy języka ptaka.
      Z badań wynika, że ptaki potrafią kierować wodę wraz z pożywieniem do swoich dziobów. Dreptanie w miejscu służy wzbiciu do góry osadów z dna wraz ze znajdującymi się tam ofiarami flamingów. Następnie ptaki wykonują szybkie ruchy głową w górę i w dół, by utworzyć podobne do tornado wiry. A dodatkowe ruchy dziobem i językiem prowadzą do powstania mniejszych wirów, dzięki czemu niezwykle efektywnie łapią zdobycz. Są w stanie schwytać w ten sposób 7-krotnie więcej krewetek.
      Naukowcy obliczyli też, jakie jest najbardziej efektywne tempo ruchów flaminga. Wytworzenie wirów wymaga poruszania głową z prędkością niemal 40 cm/s. Jednocześnie dolna część ich dzioba wykonuje około 12 ruchów na sekundę.
      W najbliższej przyszłości naukowcy chcą zbadać, co dzieje się wewnątrz dziobów żerujących flamingów. Mają nadzieję, że opisanie tych zjawisk pomoże na przykład w stworzeniu technologii pozwalającej efektywnie wychwytywać z wody glony lub mikroplastik. Zachowanie żerujących flamingów wygląda niepoważnie, ale tworzy to użyteczny przepływ wody, chwali badania kolegów Elizabeth Brainerd z Brown University.
      Niezwykły sposób odżywiania się flamingów służy nie tylko im. Od kilku lat wiadomo, że podążające za nimi płaskonogi trójbarwne chwytają nawet 2-krotnie więcej pożywienia, korzystając z wody wzburzanej przez flamingi.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Niewidoczna z Ziemi strona Księżyca zawiera znacznie mniej wody, niż część widoczna – donoszą chińscy naukowcy. Takie zaskakujące wnioski płyną z badań próbek bazaltu zebranych przez misję Chang'e-6. Wyniki badań, opublikowane na łamach Nature, pozwolą lepiej zrozumieć ewolucję ziemskiego satelity.
      Dostarczone na Ziemię próbki zawierały mniej niż 2 mikrogramy wody w gramie. Nigdy wcześniej nie zanotowano tak mało H2O na Księżycu. Wcześniejsze badania próbek ze strony widocznej z Ziemi zawierały nawet do 200 mikrogramów wody na gram.
      Naukowcy potrafią mierzyć zawartość wody w materiale z dokładnością do 1–1,5 części na milion. Już widoczna strona Księżyca jest niezwykle sucha. A ta niewidoczna całkowicie zaskoczyła naukowców. Nawet najbardziej suche pustynie na Ziemi zawierają około 2000 części wody na milion. To ponad tysiąckrotnie więcej, niż zawiera jej niewidoczna z Ziemi część Księżyca, mówi główny autor badań, profesor Hu Sen z Instytutu Geologii i Geofizyki Chińskiej Akademii Nauk.
      Obecnie powszechnie przyjęta hipoteza mówi, że Księżyc powstał w wyniku kolizji Ziemi z obiektem wielkości Marsa. Do zderzenia doszło 4,5 miliarda lat temu, a w wyniku niezwykle wysokich temperatur, będących skutkiem zderzenia, Księżyc utracił wodę i inne związki lotne. Debata o tym, jak dużo wody pozostało na Księżycu, trwa od dekad. Dotychczas jednak dysponowaliśmy wyłącznie próbkami ze strony widocznej z Ziemi.
      Chińska misja Chang'e-6 została wystrzelona w maju 2024 roku, wylądowała w Basenie Południowym – Aitken i w czerwcu wróciła z niemal 2 kilogramami materiału. To pierwsze w historii próbki pobrane z niewidocznej części Księżyca.
      Zespół profesora Hu wykorzystał 5 gramów materiału, na który składało się 578 ziaren o rozmiarach od 0,1 do 1,5 milimetra. Po przesianiu i dokładnej analizie okazało się, że 28% z nich stanowi bazalt. I to on właśnie został poddany badaniom.
      Ilość wody w skałach księżycowych to bardzo ważny test hipotezy o pochodzeniu Księżyca. Jeśli w skałach byłoby 200 części wody na milion lub więcej, byłoby to poważne wyzwanie dla obecnie obowiązującej hipotezy i naukowcy musieliby zaproponować nowy model powstania Księżyca, wyjaśnia profesor Hu. Wyniki badań jego zespołu stanowią więc potwierdzenie tego, co obecnie wiemy.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...