Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' szczepionka'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 36 results

  1. Kwasy nukleinowe, szczególnie RNA, mogą być niezwykle podatne na degradację, szczególnie w przewodzie pokarmowym. Rozwiązanie tego problemu otwiera nowe możliwości terapeutyczne, w tym możliwość opracowania doustnych szczepionek, mówi Giovanni Traverso, profesor inżynierii mechanicznej na MIT i gastroenterolog w Brigham and Women's Hospital. Amerykańscy naukowcy wykazali właśnie, że opracowana przez nich kapsułka pozwala na dostarczenie do żołądka świni do 150 mikrogramów RNA. To więcej niż mRNA używane w szczepionkach przeciwko COVID-19. Zespół Traverso od lat współpracuje z zespołem Roberta Langera, profesora w David H. Koch Institute for Integrative Cancer Research. Celem ich badań jest stworzenie nowych technik doustnego dostarczania leków. W 2019 roku zaprezentowali kapsułkę z igłą, która wbija się w wyściółkę żołądka i dostarcza tam insulinę. Kapsułce nadano kształt karapaksu żółwia lamparciego. Karapaks zwierzęcia ma taki kształt, że jeśli żółw upadnie na grzbiet, bez problemu odwraca się na nogi. Naukowcy nadali kapsułce taki kształt, dzięki czemu zawsze ustawi się ona tak, by igła mogła wbić się w żołądek. W ubiegłym roku Traverso i Langer wykazali, że za pomocą kapsułki możliwe jest dostarczanie dużych molekuł, jak przeciwciała monoklonalne. Po udanych testach postanowili sprawdzić, czy ich kapsułka przyda się również do pracy z innymi dużymi molekułami, kwasami nukleinowymi. Kwasy nukleinowe łatwo ulegają degradacji po dostaniu się do organizmu. Dlatego też muszą być dostarczane w osłonkach. Uczeni z MIT opracowali więc specjalne polimerowe nanocząsteczki wykonane z poli(β-aminoestrów). Już wcześniej wykazali bowiem, że dzięki nadaniu im odpowiedniego kształtu można dobrze chronić kwasy nukleinowe. Nowe cząstki przetestowano najpierw na myszach. Zwierzętom wstrzyknięto je do żołądka, nie używając przy tym kapsułki. Cząstki miały chronić RNA z kodem pewnego białka reporterowego. Gdyby dostarczenie do żołądka i pobranie RNA przez organizm było skuteczne, białko to powinno pojawić się w tkankach. I rzeczywiście. Wykryto je zarówno w żołądkach, jak i wątrobie, co wskazuje, że RNA zostało dostarczone do innych organów, a następnie trafiło do filtrującej krew wątroby. Następnie naukowcy poddali kompleks RNA-nanocząsteczki liofilizacji i umieścili go w swoich kapsułkach. W jednej byli w stanie upakować około 50 mikrogramów mRNA. Trzy takie kapsułki podano świniom. Badania wykazały, że po podaniu kapsułek białko reporterowe było wytwarzane przez komórki żołądka, ale nie znaleziono go w innych częściach ciała. W następnym etapie badań naukowcy spróbują zwiększyć ilość RNA dostarczonego do organizmu zmieniając budowę nanocząsteczek lub podając więcej RNA. Zauważają jednak, że w niektórych zastosowaniach wystarczy dostarczyć RNA do samego żołądka. W układzie pokarmowym znajduje się wiele komórek układu odpornościowego, a stymulowanie tych komórek to znany od dawna sposób na wywołanie reakcji immunologicznej, stwierdzają naukowcy. Traverso i Langer chcą sprawdzić, czy podanie szczepionki mRNA drogą doustną wywoła ogólnoustrojową reakcję immunologiczną, w tym aktywację limfocytów B i T. Nowa metoda podawania mogłaby też być wykorzystywana przy leczeniu chorób układu pokarmowego, które trudno jest zwalczać za pomocą tradycyjnych zastrzyków podskórnych. Ze szczegółami badań można zapoznać się na łamach pisma Matter. « powrót do artykułu
  2. Profesor Krzysztof Marycz z Uniwersytetu Przyrodniczego we Wrocławiu chce wykorzystać technologię mRNA do leczenia osteoporozy. Jego projekt badawczy uzyskał najwyższe (3,2 miliona pln) finansowanie z programu Tango 5 Narodowego Centrum Badań i Rozwoju. Ta technologia może zrewolucjonizować nasze podejście do leczenia osteoporozy, mówi uczony, który ma zamiar odwrócić proces resorpcji kości. Na osteoporozę cierpi ok. 33% kobiet w okresie przekwitania. Ryzyko złamania kości wynosi u nich 40%, podczas gdy u mężczyzn jest co najmniej 2-krotnie mniejsze. W krajach wysoko rozwiniętych, w tym i w Polsce, osteoporoza to jedna z głównych przyczyn śmierci, gdyż złamania wiążą się z zanikiem mięśni, pojawieniem się odleżyn, zatoru czy opadowego zapalenia płuc. Profesor Marycz wykorzystuje mRNA do stworzenia materiału, który nie tylko zahamuje rzeszotowienie kości, ale również doprowadzi do odbudowy brakującej tkanki. Technologia mRNA została po raz pierwszy zastosowana w 2001 roku. Wtedy choremu pobrano komórki, wprowadzono do nich RNA, a całość ponownie wstrzyknięto pacjentowi. mRNA to kopia genu zawierająca np. informację o tym, w jaki sposób komórka ma wyprodukować konkretne białko. Ze znajdującego się w jądrze komórki DNA organizm przenosi mRNA do cytoplazmy komórki, tam wykonywana jest zawarta w mRNA instrukcja i wytwarzane jest konkretne białko. A to białka odpowiadają za większość procesów fizjologicznych naszego organizmu. Uczony z Wrocławia zapowiada, że wykorzysta technologię mRNA do leczenia osteoporozy. Nad tym rozwiązaniem zaczęliśmy pracować już kilka lat temu, przed pandemią. Punktem wyjścia były badania związane z końmi. Razem z Pawłem Golonką zaproponowaliśmy podobną technologię, choć jeszcze bez mRNA, do wypełniania cyst podchrzęstnych u koni. Wszystko się dobrze powiodło, opublikowaliśmy pracę ukazującą spektakularne wyniki badań klinicznych, więc zacząłem się zastanawiać nad tym, jak to doświadczenie wykorzystać w szukaniu rozwiązań terapeutycznych dla ludzi. Bo po pierwsze, konie mogą pomagać medycynie człowieka, ale po drugie – czy chodzi o to, by pomagać setkom koni, czy milionom ludzi?. Projekt naukowca, który zyskał uznanie NCBiR, to pomysł na wykorzystanie mRNA do hamowania osteoklastów – komórek kościogubnych, mających zdolność rozpuszczania tkanki kostnej – i promocji osteoblastów, komórek tworzących kości. To radykalna zmiana myślenia. Do tej pory myślano o tym, by do kości dostarczać wapń. Ja zamierzam wykorzystać komórki, które ten wapń produkują, bo problemem osteoporozy są nadaktywne komórki kościogubne, tj. te „zjadające” kość. Z kolei te, które ją budują i umożliwiają deponowanie wapnia w kości, są wyraźnie słabsze. Wpadłem więc na pomysł, by na poziomie postranskrypcyjnym zablokować komórki osteoporotyczne, a więc osteoklasty, a aktywować komórki osteoblastyczne, tym samym doprowadzając do sytuacji, w której będą one deponować kluczowe białka w macierzy kostnej i sprzyjać odkładaniu się wapnia, a więc budować kość w miejscu ubytku, wyjaśnia uczony. Uczonemu zależy też, by cały proces był niezwykle precyzyjny. Zawierający mRNA biomateriał ma być wprowadzany w miejsce konkretnego ubytku, a lekarz ma sterować przebiegiem leczenia. Najpierw mają otwierać się mikrokapsułki z mRNA, które zahamuje osteoklasty, a następnie kapsułki z mRNA pobudzającym osteoblasty. Profesor Marycz chce zawieszać mRNA nie w obecnie stosowanych lipidach, a w hydroksyapatytach, związkach nieorganicznych połączonych z nanocząstkami magnetyczymi. Naukowiec powołał już interdyscyplinarny zespół naukowy i zaprasza do współpracy. Mój projekt daje szansę rozwoju całej grupie badawczej, a co więcej, pozwala rozbudować zespół – dlatego też zwracam się do młodych i ambitnych naukowców – jeśli kogoś interesują innowacyjne badania z zakresu spersonalizowanej i precyzyjnej medycyny  translacyjnej, to zapraszam do aplikacji i zgłoszenia się do mnie, aby dać sobie szansę udziału w projekcie, który otwiera możliwość rozwoju i udziału w przełomowych badaniach. Marycz już stawia sobie kolejne ambitne cele. Jeśli uda mu się stworzyć szczepionkę mRNA przeciwko osteoporozie, rozpocznie prace nad szczepionką przeciwko rakowi prostaty i jelita grubego. « powrót do artykułu
