Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Zobrazowano zabójcę dzieci. Nadzieja na szczepionkę przeciwko biegunce i udoskonalenie innych szczepionek
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Uczeni z Instytutu Nauk Multidyscyplinarnych im. Maxa Plancka – Melina Schuh, Christopher Thomas i Tabea Lilian Marx – są pierwszymi, którzy zobrazowali cały proces owulacji w czasie rzeczywistym. Obrazowanie, wykonane u myszy, pozwala na badanie jajeczkowania w wysokiej rozdzielczości przestrzennej oraz czasowej i przyczyni się do poszerzenia wiedzy w dziedzinie badań nad płodnością.
Większość kobiet przechodzi owulację około 400 razy w życiu. W czasie fazy płodnej dojrzewanie rozpoczyna 15–30 jajeczek. Jednak tylko największe i najlepiej rozwinięte z nich biorą udział w owulacji, gdy są uwalniane do jajowodów.
Owulacja regulowana jest przez złożone interakcje hormonów, a sam ten proces słabo rozumiemy. Jajniki znajdują się głęboko w organizmie kobiety, trudno uzyskać do nich dostęp badawczy. Ponadto owulacja zachodzi w wąskim okienku czasowym, nie sposób przewidzieć, kiedy jajniki uwolnią kolejne jajeczko. Nic więc dziwnego, że dopiero teraz udało się po raz pierwszy zobrazować ten proces.
Możemy wyróżnić w nim trzy fazy. Pęcherzyk Graffa rozszerza się, kurczy i w końcu uwalnia jajeczko, mówi Melina Schuh, dyrektor Wydziału Mejozy w Instytucie Maxa Plancka. Faza pierwsza, rozszerzanie pęcherzyka, jest napędzana przez uwolnienie kwasu hialuronowego. Naukowcy śledzili pod mikroskopem jak w fazie tej zmienia się rozmiar i kształt pęcherzyka. W czasie owulacji do pęcherzyka napływa płyn, co powoduje jego znaczący wzrost, dodaje Christopher Thomas, współautor badań. Kwas hialuronowy jest niezbędny dla owulacji. Gdy naukowcy zablokowali jego wytwarzanie, pęcherzyk rozszerzał się w mniejszym stopniu i do owulacji nie doszło.
Podczas drugiej fazy, kurczenia się pęcherzyka, komórki mięśni gładkich zewnętrznej warstwy pęcherzyka powodują jego kurczenie się. Gdy naukowcy zablokowali komórkom możliwość kurczenia się, pęcherzyk nie zmniejszył swojej objętości i do owulacji nie doszło. Gdy pęcherzyk pęka, co ma miejsce w trzeciej fazie, jajeczko zostaje uwolnione. Najpierw pęcherzyk wybrzusza się na zewnątrz, następnie pęka, uwalniając płyn pęcherzykowy, komórki ziarniste i, na końcu, jajeczko, mówi Marx.
Po owulacji pęcherzyk przekształca się w ciałko żółte, które wytwarza progesteron przygotowujący macicę do implantacji embrionu. Jeśli jajeczko nie zostanie zapłodnione lub zapłodnione nie zagnieździ się w macicy, ciałko żółte zanika w ciągu 14 dni i rozpoczyna się kolejny cykl.
Nasze badania wykazały, że owulacja to solidny proces. Co prawda do jej rozpoczęcia potrzebny jest sygnał z zewnątrz, jednak cała reszta przebiega już niezależnie od pozostałej części jajnika, gdyż wszystkie niezbędne zasoby i informacje są zawarte w samym pęcherzyku. Dzięki naszej metodzie obrazowania my i inne zespoły naukowe będziemy mogli w przyszłości jeszcze dokładniej zbadać ten mechanizm i zyskać nową wiedzę, która przyda się w badaniach nad płodnością u ludzi, cieszy się Schuh.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dzieci i młodzież w wieku 10-19 lat, u których zdiagnozowano COVID-19 są narażone na większe ryzyko rozwoju cukrzycy typu 2. w ciągu 6 miesięcy po diagnozie, niż ich rówieśnicy, którzy zapadli na inne choroby układu oddechowego. Takie wnioski płyną z badań przeprowadzonych przez naukowców z Wydziału Medycyny Case Western Reserve University. Uczeni przeprowadzili metaanalizę wpływu COVID-19 na ryzyko rozwoju cukrzycy typu 2. u dorosłych, a następnie postanowili poszerzyć swoją wiedzę o wpływ infekcji na osoby młodsze.
Badacze przeanalizowali przypadki 613 602 pacjentów pediatrycznych. Dokładnie połowę – 306 801 – stanowiły osoby, u których zdiagnozowano COVID-19, w drugiej grupie znaleźli się młodzi ludzie, którzy zachorowali na inne choroby układu oddechowego. Poza tym obie grupy były do siebie podobne. Dodatkowo utworzono też dwie podgrupy po 16 469 pacjentów, w których znalazły się osoby z otyłością oraz COVID-19 lub inną chorobą układu oddechowego.