  3. Pojawiła się nadzieja dla miłośników psów uczulonych na swoich pupili. Naukowcy z Osaka Prefecture University zidentyfikowali grupę molekuł psich alergenów, które mogą być odpowiedzialne za reakcję układu immunologicznego ludzi. To pierwszy krok ku opracowaniu szczepionki odczulającej. Dotychczas wiele prac naukowcy opisywało naturę i postępy alergii na psy (alergeny występują głównie w ich łupieżu, ślinie i tkance nabłonkowej), jednak niewielu uczonych skupiało się na próbie zwalczania samej alergii. Teraz po raz pierwszy udało się zidentyfikować te części molekuł alergenów, które prawdopodobnie uczulają ludzi. W ciągu lat badań odkryto siedem alergenów nazwanych alergenami Canis familiaris i ponumerowano je od 1 do 7. Pierwszy z nich, Can f 1, odpowiada aż za 50-75 procent przypadków alergii u ludzi. Jest on obecny w tkance języka psów, śliniankach i w skórze. Uczeni mieli jednak dotychczas problem ze zidentyfikowaniem epitopów IgE Can f 1. Epitopy to te fragmenty antygenów, które są rozpoznawane przez układ odpornościowy i wywołują jego reakcję. Epitopy łączą się ze specyficznymi receptorami antygenowymi na powierzchni przeciwciał, limfocytów B lub T. U ssaków głównym przeciwciałem (immunoglobuliną) odpowiedzialnym za reakcje alergiczne jest IgE. Japońscy naukowcy, jako pierwsi wykorzystali krystalografię rentgenowską do określenia całej struktury Can f 1. Przede wszystkim odkryli, że wzorzec zwijania tego biała jest na pierwszy rzut oka podobny do procesu zachodzącego też w przypadku trzech innych Can f. Jednak rozkład ładunku elektrycznych na powierzchni białka był zupełnie inny, co sugerowało, że miejsca występowania tych ładunków są dobrymi kandydatami na epitopy IgE. Uczeni mówią, że uzyskane przez nich dane mogą być punktem wyjścia do dalszych badań i analiz, które wskażą na konkretne epitopy IgE. I, jak podkreślają, badania te dowodzą, że stworzenie szczepionki odczulającej na psy jest w zasięgu ręki. « powrót do artykułu
  4. Połączenie łagodnej infekcji i szczepionki wydaje się najbardziej efektywnym czynnikiem chroniącym przed COVID-19, informują naukowcy z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA). Główny wniosek z naszych badań jest taki, że jeśli ktoś zachorował na COVID, a następnie został zaszczepiony, to nie tylko znacząco zwiększa się u niego liczba przeciwciał, ale rośnie ich jakość. To zaś zwiększa szanse, że przeciwciała te poradzą sobie z kolejnymi odmianami koronawirusa, mówi profesor Otto Yang z wydziałul chorób zakaźnych, mikrobiologii, immunologii i genetyki molekularnej. Wydaje się, że kolejne wystawienia układu odpornościowego na kontakt z białkiem kolca (białkiem S) pozwala układowi odpornościowemu na udoskonalanie przeciwciał u osoby, która chorowała na COVID-19. Uczony dodaje, że nie jest pewne, czy takie same korzyści odnoszą osoby, które przyjmują kolejne dawki szczepionki, ale nie chorowały. Grupa Yanga porównała przeciwciała 15 osób, które były zaszczepione, ale nie zetknęły się wcześniej z wirusem SARS-CoV-2 z przeciwciałami 10 osób, które nie były jeszcze zaszczepione, ale niedawno zaraziły się koronawirusem. Kilkanaście miesięcy później 10 wspomnianych osób z drugiej grupy było w pełni zaszczepionych i naukowcy ponownie zbadali ich przeciwciała. Uczeni sprawdzili, jak przeciwciała reagują na białko S różnych mutacji wirusa. Odkryli, że zarówno w przypadku osób zaszczepionych, które nie chorowały oraz tych, które chorowały, ale nie były szczepione, możliwości zwalczania wirusa przez przeciwciała spadały w podobnym stopniu gdy pojawiła się nowa mutacja. Jednak gdy osoby, które wcześniej chorowały na COVID-19, były rok po chorobie już w pełni zaszczepione, ich przeciwciała były zdolne do rozpoznania wszystkich mutacji koronawirusa, na których je testowano. Nie można wykluczyć, że odporność SARS-CoV-2 na działanie przeciwciał może zostać przełamana poprzez ich dalsze dojrzewanie w wyniki powtarzanej wskutek szczepienia ekspozycji na antygen, nawet jeśli sama szczepionka nie jest skierowana przeciwko danemu wariantowi, stwierdzają naukowcy. Przypuszczają oni, że kolejne szczepienia mogą działać podobnie jak szczepienia po przechorowaniu, jednak jest to tylko przypuszczenie, które wymagają weryfikacji. Ze szczegółami badań można zapoznać się w artykule Previous Infection Combined with Vaccination Produces Neutralizing Antibodies with Potency against SARS-CoV-2 Variants. « powrót do artykułu
  5. Amerykański Narodowy Instytut Alergii i Chorób Zakaźnych (NIAID) poinformował, że wstępne badania szczepionki mRNA przeciwko HIV dały pozytywne rezultaty. Badania,przeprowadzone na myszach oraz nie człowiekowatych wykazały, że szczepionka jest bezpieczna i wygenerowała pożądaną reakcję przeciwciał i komórek w odpowiedzi na wirusa podobnego do HIV. Rezusy, którym podano pierwszą dawkę szczepionki, a następnie dawki przypominające, były narażone na 79% mniejsze ryzyko infekcji SHIV (simian-human immunodeficiency virus) niż zwierzęta niezaszczepione. Pomimo czterech dekad poszukiwań, szczepionka przeciwko HIV wciąż nie istnieje. Ta eksperymentalna szczepionka mRNA ma liczne cechy, dzięki którym może pokonać niedociągnięcia innych eksperymentalnych szczepionek przeciwko HIV. To obiecująca technologia, mówi dyrektor NIAID, Anthony Fauci. Eksperymentalna szczepionka przeciwko HIV zawiera mRNA kodujące dwie kluczowe proteiny wirusa HIV – Env i Gag. Po domięśniowym podaniu komórki zaszczepionych zwierząt wytwarzają cząstki podobne do wirusa (VLP), zawierające Env na swojej powierzchni. Jako, że nie mają pełnego materiału genetycznego nie mogą się ani namnażać, ani wywołać choroby. Jednak wywołują reakcję ze strony układu odpornościowego. Podczas badań na myszach po podaniu dwóch dawek szczepionki przeciwciała pojawiły się u wszystkich zwierząt. Proteina Env, którą wytworzyły myszy z instrukcji przekazanych przez mRNA zawarte w szczepionkach, był bardzo podobny do Env wytwarzanej przez wirusa HIV. To duży postęp w porównaniu z wcześniejszymi szczepionkami. Prezentacja na powierzchni każdej VLP licznych kopii autentycznej osłonki wirusa HIV to jedna z olbrzymich zalet naszej szczepionki. Dzięki temu zaszczepienie symuluje prawdziwą infekcję i może odegrać olbrzymią rolę w uzyskaniu pożądanej reakcji ze strony układu odpornościowego, mówi główny autor badań, doktor Paolo Lusso. Po obiecujących testach na myszach, szczepionka Env-Gag VLP mRNA była testowana na makakach. Na różnych grupach zwierząt zastosowano różne schematy podawania szczepionki. Jednak każdej grupie po podaniu oryginalnej szczepionki przez rok podawano dawki przypominające składające się z Gag mRNA i ENV mRNA wirusów HIV z dwóch innych kladów niż ten, którego białka wykorzystano w oryginalnej szczepionce. Używano różnych wariantów wirusa, by jak najbardziej uwrażliwić układ odpornościowy na najbardziej zachowywany pomiędzy wirusami obszar Env. Mimo, że podawano wysokie dawki mRNA zwierzęta dobrze tolerowały szczepionkę, pojawiły się tylko łagodne przejściowe skutki uboczne, jak np. utrata apetytu. Do 58. tygodnia wszystkie zwierzęta posiadały w organizmach mierzalny poziom przeciwciał, które atakowały większość z 12 testowanych szczepów HIV. Od początku 60. tygodnia wszystkie zaszczepione zwierzęta oraz niezaszczepioną grupę kontrolną, co tydzień wystawiano wirusa SHIV, podając im go do nosa. Po 13 tygodniach 2 z 7 zaszczepionych makaków wciąż nie były zainfekowane. Makaki, które nie były szczepione, zaraziły się średnio po 3 tygodniach. Makaki, które były zaszczepione i się zaraziły, zarażały się średnio po 8 tygodniach. Wirusa SHIV użyto, gdyż HIV-1 nie replikuje się u makaków. Obecnie pracujemy nad udoskonaleniem zarówno samej szczepionki, jak i protokołu szczepień. To powinno zwiększyć efektywność naszej szczepionki, dzięki czemu potrzebna będzie mniejsza liczba dawek przypominających. Jeśli szczepionka okaże się bezpieczna i efektywna, przygotujemy się do I fazy badań klinicznych na zdrowych dorosłych ochotnikach, mówi doktor Lusso. « powrót do artykułu
  6. Wstępne badania nad rzadkimi przypadkami zakrzepicy, do których doszło po przyjęciu szczepionek Astra Zenaca i Johnson & Johnson, sugerują, że przyczyną problemów może być sposób, w jaki szczepionki te dostarczają do komórek instrukcje na temat białka szczytowego koronawirusa. Produkty obu firm to szczepionki wektorowe, w których jako wektora (nośnika) używa się nieszkodliwego wirusa, który przenosi instrukcje DNA, na podstawie których komórki wytwarzają białko kolca SARS-CoV-2 wywołując reakcję immunologiczną organizmu. Rolf Marschalek i jego zespół z Uniwersytetu Goethego we Frankfurcie informują, że DNA jest dostarczane do jądra komórkowego, a nie do otaczającej je cytoplazmy, gdzie zwykle wirus produkuje białka. W jądrze komórkowym część dostarczonego DNA, które jest odpowiedzialne za kodowanie białka kolca, ulega rozpadowi, przez co powstają niekompletne wersje białka kolca, które nie są w stanie przyłączyć się do zewnętrznej błony komórkowej, gdzie zostałyby wykryte przez układ odpornościowy i zaatakowane. Zamiast tego te niekompletne białka kolca są uwalniane do krwi, gdzie w rzadkich przypadkach mogą prowadzić do powstania zakrzepów. Marschalek mówi, że rozwiązaniem problemu byłoby zmodyfikowanie sekwencji genetycznej w szczepionce tak, by zapobiegać wspomnianemu rozpadowi. Przyznał, że firma Johnson & Johnson już skontaktowała się z jego laboratorium z prośbą o poradę i próbuje zoptymalizować swoją szczepionkę. Wyniki badań niemieckich naukowców zostały upublicznione w sieci. Artykuł nie został jeszcze zrecenzowany. « powrót do artykułu
  7. Na łamach American Journal of Obstetrics and Gynecology opublikowano wyniki badań nad działaniem szczepionek Moderny i Pfizera na kobiety w ciąży. Z badań wynika, że  u ciężarnych pojawiła się równie silna reakcja immunologiczna, co u nie będących w ciąży kobiet w wieku rozrodczym. Dane sugerują, że szczepionka jest bezpieczna i oferuje przynajmniej częściową ochronę dziecku za pośrednictwem łożyska oraz noworodkowi za pośrednictwem mleka matki. Badania były jednak prowadzone na małej grupie 131 kobiet. Działanie szczepionek testowano na 84 ciężarnych, 31 karmiących i 16 nie będących w ciąży kobietach. Uzyskane w tej grupie wyniki porównano z badaniami krwi 37 kobiet, które zaraziły się COVID-19 w czasie ciąży. To wstępne dowody. Biorąc jednak pod uwagę wstępne dane, w przypadku kobiet ciężarnych i karmiących szczepionki działają podobnie, jak u kobiet nie będących w ciąży i zapewniają lepszą ochronę niż nabyci odporności drogą naturalną, czyli przez zarażenie się wirusem, mówi doktor Denise Jamieson z Emory University School of Medicine, która nie była zaangażowana w badania. Naukowcy od początku podejrzewali, że szczepionki przeciwko COVID-19 będą efektywne i bezpieczne dla kobiet w ciąży i kobiet karmiących, jednak nie było co do tego pewności, gdyż nie prowadzono badań na ten temat. Profesor Stephanie Gaw z University of California mówi, że powyższe badania to ważny pierwszy krok w kierunku potwierdzenia przypuszczeń uczonych. W badaniach uwzględniono szczepionki mRNA firm Moderna i Pfizer. Obecne w nich mRNA instruuje komórki organizmu, by wytwarzały białko kolca (białko S), dzięki czemu nasz układ odpornościowy uczy się je rozpoznawać i zwalczać. Następnie mRNA ulega szybkiej degradacji, pozostając w organizmie jedynie przez kilka dni. Od uczestniczek badań pobierano krew w czasie podania pierwszej oraz drugiej dawki szczepionki, oraz po 6 tygodniach od drugiej szczepionki. Od kobiet, które urodziły w czasie trwania badań, pobierano też krew podczas porodu. W czasie badań rodziło 13 kobiet. Od 10 z nich pobrano krew pępowinową. W każdym z tych przypadków w krwi znaleziono przeciwciała wygenerowane w wyniku działania szczepionki, co sugeruje, że szczepionka chroni tez dziecko. Również wszystkie próbki mleka pobrane od karmiących wykazały obecność przeciwciał. Obecnie nie wiadomo, jak silna jest ochrona zapewniania czy to dzieciom w łonie matki, czy dzieciom karmionym jej mlekiem. U badanych kobiet pojawiły się podobne typowe objawy podania szczepionki, jak ból głowy, zaczerwienienie czy swędzenie w miejscu podania. Nie zauważono tutaj różnic pomiędzy ciężarnymi, karmiącymi i nie będącymi w ciąży. W każdej z tych trzech grup były kobiety, które doświadczyły gorączki i dreszczy, częściej po drugiej dawce. Tego typu zjawiska pojawiły się u około 1/3 ciężarny. Autorzy badań podkreślają, że kobiety ciężarne, które zostaną zaszczepione, powinny być bardziej szczegółowo monitorowane właśnie pod kątem gorączki. Wiadomo bowiem, że gorączka, szczególnie długotrwała, jest powiązana ze zwiększonym ryzykiem poronienia i pojawienia się wad u dziecka. Szczególnie niebezpieczna jest wysoka długotrwała gorączka w pierwszym trymestrze ciąży. Doktor Jamieson mówi, że jeśli u zaszczepionej ciężarnej pojawi się gorączka należy zbić ją paracetamolem. Uczona zauważa, że sam COVID powoduje długotrwałą gorączkę, więc zachorowanie również niesie ze sobą ryzyko. Badania nie wyjaśniają jednak wszystkich wątpliwości. Nie wiemy na przykład, czy szczepienie nie niesie ze sobą ryzyka dla dziecka w łonie matki. Takie ryzyko mogłoby się pojawić, gdyby mRNA dotarło do łożyska i wywołał ostan zapalny lub też gdyby przekroczyło łożysko i wywołało reakcję immunologiczną u dziecka, mówi profesor Gaw. Jednak, jako że mRNA ulega szybkiemu rozpadowi, jest mało prawdopodobne by jego większe ilości dotarły do łożyska. Mimo to profesor Gaw i jej zespół planują przeprowadzić badania pod kątem występowania stanów zapalnych u zaszczepionych ciężarnych i ich dzieci po urodzeniu. Otwartym pozostaje też odpowiedź na pytanie, czy mRNA może przedostać się do mleka matki. Gaw z kolegami zbadali pod tym kątem 6 kobiet i nie znaleźli w ich mleku śladów mRNA, jednak kwestia ta powinna być bardziej szczegółowo przeanalizowana. Naukowcy chcieliby się dowiedzieć też, czy ciąża u kobiet zaszczepionych i niezaszczepionych przebiega podobnie. Amerykańskie Centra Kontroli i Prewencji Chorób zbierają dane na ten temat za pośrednictwem systemu V-safe. Dotychczas do sytemu tego trafiły dane ponad 30 000 ciężarnych, które otrzymały szczepionkę Moderny lub Pfizera. Spośród nich 275 kobiet już urodziło, a odsetek komplikacji w tej grupie nie był wyższy niż jest to zazwyczaj. To mocne potwierdzenie bezpieczeństwa szczepionek, ale wciąż potrzebujemy więcej danych, mówi Jamieson. Profesor Gaw przypomina, że uzyskane dotychczas dane sugerują, iż ciąża zwiększa ryzyko ciężkiego przebiegu COVID-19 i zgonu. Dlatego też uczona mówi, że mimo wszystko ciężarne kobiety, które są narażone na wysokie ryzyko zarażenia, powinny poważnie zastanowić się nad zaszczepieniem się. « powrót do artykułu
  8. Naukowcy z Pittsburgh University opisali, w jaki sposób ewoluuje SARS-CoV-2 by uniknąć ataku ze strony przeciwciał. Okazuje się, że wirus usuwa fragmenty swojego kodu genetycznego. Jako, że fragmenty te częściowo należą do sekwencji opisującej kształt proteiny szczytowej (białka S), to po pewnym czasem zmiany w tej proteinie są na tyle duże, iż przeciwciała nie mogą się do białka przyczepić. Jako, że dochodzi tutaj do usunięcia fragmentu kodu genetycznego, to nie działają w tym przypadku mechanizmy, które naprawiają błędy w kodzie. Nie ma tutaj bowiem czego naprawiać. Nie możesz naprawić czegoś, czego nie ma. Gdy fragment znika, to znika na dobre. A jeśli znika coś, co decyduje o ważnej części wirusa, widzianej przez przeciwciało, to przeciwciała nie działają, mówi jeden z autorów badań, doktor Paul Duprex, dyrektor Center for Vaccine Research. Zespół Duprexa po raz pierwszy obserwował taką „grę w kotka i myszkę” pomiędzy wirusem a przeciwciałami u pewnego pacjenta z osłabionym układem odpornościowym, który przez 74 dni był zarażony SARS-CoV-2, aż w końcu zmarł an COVID-19. Te 74 dni to bardzo długi czas, w którym obie strony – wirus i układ odpornościowy – toczą między sobą swoistą wojnę ewolucyjną. Duprex poprosił następnie o pomoc doktora Kevina McCatharty'ego, który specjalizuje się w badaniu wirusa grypy, mistrza w unikaniu układu odpornościowego. Razem postanowili sprawdzić, czy to, co obserwowano u wspomnianego wyżej pacjenta jest szerszym trendem. Badania rozpoczęły się latem 2020 roku. Wówczas sądzono, że SARS-CoV-2 jest dość stabilnym wirusem. Duprex i McCarthy zaczęli analizować bazę danych, w której laboratoria z całego świata umieszczają informacje o zbadanych przez siebie wirusach. Im bardziej przyglądali się bazie, tym wyraźniej widzieli, że wirus cały czas usuwa fragmenty kodu, wzorzec powtarzał się wszędzie. Do delecji dochodziło w tych samych miejscach sekwencji genetycznej. Miejscach, w których wirus może tolerować utratę fragmentu kodu bez ryzyka, że straci możliwość dostania się do komórki. Już w październiku ubiegłego roku McCarthy zauważył delecje, które obecnie znamy pod nazwą „brytyjskiego wariantu”, czyli B.1.1.7. Wtedy jeszcze wariant ten nie miał nazwy, nie został zidentyfikowany, nie zarażał powszechnie. Jednak w bazie danych już został umieszczony. Nikt wówczas nie wiedział, że odegra on jakąś rolę w epidemii. Opublikowany w Science artykuł pokazuje, że SARS-CoV-2 prawdopodobnie poradzi sobie w przyszłości z istniejącymi obecnie szczepionkami i lekami. W tej chwili jednak nie jesteśmy w stanie stwierdzić, kiedy to nastąpi. Nie wiemy, czy dostępne obecnie szczepionki ochronią nas przez pół roku, rok czy pięć lat. Dopiero musimy określić, jak bardzo delecje te wpłyną na skuteczność szczepionek. W pewnym momencie będziemy musieli rozpocząć prace nad zmianą szczepionek, a przynajmniej przygotować się do tego, mówi McCarthy. « powrót do artykułu