Naukowcy porównali następnie liczbę nowo zdiagnozowanych przypadków cukrzycy typu 2. w obu grupach. Pod uwagę brano diagnozy, które postawiono miesiąc, trzy miesiące i sześć miesięcy po wykryciu pierwszej z chorób. Okazało się, że ryzyko rozwoju cukrzycy u osób, które zachorowały na COVID-19 było znacznie wyższe. Po 1 miesiącu było ono większe o 55%, po trzech miesiącach o 48%, a po pół roku – o 58%. Jeszcze większe było u osób otyłych. W przypadku dzieci i nastolatków, które były otyłe i zapadły na COVID-19 ryzyko zachorowania na cukrzycę było o 107% wyższe po 1 miesiącu, o 100% wyższe po drugim i o 127% wyższe po pół roku. Największe jednak niebezpieczeństwo związane z rozwojem cukrzycy wisiało nad tymi, którzy z powodu COVID-19 byli hospitalizowani. Ryzyko to było większe – odpowiednio do czasu po diagnozie COVID-19 – o 210%, 174% i 162%.
Obecnie nie wiadomo, jaki może być związek COVID-19 z cukrzycą. Tym bardziej, że przeprowadzone badania to analiza retrospektywna, która nie pozwala na wykazanie związku przyczynowo-skutkowego. Potrzeba więc dalszych badań, które pozwolą określić, czy zachorowanie na COVID-19 w jakikolwiek sposób wpływa na układy związane z działaniem glukozy czy insuliny w naszym organizmie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Tegoroczną Nagrodę Nobla w dziedzinie fizjologii lub medycyny otrzymali Katalin Karikó i Drew Weissmann za odkrycia, które umożliwiły opracowanie efektywnych szczepionek mRNA przeciwko COVID-19. W uzasadnieniu przyznania nagrody czytamy, że prace Karikó i Wiessmanna w olbrzymim stopniu zmieniły rozumienie, w jaki sposób mRNA wchodzi w interakcje na naszym układem odpornościowym". Tym samym laureaci przyczynili się do bezprecedensowo szybkiego tempa rozwoju szczepionek, w czasie trwania jednego z największych zagrożeń dla ludzkiego życia w czasach współczesnych.
Już w latach 80. opracowano metodę wytwarzania mRNA w kulturach komórkowych. Jednak nie potrafiono wykorzystać takiego mRNA w celach terapeutycznych. Było ono nie tylko niestabilne i nie wiedziano, w jaki sposób dostarczyć je do organizmu biorcy, ale również zwiększało ono stan zapalny. Węgierska biochemik, Katalin Karikó, pracowała nad użyciem mRNA w celach terapeutycznych już od początku lat 90, gdy była profesorem na University of Pennsylvania. Tam poznała immunologa Drew Weissmana, którego interesowały komórki dendrytyczne i ich rola w układzie odpornościowym.
Efektem współpracy obojga naukowców było spostrzeżenie, że komórki dendrytyczne rozpoznają uzyskane in vitro mRNA jako obcą substancję, co prowadzi co ich aktywowania i unicestwienia mRNA. Uczeni zaczęli zastanawiać się, dlaczego do takie aktywacji prowadzi mRNA transkrybowane in vitro, ale już nie mRNA z komórek ssaków. Uznali, że pomiędzy oboma typami mRNA muszą istnieć jakieś ważne różnice, na które reagują komórki dendrytyczne. Naukowcy wiedzieli, że RNA w komórkach ssaków jest często zmieniane chemicznie, podczas gdy proces taki nie zachodzi podczas transkrypcji in vitro. Zaczęli więc tworzyć różne odmiany mRNA i sprawdzali, jak reagują nań komórki dendrytyczne.
W końcu udało się stworzyć takie cząsteczki mRNA, które były stabilne, a po wprowadzeniu do organizmu nie wywoływały reakcji zapalnej. Przełomowa praca na ten temat ukazała się w 2005 roku. Później Karikó i Weissmann opublikowali w 2008 i 2010 roku wyniki swoich kolejnych badań, w których wykazali, że odpowiednio zmodyfikowane mRNA znacząco zwiększa produkcję protein. W ten sposób wyeliminowali główne przeszkody, które uniemożliwiały wykorzystanie mRNA w praktyce klinicznej.
Dzięki temu mRNA zainteresowały się firmy farmaceutyczne, które zaczęły pracować nad użyciem mRNA w szczepionkach przeciwko wirusom Zika i MERS-CoV. Gdy więc wybuchła pandemia COVID-19 możliwe stało się, dzięki odkryciom Karikó i Weissmanna, oraz trwającym od lat pracom, rekordowo szybkie stworzenie szczepionek.