  9. Uniwersytet w Oxfordzie rozpoczyna badania, których celem jest sprawdzenie, jakie skutki przyniesie szczepienie ludzi dwoma różnymi szczepionkami. Korzystne wyniki takich badań mogą być niezwykle pomocne w sytuacji ciągłego niedoboru szczepionek. Jeśli testy wypadną pomyślnie, programy szczepień będą łatwiejsze do prowadzenia, gdyż zyskamy na elastyczności i osoby, które otrzymały pierwszą dawkę od jednego producenta, będą mogły otrzymać drugą szczepionkę innego producenta. Jeśli wykażemy, że można stosować szczepionki naprzemiennie, znakomicie zwiększymy elastyczność szczepień i możemy zyskać informacje dotyczące zapewnienia lepszej ochrony przed nowymi wariantami wirusa, mówi profesor Matthew Snape, który będzie odpowiadał za naukową stronę testów. Do współpracy przy studium COVID-19 Heterologous Prime Boost zostanie zaproszonych ponad 800 ochotników w wieku co najmniej 50 lat. Część ochotników będzie najpierw szczepiona specyfikiem opracowanym przez Oxford-AstraZeneca, a następnie szczepionką Pfizera lub Oxford-AstraZeneca, a część najpierw otrzyma szczepionkę Pfizera, a drugą dawką będzie środek Oxford-AstraZeneca lub Pfizera. Będą obowiązywały też dwa różne schematy szczepienia. Niektórzy otrzymają obie dawki w odstępach 4 tygodni, a inni w odstępach 12 tygodni. Naukowcy za pomocą badań krwi będą monitorowali reakcję układu odpornościowego na szczepionki. Testy potrwają w sumie 13 miesięcy. Jeśli wypadną pomyślnie, ich wyniki zostaną przeanalizowane przez MHRA, brytyjski urząd odpowiedzialny za rejestrację szczepionek, który ewentualnie podejmie decyzję o wdrożeniu szczepień różnymi specyfikami. Obecnie nie wiadomo, czy taka metoda szczepień może zadziałać. Jednak pewną nadzieję daje tutaj rosyjska szczepionka Sputnik. Ma ona 91-procentową skuteczność, a obie dawki różnią się nieznacznie od siebie. Jednak różnica jest niewielka, ponadto są obie dawki to ta sama szczepionka oparta na adenowirusie. Tymczasem szczepionka Pfizera to specyfik bazujący a mRNA, a środek autorstwa Oxford-AstraZeneca to tradycyjna szczepionka. « powrót do artykułu
  10. Naukowcy z Dana-Farber Cancer Institute, Brigham and Women's Hospital oraz Broad Institute poinformowali właśnie na łamach Nature Medicine, że szczepionka, podana przed czterema laty niewielkiej grupie pacjentów cierpiących na czerniaka, pobudziła układ odpornościowy do tego stopnia, iż wciąż kontroluje on rozprzestrzenianie się komórek tego niebezpiecznego nowotworu. Mowa tutaj o spersonalizowanej szczepionce NeoVax, która jest wycelowana w konkretne białka w komórkach guza każdego z pacjentów. Po czterech latach okazało się, że dzięki szczepieniu układ odpornościowy pacjentów nie tylko potrafi kontrolować komórki zawierające proteinę, przeciwko której szczepionka została przygotowana, ale rozpoznaje też inne proteiny z komórek nowotworowych. Odkrycie to pokazuje, ze spersonalizowana szczepionka antygenowa może stymulować długotrwałą odpowiedź immunologiczną u pacjentów z czerniakiem, mówi główna autorka badań, Catherine J. Wu. Zdobyliśmy dowody, że początkowa celowana odpowiedź immunologiczna z czasem uległa rozszerzeniu, dając pacjentom ochronę przed chorobą. To I faza badań klinicznych, w której udział wzięło 8 pacjentów. Wszystkim najpierw usunięto guzy chirurgicznie, jednak zaklasyfikowano ich jako osoby o wysokim ryzyku nawrotu nowotworu. Każdy z nich po zabiegu został zaszczepiony NeoVax, a szczepienie odbyło się średnio 18 tygodni po usunięciu guza. Szczepionka NeoVax wykonana jest z epitopów. To fragmenty antygenów łączące się bezpośrednio z wolnym przeciwciałem, receptorem limfocytu B lub T. Epitopy w NeoVax pochodzą z neoantygenów. To specyficzne dla nowotworu antygeny, które powstają w wyniku niestabilności genetycznej komórek nowotworu prowadzącej do licznych mutacji i powstania neoantygenów. Takie specyficzne dla nowotworu neoantygeny mają duży potencjał pobudzania odpowiedzi układu odpornościowego, gdyż nie występują na powierzchni zdrowych komórek. Niestety, w trakcie rozwoju choroby nowotworowej guz wytwarza liczne mechanizmy obronne, które osłabiają lub nawet całkowicie hamują odpowiedź immunologiczną organizmu. Stąd też pomysł na wspomożenie organizmu szczepionką w walce z nowotworem. Aby wykonać szczepionkę NeoVax naukowcy najpierw sekwencjonują DNA z komórek nowotworowych pacjenta, a następnie skanują je, by zidentyfikować kluczowe epitopy w neoantygenach. Po podaniu szczepionki limfocyty T atakują wszystkie komórki, na których powierzchni znajdują się takie epitopy. „Nawołują” one komórki nowotworowe do zwiększenia produkcji inhibitora cyklu komórkowego, co w efekcie prowadzi do śmierci komórki. Teraz dowiadujemy się, że średnio cztery lata po podaniu szczepionki 8 pacjentom wszyscy żyją, a u 6 z nich nie ma oznak aktywnie przebiegającej choroby. Po przeprowadzeniu analizy limfocytów T u każdego z pacjentów naukowcy zauważyli, że komórki odpornościowe atakują nie tylko te komórki nowotworowe, na powierzchni których występują takie epitopy, jak podane w szczepionce. Limfocyty nauczyły się rozpoznawania także innych epitopów na powierzchni komórek czerniaka. Wykryte limfocyty mają też cechy limfocytów pamięci, odpowiedzialnych za długotrwałą odporność. Dwóch pacjentów, u których nowotwór dał przerzuty do płuc, otrzymało inhibitory cyklu komórkowego. To środki, które powodują, że w cyklu komórkowym przy stwierdzeniu nieprawidłowości rozwoju znowu przeważają sygnały hamujące rozwój. Po podaniu inhibitorów stwierdzono, że limfocyty T przedostały się do wnętrza tkanki nowotworowej, gdzie mogą być najbardziej śmiertelne dla komórek nowotworu. Znaleźliśmy dowody na istnienie długotrwałej silnej odpowiedzi immunologicznej. Limfocyty T biorą na cel komórki nowotworu i zachowują pamięć o epitopach, przeciwko którym nakierowała je szczepionka. Doszło do aktywacji limfocytów T, które zabijają komórki nowotworu i – co niezwykle ważne – nauczyły się rozpoznawać epitopy, których nie było w oryginalnej szczepionce, mówi doktor Patrick A. Ott. Długotrwałe działanie i rozszerzenie zakresu atakowanych komórek nowotworowych przez limfocyty T wskazuje, że spersonalizowane peptydowe szczepionki neoantygenowe mogą pomagać w kontrolowaniu nowotworów dających przerzuty, szczególnie gdy połączy się je z inhibitorami punktów kontrolnych. Więcej na temat badań można przeczytać w artykułach Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma oraz Advances in the development of personalized neoantigen-based therapeutic cancer vaccines « powrót do artykułu
  11. Na Uniwersytecie w Umea udało się uzyskać niezwykle szczegółowy obraz adenowirusa jelitowego. Okazało się, że jest on jedną z najbardziej złożonych struktur biologicznych, jakie dotychczas obrazowano na poziomie atomowym. Dokładne określenie jego struktury pomoże w opracowaniu szczepionki przeciwko wirusowi, który każdego roku zabija ponad 50 000 dzieci w wieku poniżej 5. roku życia. Adenowirusy to przede wszystkim wirusy układu oddechowego. Te atakujące układ pokarmowy są mniej znane. Muszą być one wyposażone w mechanizmy umożliwiające im przetrwanie kwaśnego środowiska żołądka, by mogły przez niego przejść i zarazić jelita. Szwedzcy naukowcy, posługując się mikroskopem krioelektronowym byli w stanie stworzyć trójwymiarowy obraz ludzkiego adenowirusa jelitowego HAdV-F41 i zobrazować patogen do poziomu atomowego. Dowiedzieli się dzięki temu, że powłoka chroniąca wirusa przed kwasem żołądkowym składa się z dwóch tysięcy molekuł białek, zbudowanych w sumie z sześciu milionów atomów. Nasze prace pozwalają nam lepiej zrozumieć, w jaki sposób wirus przedostaje się przez żołądek i jelita. Dalsze prace dadzą odpowiedź na pytanie, czy wiedza te przyda się do opracowania szczepionki, która sobie z wirusem poradzi i będzie podawana doustnie, a nie za pomocą zastrzyku, mówi Lars-Anders Carlson. Badania wykazały, że adenowirus jelitowy nie zmieniaj struktury gdy trafia na kwaśne środowisko. Zauważono też inne różnice pomiędzy adenowirusem jelitowym, a oddechowymi. Na te drugie istnieje szczepionka. Wszystkie te informacje ułatwią zrozumienie, jak przebiega infekcja i jak prowadzi do śmierci. Badania nad adenowirusem jelitowym mogą pomóc też w walce z... COVID-19. Wiele opracowywanych szczepionek przeciwko tej chorobie bazuje na zmodyfikowanych adenowirusach. Jeśli udałoby się wykorzystać w tym celu adenowirusa jelitowego, to istnieje szansa na stworzenie szczepionki doustnej. To zaś znakomicie ułatwiłoby szczepienia. « powrót do artykułu
  12. Europejska Agencja Leków (EMA) poinformowała, że podczas grudniowego cyberataku przestępcy uzyskali dostęp do informacji nt. leków i szczepionek przeciwko COVID-19. Teraz dane dotyczące szczepionki Pfizera zostały przez nich udostępnione w internecie W trakcie prowadzonego śledztwa ws. ataku na EMA stwierdzono, że napastnicy nielegalnie zyskali dostęp do należących do stron trzecich dokumentów związanych z lekami i szczepionkami przeciwko COVID-19. Informacje te wyciekły do internetu. Organy ścigania podjęły odpowiednie działania, oświadczyli przedstawiciele EMA. To nie pierwszy raz, gdy cyberprzestępcy biorą na cel firmy i organizacje związane z rozwojem i dystrybucją szczepionek przeciwko COVID-19. Już w maju ubiegłego roku brytyjskie Narodowe Centrum Cyberbezpieczeństwa poinformowało, że brytyjskie uniwersytety i instytucje naukowe znalazły się na celowniku cyberprzestępców, a celem ataków jest zdobycie informacji dotyczących badań nad koronawirusem. Wspomniane grupy przestępce były prawdopodobnie powiązane z rządami Rosji, Iranu i Chin. Z kolei w listopadzie Microsoft poinformował, że powiązana z Moskwą grupa Fancy Bear oraz północnokoreańskie grupy Lazarus i Cerium zaatakowały siedem firm farmaceutycznych pracujących nad szczepionkami. Atak na EMA nie zakłócił działania samej Agencji, nie wpłynął też na dystrybucję szczepionek. « powrót do artykułu
  13. Europejska Agencja Leków (EMA) zatwierdziła do warunkowego użycia szczepionkę firmy Moderna. Można ją podawać osobom, które ukończyły 18. rok życia. To druga szczepionka przeciwko COVID-19 dopuszczona na terenie Unii Europejskiej. Po przeanalizowaniu wszystkich dostępnych danych, specjaliści z EMA uznali, że szczepionka Moderny spełnia standardy UE i jest bezpieczna. Ta szczepionka to kolejne narzędzie do walki z obecną sytuacją. To dowód poświęcenia i wysiłku ludzi, którzy spowodowali, że rok po ogłoszeniu pandemii przez WHO mamy pozytywną rekomendację drugiej szczepionki, stwierdziła Emer Cooke, dyrektor EMA. Produkt Moderny to druga szczepionka przeciwko COVID-19 dopuszczona na terenie UE. Podobnie jak szczepionka Pfizera jest ona oparta na mRNA. Była ona testowana na około 28 000 osób w wieku 18–94 lat. Połowa z nich otrzymała szczepionkę, a połowa placebo. Badania wykazały, że jest ona skuteczna w 94,1%. W grupie 14 134 osób, które otrzymały szczepionkę, COVID-19 stwierdzono u 11 osób. Z kolei w grupie 14 073 osób, które otrzymały placebo, zachorowało 185 osób. Z kolei wśród osób z grup ryzyka, u których z większym prawdopodobieństwem COVID-19 ma ciężki przebieg, skuteczność szczepionki wyniosła 90,9%. Szczepionka Moderny podawana jest w dwóch dawka, w odstępie 28 dni. Najpowszechniej występujące skutki uboczne po jej podaniu to ból i zaczerwienienie w miejscu podania, dreszcze, gorączka, powiększone węzły chłonne pod ramieniem, bóle głowy, bóle mięśni i stawów, nudności, wymioty oraz zmęczenie. Objawy te mają zwykle przebieg łagodny lub średni i ustępują w ciągu kilku dni. Tymczasem w USA, gdzie od pewnego czasu zatwierdzone są obie szczepionki – Moderny i Pfizera – dopuszczone obecnie w UE, tamtejsze Centra Zapobiegania i Prewencji Chorób (CDC) poinformowały wczoraj o dodatkowych 21 osobach, które doświadczyły anafilaksji po podaniu szczepionki. Tym samym liczba takich przypadków wyniosła 29 na 1,9 miliona zaszczepionych, czyli 11,1 na milion. Wśród wspomnianych 21 osób 20 już zostało wyleczonych. Odsetek anafilaksji jest więc wyższy niż w przypadku szczepionki na grypę, gdzie wynosi 1,3 na milion zaszczepionych. CDC zapewnia, że wciąż pozostaje on na niskim poziomie, a ryzyko związane ze szczepieniem jest znacznie mniejsze niż ryzyko związane z zachorowaniem. W najbliższym czasie EMA ma upublicznić szczegółowy raport z prac nad zatwierdzeniem szczepionki Moderny oraz pełną ocenę ryzyka. W „odpowiednim czasie” na stronie EMA zostanie też opublikowany raport z badań kliniczych dostarczony przez Modernę. « powrót do artykułu
  14. Soumya Swaminathan, główny naukowiec WHO, powiedziała, że osoby, które zostały zaszczepione przeciwko COVID-19 wciąż powinny odbywać kwarantannę gdy podróżują. Obecnie zebrane dowody nie pozwalają bowiem jednoznacznie stwierdzić, że szczepionka chroni przed zarażeniem, a zatem przed dalszym rozprzestrzenianiem choroby. Taką odpowiedź usłyszeli dziennikarze pytający, czy kraje, które wobec przyjezdnych stosują kwarantannę powinny ją utrzymać w przypadku osób zaszczepionych, chcących do tych krajów wjechać. Nie sądzę, byśmy w tej chwili dysponowali dowodami, pozwalającymi jednoznacznie stwierdzić, że którakolwiek ze szczepionek chroni przed zarażaniem, a zatem przed dalszym rozprzestrzenianiem choroby. W tej sytuacji musimy przyjąć, że osoby zaszczepione powinny przestrzegać takich samych zasad jak osoby niezaszczepione, do czasu aż osiągniemy pewien poziom odporności populacyjnej. Sytuacja jest bardzo dynamiczna, stwierdziła Swaminathan. W tej chwili, jak mówi Swaminathan, wiemy, że zatwierdzone szczepionki zapobiegają ciężkiemu przebiegowi COVID-19 i zgonom. Nie wiadomo, czy zapobiegają rozprzestrzenianiu się choroby. Nie można wykluczyć, że osoby zaszczepione mogą się zarazić, przechodzić chorobę bezobjawowo i zarażać innych. Ważne więc, by nie zmieniać zachowania tylko dlatego, że zostało się zaszczepionym. Doktor Mike Ryan, dyrektor WHO ds. sytuacji kryzysowych mówi, że COVID-19 zostanie z nami na stałe. Powtarza więc opinię, którą już w lutym wyraził profesor Marc Lipsitch. Prawdopodobnie będzie to kolejny endemiczny wirus, pozostanie stałym zagrożeniem, ale w kontekście efektywnego globalnego programu szczepień będzie to bardzo niewielkie zagrożenie, stwierdził Ryan. Istnienie szczepionki, nawet o bardzo wysokiej skuteczności, nie gwarantuje jeszcze wyeliminowania choroby zakaźnej, dodaje. Jeszcze dobitniej mówi doktor David Heymann z Londyńskiej Szkoły Medycyny Tropikalnej i Higieny. Nieważne co dotychczas zrobiliśmy. Choroba będzie się rozprzestrzeniała pomimo istnienia szczepionki, leków, pomimo testów diagnostycznych. Musimy się nauczyć z nią żyć i wykorzystywać dostępne narzędzia w najlepszy możliwy sposób. Uczony porównał obecną pandemię do zachorowań na ospę prawdziwą i użycia „niedoskonałej szczepionki” do jej kontrolowania i eradykowania. Trzeba tutaj przypomnieć, że dotychczas ludzkości udało się całkowicie wyeliminować (eradykować) tylko dwie choroby zakaźne: ospę prawdziwą u ludzi i księgosusz u bydła. Jesteśmy też bardzo blisko eradykowania polio.   « powrót do artykułu
  15. Naukowcy z MIT, Massachusetts General Hospital i Uniwersytetu Harvarda pracują nad uniwersalną szczepionką na grypę, która byłaby skuteczna przeciwko każdemu szczepowi. Na łamach Cell naukowcy opisują szczepionkę wywołującą reakcję układu immunologicznego przeciwko pewnemu fragmentowi proteiny wirusa grypy, który rzadko ulega mutacjom. Zwykle układ odpornościowy nie bierze na cel tego fragmentu. Nowa szczepionka składa się z nanocząstek pokrytych proteinami wirusa grypy. Podczas badań na myszach, które zmanipulowano genetycznie tak, by ich układ odpornościowy przypominał układ odpornościowy człowieka, wykazano, że szczepionka powoduje atak układu odpornościowego na wspomniany fragment proteiny. To daje nadzieję, że szczepionka taka mogłaby być skuteczna przeciwko każdemu szczepowi grypy. Repertuar przeciwciał jest niemal nieskończenie zróżnicowany, dzięki czemu układ odpornościowy może dopasować się do każdego antygenu. Jednak cała „przestrzeń antygenów” jest nierównomiernie sprawdzana, przez co niektóre patogeny, jak np. wirus grypy są w stanie opracować złożone strategie immunodominancji, przez co układ odpornościowy nie zwraca uwagi na tego typu pięty achillesowe wirusa, stwierdzają naukowcy. Najpierw uczeni stworzyli model komputerowy, który pozwolił zaprojektować im techniki pokonania strategii wirusa, polegającej na „odwracaniu uwagi” układu odpornościowego od jego „pięt achillesowych”. Następnie przystąpili do testów na odpowiednio zmodyfikowanych myszach. Uzyskane przez nas wyniki są o tyle ekscytujące, że jest to mały krok w kierunku stworzenia szczepionki na grypę, którą będzie można przyjąć raz lub kilka razy i zyskać odporność zarówno na sezonowe, jak i pandemiczne szczepy grypy, mówi profesor Arup K. Chakraborty z MIT. Większość szczepionek przeciwko grypie wykorzystuje nieaktywne wirusy grypy. Wirusy grypy wykorzystują hemaglutyninę (HA) do przyłączania się do powierzchni komórki. Szczepionki powodują, że układ odpornościowy rozpoznaje hemaglutyninę i wytwarza przeciwciała, które biorą ją na cel. Jednak przeciwciała te niemal zawsze łączą się z przednią częścią, główką, hemaglutuniny. A jest to część, która najszybciej ulega mutacją. Z kolei w tylnej części HA znajdują się fragmenty, które mutują bardzo rzadko. Nie rozumiemy jeszcze całości, ale z jakiegoś powodu układ odpornościowy nie potrafi skutecznie wyszukiwać tych nieulegających mutacjom części proteiny, mówi profesor Daniel Lingwood z Harvard Medical School. Dlatego też naukowcy poszukują strategii, które pozwolą na zwrócenie uwagi układu odpornościowego na rzadko zmieniające się fragmenty HA. Jednym z czynników, dla których układ odpornościowy bierze za cel przednią część HA, a nie tylną, jest prawdopodobnie fakt, że wirus grypy jest gęsto upakowany hemaglutyniną. Tak gęsto, że przeciwciałom znacznie łatwiej jest łączyć się z „główką” HA, niż przecisnąć się i uzyskać dostęp do tylnej części. Wysunęliśmy hipotezę, że kluczem do uchronienia przed przeciwciałami wrażliwych części i do przetrwania wirusa jest geometria jego powierzchni, wyjaśnia doktor Assaf Amitai z MIT. Najpierw więc badali wpływ geometrii wirusa na immunodominację za pomocą molekularnej symulacji dynamicznej. Następnie modelowali proces zwany dojrzewaniem powinowactwa przeciwciał. To