Dzięki temu odkryciu udało się skrócić proces, dzięki czemu szczepionkę podajemy tylko jako stosunkowo krótką cząsteczkę mRNA i cały trik polegał na tym, aby ta cząsteczka była cząsteczką stabilną. Normalnie mRNA jest cząsteczką dość niestabilną i trudno byłoby wyprodukować na ich podstawie taką ilość białka, która zdążyłaby wywołać reakcję immunologiczną w organizmie. Ta Nagroda Nobla jest m.in. za to, że udało się te cząsteczki mRNA ustabilizować, podać do organizmu i wywołują one odpowiedź immunologiczną, uodparniają nas na na wirusa, być może w przyszłości bakterie, mogą mieć zastosowanie w leczeniu nowotworów, powiedziała Rzeczpospolitej profesor Katarzyna Tońska z Uniwersytetu Warszawskiego.
Myślę, że przed nami jest drukowanie szczepionek, czyli dosłownie przesyłanie sekwencji z jakiegoś ośrodka, który na bieżąco śledzi zagrożenia i na całym świecie produkcja już tego samego dnia i w ciągu kilku dni czy tygodni gotowe preparaty dla wszystkich. To jest przełom. Chcę podkreślić, że odkrycie noblistów zeszło się z możliwości technologicznymi pozwalającymi mRNA sekwencjonować szybko, tanio i dobrze. Bez tego odkrycie byłoby zawieszone w próżni, dodał profesor Rafał Płoski z Warszawskiego Uniwersytetu Medycznego.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Przeprowadzone na dzieciach i dorosłych udane testy szczepionki NmCV-5 dają nadzieję, że do roku 2030 uda się zakończyć trwającą w Afryce epidemię zapalenia opon mózgowo-rdzeniowych. Badania pokazały, że nowa szczepionka przeciwko meningokokom jest bezpieczna i generuje silną odpowiedź autoimmunologiczną przeciwko szczepom A, C, W, Y oraz X. W 3. etapie badań klinicznych, podczas której porównywano efektywność NmCV-5 z efektywnością MenACWY-D, wzięło udział 1800 zdrowych mieszkańców Mali i Gambii w wieku 2–29 lat.
Testy wykazały, że po 28 dniach od podania szczepionki reakcja układu odpornościowego jest silniejsza w przypadku NmCV-5. Nowa szczepionka generowała też silną reakcję na szczep X, na który obecnie szczepionki nie istnieją. Nie stwierdzono też poważnych działań ubocznych NmCV-5.
Z danych WHO wynika, że w 2019 roku zapalenie opon mózgowo-rdzeniowych zabiło 250 000 osób. Uznano wówczas, że tylko dzięki nowym szczepionkom uda się osiągnąć cel założony w programie Defeating Meningitis by 2030 Global Roadmap.
Głównym regionem, w którym występują meningokokowe i pneumokokowe zapalenie opon mózgowo rdzeniowych, są kraje Afryki Subsaharyjskiej. Mówi się o występowania tam „pasa zapalenia opon mózgowo-rdzeniowych”. Sytuacja jest tam poważna, między innymi ze względu na problemy z dostawami i dostępnością już opracowanych szczepionek. Co gorsza, pojawił się też szczep X, który ma potencjał wywołania epidemii, a na który nie istniała dotychczas żadna szczepionka.
NmCV-5 została stworzona przez Serum Institute of India. Dzięki opracowaniu tańszych metod produkcji można mieć nadzieję, że nowa szczepionka będzie tańsza niż dotychczas stosowane preparaty przeciwko 4 szczepom meningokoków. Testy kliniczne, prowadzone przez naukowców z Mali oraz London School of Hygiene & Tropical Medicine, zostały zaprojektowane tak, by możliwe było uzyskanie licencji WHO na wykorzystanie NmCV-5 w projekcie zwalczania epidemii.
Jesteśmy zadowoleni z wyników badań. Sądzimy, że NmCV-5 zapewni dzieciom i młodym dorosłym ochronę przed zapaleniem opon mózgowo-rdzeniowych powodowane przez meningokoki. Będzie ona niezbędnym narzędziem służącym do przerwania i zapobieżenia epidemii zapalenia opon mózgowych, mówi doktor Ed Clarke. A doktor Ama Umesi przypomina, że wspomniana choroba jest śmiertelna o dużym potencjalne wywoływania epidemii.
Testy nowej szczepionki rozpoczęły się w czerwcu 2021 roku. Ich uczestnicy zostali podzieleni na trzy grupy wiekowe: 2-10 lat, 11-17 lat oraz 18-29 lat.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.