proces, który zachodzi po tym, gdy komórka B napotka na wirusa i określa, które przeciwciała będą decydujące w odpowiedzi immunologicznej. Każdy z receptorów limfocytu B łączy się z inną proteiną wirusa. Gdy konkretny receptor konkretnego limfocytu połączy się silnie z HA, limfocyt B zostaje aktywowany i szybko się namnaża. W procesie tym limfocyt B ulega mutacjom, dzięki czemu niektóre jego receptory jeszcze silniej wiążą się z HA. Następnie te limfocyty, które najsilniej powiązały się z HA przeżywają, a pozostałe, giną. W ten sposób po pewnym czasie powstaje duża populacja limfocytów B, które bardzo silnie wiążą się z HA. Z czasem przeciwciała te coraz lepiej i lepiej biorą na cel konkretny antygen, mówi Charkaborty. Modelowanie komputerowe wykazało pewną słabość tego procesu. Okazało się, że gdy podamy człowiekowi typową szczepionkę przeciwko grypie, te limfocyty B, które potrafią silnie połączyć się z tylną częścią HA są podczas procesu dojrzewania powinowactwa w gorszej sytuacji, niż limfocyty wiążące się silnie z główką HA. Po prostu dotarcie do tylnej części hemaglutyniny jest trudniejsze. Do modelu dodano więc symulację działania szczepionki, która jest właśnie opracowywana przez NIH i znajduje się w I fazie badań klinicznych. W szczepionce tej wykorzystano wirusa z rzadziej upakowanymi HA na powierzchni. Okazało się, że wówczas limfocyty B docierające do tylnej części HA radzą sobie znacznie lepiej i dominują pod koniec procesu dojrzewania powinowactwa. « powrót do artykułu
  16. Nawet 500 000 rekinów może zostać zabitych każdego roku, by wyprodukować... szczepionkę przeciwko COVID-19. Organizacje starające się chronić rekiny przed zagładą ostrzegają, że wiele z opracowywanych obecnie szczepionek na COVID-19 wykorzystuje skwalen, występujący m.in. w wątrobie rekina. Jeśli takie szczepionki się upowszechnią, może okazać się, że rekiny zostaną poddane jeszcze większej presji ze strony człowieka. Ekolodzy wyliczają, że 17 spośród niemal 200 opracowywanych szczepionek znajduje się obecnie w fazie testów klinicznych i preklinicznych Z nich 5 wykorzystuje skwalen. Na przykład do jednej dawki szczepionki MF59 używa się 9,75 miligramów skwalenu. Gdyby ta szczepionka się sprawdziła, to przy założeniu, że do skutecznego działania wymaga 2 dawek, będzie to oznaczało, iż trzeba zabić 500 000 rekinów rocznie, aby pozyskać wystarczającą ilość skwalenu na zapewnienie szczepionki wszystkim ludziom. Trzeba coś z tym zrobić już teraz, gdyż niewykluczone, że świat będzie potrzebował przez wiele lat szczepionki przeciwko COVID-19 oraz przeciwko wielu innym koronawirusom. Prawdziwe niebezpieczeństwo czai się w przyszłości. Uzależnienie się od tłuszczu z wątroby rekina by produkować szczepionkę jest czymś chorym. Dzikie zwierzęta nie są stabilnym źródłem takich surowców, a ich populacje nie wytrzymają rosnącej presji. Już w tej chwili rekiny są zagrożone przez to, co robią ludzie, mówi Stefanie Brendl, dyrektor organizacji Shark Allies. Już teraz dla samego tylko skwalenu zabija się około 3 000 000 rekinów rocznie. Tłuszcz ten jest wykorzystywany w dużej mierze w przemyśle kosmetycznym. Wiele gatunków rekinów znajduje się na krawędzi zagłady. Ludzie w sumie zabijają niemal 100 milionów rekinów rocznie. Większość z nich ginie w męczarniach, gdyż żywym zwierzętom odcina się płetwy. Inne są zabijane Młotowate, żarłacze białe oraz rekiny wielorybie to najczęściej zabijane gatunki dla skwalenu. Tłuszcz ten zapewnia zwierzętom pływalność. Dlatego też więcej występuje go u gatunków żyjących w głębszych partiach oceanów. Takie gatunki z kolei to gatunki większe, dłużej żyjące, ale i dłużej rosnące. Ich populacja trudniej się więc odradza. Jeśli ludzie będą zabijali dodatkowo setki tysięcy tych zwierząt rocznie, wiele gatunków czeka zagłada. Ekolodzy domagają się, by przemysł farmaceutyczny zaczął pozyskiwać skwalen z innych źródeł, takich jak oliwki, trzcina cukrowa, bakterie czy drożdże. Jednak, jak sami zauważają, produkcja skwalenu z takich źródeł jest o około 30% droższa i trwa dłużej niż zabicie rekina i pozyskanie skwalenu z jego wątroby. Przemysł odniesie olbrzymie zyski z produkcji szczepionki. Najwyższy więc czas, by zadać im pytanie, czy mają zamiar korzystać ze stabilnych źródeł surowców, mówi Brendl. « powrót do artykułu
  17. Przed 10 dniami amerykański Departament Energii poinformował, że należący doń najpotężniejszy superkomputer na świecie – Summit – zostanie wykorzystany do walki z koronawiruse SARS-CoV-2. Po kilku dniach obliczeń mamy już pierwsze pozytywne wyniki pracy maszyny. W ciągu ostatnich kilku dni Summit przeanalizował 8000 substancji i zidentyfikował 77 związków małocząsteczkowych, które mogą potencjalnie powstrzymywać wirus. To 77 substancji, które potencjalnie mogą przyłączać się do proteiny S [wypustek tworzących „koronę” koronawirusa - red.] i w ten sposób blokować wirusowi możliwość przyłączania się do komórek organizmu i ich zarażania. Trzeba tu jednak podkreślić, że superkomputer jest w stanie określić tylko, czy znalezione przez niego molekuły mogą zablokować wirusa. Nie opracuje leku, nie potrafi też stwierdzić, czy testowane substancje są bezpieczne dla ludzi. Potrzebowaliśmy Summita, by przeprowadzić potrzebne symulacje. To, co zajęło superkomputerowi 1-2 dni na innych komputerach trwałoby wiele miesięcy, mówi główny autor badań, Jeremy Smith dyrektor Center for Molecular Biophysics z University of Tennessee. Uzyskane przez nas wyniki nie oznaczają, że znaleźliśmy lekarstwo na COVID-19. Nasze badania wskazują, które związki warto dalej badań pod kątem opracowania leków. Zidentyfikowanie obiecujących molekuł to pierwszy etap opracowywania leków. Molekuły takie należy następnie przetestować zarówno in vitro jak i in vivo, a jeśli testy na hodowlach tkanek i na zwierzętach wypadną pomyślnie, można zacząć myśleć o przystąpieniu do testów na ludziach. Jak wiemy, niedawno rozpoczęły się pierwsze testy kliniczne pierwszej potencjalnej szczepionki przeciwko SARS-CoV-2. Jednak na pojawienie się szczepionki musimy poczekać 12–18 miesięcy i to pod warunkiem, że wszystko pójdzie po myśli naukowców. Znacznie wcześniej możemy spodziewać się leków pomocnych w leczeniu COVID-19. Jest to możliwe dlatego, że wiele lekarstw, które od dawna są dopuszczone do użycia w przypadku innych chorób, daje obiecujące wyniki podczas wstępnych testów. Jako, że lekarstwa te są już dopuszczone do użycia, znamy ich sposób działania czy toksyczność. W chwili obecnej w Ameryce Północnej, Europie, Azji i Australii testowanych jest około 60 różnych leków, które potencjalnie mogą pomóc w leczeniu chorych na COVID-19. Pięć z nich to leki najbardziej obiecujące, nad którymi testy są najbardziej zaawansowane. Jeden z tych leków to Remdesivir firmy Gilead Science. To lek opracowany w odpowiedzi na epidemię Eboli z 2014 roku. Ma on szerokie działanie przeciwko wirusom RNA. Wiadomo, że skutecznie działa przeciwko koronawirusom SARS-CoV i MERS-CoV. Jako, że najnowszy koronawirus jest podobny do SARS, niewykluczone, że remdesivir również będzie skutecznie go zwalczał. Problem jednak w tym, że dotychczas nie wiemy, jak lek działa. To stwarza pewne zegrożenie. Remdesivir to analog adenozyny, który włącza się do tworzących się wirusowych łańcuchów RNA i zmniejsza wytwarzanie wirusowego RNA. Wiemy obecnie, że remdesivir pomógł w wyleczeniu 13 Amerykanów, którzy byli na pokładzie Diamond Princess, że testowany jest na poddanych kwarantannie osobach przebywających w Centrum Medycznym Uniwersytetu Nebraska i dotychczas nie zauważono skutków ubocznych. Z kolei chińscy specjaliści poinformowali, że połączenie remdisiviru i chlorochiny, używanej do leczenia malarii i chorobom autoimmunologicznym, wykazało wysoką skuteczność w testach in vitro. Kolejny z obiecujących leków to Kaletra (Aluvia) firmy AbbVie. Substancja czynna to lopinawir i ritonawir. Ten inhibitor proteazy HIV-1 jest używany, w połączeniu z innymi lekami przeciwretrowirusowymi, do leczenie zakażeń HIV-1 u dorosłych i dzieci powyżej 14. roku życia. Przed dwoma tygodniami AbbVie poinfomowało, że w porozumieniu z odpowiednimi agendami w USA i Europie rozopoczyna testy Kaletry pod kątem leczenia COVID-19. Z kolei przed niecałym tygodniem naukowcy z australijskiego University of Queensland poinformowali, że chcą rozpocząć testy kliniczne Kaletry i Chlorochiny, gdyż pomogły one w leczniu chorych z COVID-19. Już pod koniec stycznia AbbVie przekazała Chinom olbrzymie ilości Kaletry. Niedługo później Chińczycy zaczęli informować o pierwszych przypadkach wyleczenia za pomocą tego leku. Następnym z 5 najbardziej obiecujących leków jest Kevzara. To wspólne dzieło firm Regeneron Pharmaceuticals i Sanofi, w którym substancją czynną jest sarilumab. Lek ten to antagonista receptora interleukiny-6 (IL-6). Lek został zatwierdzony w 2017 roku do leczenia reumatoidalnego zapalenia stawów u osób dorosłych o nasileniui od umiarkownym do ciężkiego. Lek podaje się w zastrzyku. W USA od tygodnia trwają testy kliniczne Kevzary u pacjentów z ciężkim przebiegiem COVID-19. Docelowo lek ma zostać przetestowany na 400 osobach z poważnymi komplikacjami spowodowanymi zachorowaniem. W II fazie testów klinicznych sprawdzane jest skuteczność leku w zmniejszaniu gorączki oraz bada się, czy dzięki niemu zmniejszona zostaje konieczność sztucznego wentylowania pacjentów. Później, w czasie III fazy testów, naukowcy sprawdzą długoterminowe rokowania pacjentów, którym podawano lek, przede wszystkim zaś sprawdzone zostanie czy i w jakim stopniu lek pozwolił na zmniejszenie śmiertelności chorych, zredukował potrzebę sztucznej wentylacji i hospitalizacji. Niedawno do listy najbardziej obiecujących leków dołączył Avigan opracowany przez Fujifilm Holdings. To lek przeciwwirusowy o szerokim zastosowaniu. To wybiórczy silny inhibitor RNA-zależnej polimerazy RNA u wirusów. Lek jest w Japonii zarejetrowany jako środek przeciwko grypie. Był też używany w Gwinei do walki z Ebolą. Jego substancją czynną jest fawipirawir. Przed kilkoma dniami chińskie Ministerstwo Nauki i Technologii poinformowało, że podczas testów na 340 pacjentów w Wuhan i Shenzen okazało się, że po leczeniu Aviganem uzyskano pozytywne wyniki. Doszło do skrócenia czasu pobytu w szpitalu, z 11 do 4 dni uległ skróceniu średni czas, przez jaki pacjenci musieli przebywać w szpitalu. Ponadto u 91% pacjentów stwierdzono poprawę stanu płuc, gdy tymczasem poprawę taką stwierdozno u 62% pacjentów z grupy kontrolnej, którym nie podawano fawipirawiru. W Chinach dopuszczono ten lek do testów klinicznych. Tymczasem japońskie Ministerstwo Zdrowia oświadczyło, że będzie zalecało stosowanie Aviganu po tym, jak pozytywnie wypadły testy na pacjentach asymptomatycznych oraz wykazujących łagodne objawy. W końcu trzeba tutaj wspomnieć o pierwszej testowanej na ludziach szczepionce przeciwko SARS-CoV-2. Pierwszą dawkę mRNA-1279 podano 43-letniej kobiecie. Tym samym rozpoczęła się I faza badań nad szczepionką. Lek „instruuje” komórki gospodarza, by zachodziła w nich ekspresja glikoproteiny powierzchniowej S (ang. spike protein); białko S pozwala koronawirusowi na wniknięcie do komórki gospodarza. W tym przypadku ma to wywołać silną odpowiedź immunologiczną. Jest to szczepionka oparta na mRNA. Ze szczegółowymi informacjami na temat tej szczepionki i tego, jak będą wyglądały badania nad nią, możecie przeczytać w naszym artykule na jej temat. W innym naszym tekście można też dowiedzieć się wszystkiego, co powinniśmy wiedzieć o szczepionkach, ich opracowywaniu i procesie testowania oraz dopuszczania do użycia. Wymienione powyżej leki to nie wszystko. Obecnie na całym świecie trwają prace nad 60 lekami i szczepionkami, które mają pomóc w leczeniu COVID-19 oraz zwalczaniu SARS-CoV-2 i zapobieganiu zarażeniem się koronawirusem. « powrót do artykułu
  18. Pierwsza od 50 lat nowa doustna szczepionka przeciwko polio może w końcu przyczynić się do całkowitej eradykacji tej choroby. Do niedawna wydawało się, że szybciej poradzimy sobie z chorobą, która pozostawia po sobie miliony sparaliżowanych dzieci. Niestety, w ostatnich latach szczepionki wywołały lokalne zachorowania, a obecnie ogólnoświatowy program szczepień został zahamowany przez COVID-19. W latach 2000–2017 liczbę przypadków polio udało się zmniejszyć o około 99%. Jak ocenia WHO, dzięki szerokiemu programowi szczepień uratowano przed zachorowaniem i potencjalnym paraliżem ponad 13 milionów dzieci. W październiku 2019 roku informowaliśmy, że eradykowano dziki szczep poliowirusa typu 3. Na świecie pozostał tylko typ 1 i pojawiła się nadzieja, że polio stanie się drugą, po ospie prawdziwej, atakującą ludzi chorobą, która będzie całkowicie wyeliminowana, a której patogen nie występuje w środowisku. Obok ospy, którą uznano za eradykowaną w 1980 roku, dotychczas udało się wyeliminować też księgosusz dotykający przeżuwaczy. W 2011 roku do walki z polio dołączył Bill Gates, a obecnie Fundacja Billa i Melindy Gatesów jest jednym z największych sponsorów Global Polio Eradication Initiative (GPEI). Jeszcze w 1988 roku, gdy startował GPEI, każdego roku notowano około 350 000 zachorowań na polio. W roku 2018 odnotowano 33 zachorowania. Z kolei w roku 2019 było ich w sumie 539. Z tego 175 przypadków odnotowano w Pakistanie i Afganistanie, dwóch z trzech krajów, w których polio występuje endemicznie. Trzecim jest Nigeria. Te 175 przypadków było wywołanych przez naturalnie krążącego wirusa. Z kolei aż 364 przypadki z 19 krajów zostały spowodowane przez szczepionkę. Z kolei w bieżącym roku zanotowano dotychczas 48 przypadków polio spowodowanych przez wirusa krążącego w środowisku (wszystkie przypadki zachorowań miały miejsce w Afganistanie i Pakistanie) oraz 93 przypadki spowodowane przez szczepionkę (w tym 40 przypadków w Pakistanie, po 10 w Czadzie i Etiopii, 1 w Nigerii, a pozostałe w Beninie, Burkina Faso, Kamerunie, Republice Środkowoafrykańskiej, na Wybrzeżu Kości Słoniowej, w Demokratycznej Republice Kongo, Ghanie, Nigrze, na Filipinach i w Togo). Podawany w doustnej szczepionce atenuowany wirus [więcej w artykule Kiedy szczepionka na koronawirusa. Wszystko, co powinniśmy wiedzieć o szczepionkach – red.] polio potrafi czasem wyewoluować i wywołać zarażenia w społecznościach o niewielkim odsetku wyszczepień. Teraz naukowcy finansowani przez Fundację Billa i Melindy Gatesów poinformowali o sukcesie I fazy testów klinicznych nowej szczepionki, która nie może wywołać zachorowań. To jednocześnie pierwsza od 50 lat nowa szczepionka doustna przeciwko polio. Jej autorami są profesor Raul Andino z Uniwersytetu Kalifornijskiego w San Francisco (UCSF) oraz Andrew Macaam z brytyjskiego Narodowego Instytutu Standardów Biologicznych i Kontroli (NIBSC). W 2017 roku Andino i jego zespół odkryli, że we wszystkich przypadkach, gdy to szczepionka wywołała zachorowania na polio, za każdym razem zawarty w niej wirus wykorzystał takie same trzy kroki ewolucyjne, dzięki któremu z nieszkodliwego patogenu stał się się zaraźliwy. Teraz na łamach Cell Host and Microbe ukazał się artykuł autorstwa Andino, Macadama oraz specjalistów z Gates Foundation, Center for Vaccine Innovation and Access w Seattle oraz Uniwersytetu w Antwerpii, którzy przygotowali szczepionkę przeciwko polio, z której wirus nie może wywołać zachorowania. Bazując na kilkudziesięciu latach studiów nad poliowirusem naukowcy ustabilizowali odpowiedzialny za mutacje region genomu wirusa, dzięki czemu nie może się on zmieniać. Co więcej, naukowcy upewnili się też, że poliowirus nie ulegnie groźnym zmianom nawet wówczas, jeśli wymieni materiał genetyczny ze spokrewnionymi z nim wirusami. O ile mi wiadomo, to pierwszy przypadek gdy doszło do celowego racjonalnie zaprojektowanego żywego atenuowanego wirusa. To przeciwieństwo standardowego podejścia, gdzie wirusy są hodowane na komórkach tkankowych, a ich wirulencja jest uzyskiwana metodą prób i błędów za pomocą słabo rozumianego mechanizmu, mówi Andino. W I fazie testów klinicznych wzięło udział 15 dorosłych ochotników. Była ona prowadzona na Uniwersytecie w Antwerpii. Test wykazał, że nowa szczepionka jest bardziej stabilna i efektywna niż licząca sobie 50 lat szczepionka Sabina, z której ona pochodzi. Nowa szczepionka wywoływała odpowiednią reakcję immunologiczną i mimo że zaszczepieni wydalali wirusa w stolcu, wirus ten nie był w stanie zainfekować myszy i wywołać u nich paraliżu. To kolosalny postęp w porównaniu ze standardową szczepionką Sabina. Bowiem w jej przypadku nawet 90% ulega paraliżowi, gdy zostaje wystawionych na wirusa wydalanego przez ludzi. Obecnie trwa II faza testów klinicznych nowej szczepionki. WHO już rozpoczęło planowanie fazy 3. Jeśli wszystko pójdzie zgodnie z planem i uda się szybko rozpocząć powszechne szczepienia za pomocą nowego środka, to jeszcze w bieżącej dekadzie polio powinno zostać całkowicie eradykowane. « powrót do artykułu
  19. W ramach projektu Folding@Home możemy teraz pomóc w walce z koronawirusem. Każdy chętny może poświęcić część mocy obliczeniowej swojego komputera na rzecz pracy nad poszukiwaniem szczepionek i leków zwalczających SARS-CoV-2. Wystarczy odpowiednie oprogramowanie, które znajdziemy tutaj. Folding@Home to jeden z wielu projektów rozproszonego przetwarzania danych. Uczestniczą w nich miliony internautów z całego świata. Wystarczy wejść na stronę takie projektu i zainstalować niewielki program. Dzięki niemu nasz komputer będzie ze strony projektu pobierał dane, przetwarzał je, i odsyłał do projektu wyniki swoich obliczeń. Dzięki olbrzymiej liczbie podłączonych komputerów takie projekty dysponują olbrzymią mocą obliczeniową, co znacznie przyspiesza badania naukowe. Projekt Folding@Home skupia się na badaniach z dziedziny medycyny, związanych ze zwijaniem białek, projektowaniem leków i innych zagadnieniach z zakresu dynamiki molekuł. Takie badania wymagają gigantycznych mocy obliczeniowych. Dotychczas w ramach projektu Folding@Home można było wspomagać badania nad nowotworami piersi, nowotworami nerek, białkiem p53, epigenetyką nowotworów, chorobą Chagas oraz chorobami Alzheimera, Parkinsona i Huntingtona. Teraz dołączono doń badania związane z poszukiwaniem w wirusie SARS-CoV-2 protein, które można będzie zaatakować za pomocą leków. W ten sposób każdy z nas może przyczynić się do wynalezienia leku na COVID-19. Folding@Home będzie wykorzystywał tylko wolne zasoby naszego procesora centralnego (CPU) i graficznego (GPU). Możemy więc bez problemu używać komputera, w czasie gdy Folding@Home będzie w tle przeprowadzał swoje obliczenia. Po zainstalowaniu oprogramowania zobaczymy prosty panel kontrolny. Najważniesza dla nas jest lista rozwijalna o nazwie "I support research fighting". Jeśli chcemy pracować nad lekiem na koronawirusa powinniśmy wybrać „Any disease”. Wówczas nasz komputer będzie prowadził obliczenia na rzecz leku nad COVID-19. Choroba ta ma bowiem priorytet i ci, którzy nie wybiorą z listy rozwijalnej innej choroby zostaną zaprzęgnięci do walki z SARS-CoV-2. « powrót do artykułu
  20. W Kaiser Permanente Washington Research Institute w Seattle rozpoczęły się testy potencjalnej szczepionki na COVID-19 na zdrowych ochotnikach. Jako pierwszej pierwszą dawkę mRNA-1273 podano dzisiaj 43-letniej kobiecie. Na swoją kolej czekały jeszcze 3 osoby. Badacze chcą podać w odstępie ok. 28 dni 2 dawki szczepionki. W testach weźmie udział 45 osób. Wszyscy czujemy się tacy bezradni. To dla mnie wspaniała okazja, by coś zrobić - powiedziała ochotniczka Jennifer Haller. Kandydat do stworzenia szczepionki powstał dzięki Narodowym Instytutom Zdrowia (NIH) i firmie biotechnologicznej Moderna Inc. z Massachusetts. Produkcję preparatu do fazy I wspierała też Coalition for Epidemic Preparedness Innovations (CEPI). Badania I fazy (nazywane obecnie first-in-humans) to dopiero początek. Później mają miejsce jeszcze fazy II i III. Biorąc pod uwagę czas ich trwania, nawet gdyby wszystko szło po myśli badaczy, do powszechnego użytku szczepionka i tak mogłaby wejść dopiero za 12-18 miesięcy - podkreśla dr Anthony Fauci, dyrektor NIAID (National Institute of Allergy and Infectious Diseases). Faza I trwa bowiem ok. 3 miesięcy, a faza II, na kilkuset pacjentach cierpiących na daną chorobę, od 6 do 8 miesięcy. Faza III może trwać nawet kilka lat, jednak w nagłych wypadkach, jak obecna epidemia, można ją będzie skrócić do 6–8 miesięcy. Szczepionka jest priorytetem zdrowia publicznego. Nowe badanie, wdrożone w rekordowym tempie, jest ważnym pierwszym krokiem na drodze do osiągnięcia tego celu. To, oczywiście, nie jedyna przygotowywana szczepionka. Inny kandydat, stworzony przez Inovio Pharmaceuticals, doczeka się swoich testów bezpieczeństwa w USA, Chinach i Korei Południowej najprawdopodobniej w przyszłym miesiącu. Zwykle rozpoczęcie badań first-in-humans jest dla naukowców doniosłym momentem, lecz dr Lisa Jackson z Kaiser Permanente opisuje nastroje w swoim zespole jako raczej markotne. Pracowali bez ustanku, prowadząc badania w części USA, w którą wirus uderzył wcześnie i mocno. Od nieświadomości odnośnie do istnienia SARS-CoV-2 do etapu testów szczepionki minęło ok. 2 miesięcy. To bezprecedensowy scenariusz. Nie wiemy, czy ta szczepionka wywoła odpowiedź immunologiczną ani czy będzie bezpieczna. To nie ten etap, by podanie jej populacji generalnej było możliwe czy roztropne. Jak tłumaczą specjaliści z NIH-u, szczepionka „instruuje” komórki gospodarza, by zachodziła w nich ekspresja glikoproteiny powierzchniowej S (ang. spike protein); białko S pozwala koronawirusowi na wniknięcie do komórki gospodarza. W tym przypadku ma to wywołać silną odpowiedź immunologiczną. Jest to szczepionka oparta na mRNA (tą działką zajmowała się Moderna). Naukowcy z Centrum Badań nad Szczepionkami (VRC) NIAID byli w stanie tak szybko opracować mRNA-1273, gdyż wcześniej prowadzono badania nad spokrewnionymi wirusami powodującymi SARS i MERS. Koronawirusy są sferyczne. Pod mikroskopem elektronowym ich osłonki wydają się ukoronowane pierścieniem małych struktur. Stąd zresztą wzięła się ich nazwa. Białko S, tzw. spike, odpowiada za interakcję z receptorem na powierzchni komórek. VRC i Modena pracowały już nad szczepionką na MERS, obierającą na cel właśnie białko S. Był to dobry start do opracowania kandydata na szczepionkę chroniącą przed COVID-19. Gdy tylko informacja genetyczna dot. SARS-CoV-2 stała się dostępna, akademicy szybko wyselekcjonowali sekwencję do ekspresji. Ochotnicy w wieku 18-55 lat dostaną przy obu turach szczepieniach dawkę 25, 100 lub 250 mikrogramów. W każdej podgrupie znajdzie się 15 osób. Pierwsze cztery osoby dostaną niską dawkę, kolejne cztery dawkę 100-mikrogramową. Naukowcy ocenią dane nt. bezpieczeństwa, nim zaszczepią następnych ludzi z grup 25- i 100-µg i nim szczepieni na początku ochotnicy dostaną drugą dawkę. Podobne oceny bezpieczeństwa są przewidziane dla grupy z dawką 250 µg. Ochotnicy zostaną poproszeni o wizyty pomiędzy szczepieniami, a także w ciągu roku po drugiej dawce. Amerykanie będą monitorować uczestników I fazy pod kątem bolesności miejsca podania szczepionki, a także gorączki i innych problemów medycznych. W konkretnych momentach będzie pobierana od nich krew; w ten sposób zespół wykryje i zmierzy odpowiedź immunologiczną na eksperymentalną szczepionkę. Z innego naszego artykułu dowiecie się wszystkiego, co powinniście wiedzieć o szczepionkach « powrót do artykułu
  21. W poniedziałkowym (16 marca) numerze Cell, Host and Microbe, ukaże się artykuł omawiający pierwszą analizę potencjalnych celów efektywnej immunoterapii przeciwko koronawirusowi SARS-CoV-2. Naukowcy z La Jolla Institute of Immunology i J. Craig Venter Institute, wykorzystali dane, jakie mamy o innych koronawirusach, do przewidzenia, które części SARS-CoV-2 mogą aktywować odpowiedź układu odpornościowego i posłużyć do stworzenia szczepionki. Można już się zapoznać ze wstępną wersją artykułu A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2 [PDF]. Gdy nasz układ odpornościowy napotyka wirus lub bakterię, skupia się na jego epitopach. To fragmenty antygenu łączące się bezpośrednio z przeciwciałem, receptorem limfocytu B lub T. Epitopy pozwalają komórkom układu odpornościowego na rozróżnienie patogenów i rozpoczęcie ataków na nie. Posiadanie kompletnej mapy wirusowych epitopów oraz informacji o tym, na ile pobudzają one układ odpornościowy do działania, pomaga naukowcom w określeniu, który elementy wirusa wywołują najsilniejszą reakcję ze strony układu odpornościowego, co może być pomocne w opracowywaniu szczepionek. Epitopy wywołujące najsilniejszą odpowiedź odpornościową nazywa się determinantami immunodominującymi. Obecnie wiemy bardzo mało o koronawirusie SARS-CoV-2, który wywołał pandemię COVID-19. Jednak sporo wiemy o innych koronawirusach i mamy dużo informacji o ich epitopach. W tej chwili znamy cztery koronawirusy, które krążą w ludzkiej populacji wywołując infekcje u człowieka, powodując rocznie około 25% wszystkich przeziębień. Jednak co jakiś czas pojawia się nowy wirus, powodujący poważne zachorowania i epidemię. Takimi wirusami były SARS-CoV z 2003roku oraz MERS-CoV z roku 2008. Obecnie mamy do czynienia z pandemią wirusa SARS-CoV-2. SARS-CoV-2 jest najbliżej spokrewniony z SARS-CoV, który jest jednocześnie najlepiej rozpoznanym koronawirusem pod względem jego epitopów, mówi główna autorka najnowszych badań, Alba Grifoni. Naukowcy wykorzystali dane zgromadzone w LJI-based Immune Epitope Database (IEDB), w której znajdują się informacje o ponad 600 000 epitopach z 3600 różnych gatunków wirusów oraz z Virust Pathogen Resource (ViPR), bazie danych o patogenach wirusowych. Byliśmy w stanie zidentyfikować 10 epitopów specyficznych dla limfocytów B, które występują też w nowym koronawirusie. Dzięki ogólnej wysokiej zgodności sekwencji pomiędzy SARS-CoV-2 i SARS-CoV istnieje duże prawdopodobieństwo, że te same regiony, które są determinantami immunodominującymi w SARS-CoV będą nimi też w SARS-CoV-2, mówi Grifoni. Pięć z tych regionów znaleziono w glikoproteinie S, która tworzy charakterystyczną „koronę”na powierzchni koronawirusów. Dwa kolejne znajdują się w białkach błonowych, a trzy kolejne w nukleoproteinie. Również epitopy dla limfocytów T znaleziono głównie w glikoproteinie S i nukleoproteinie. Stwierdziliśmy, że wiele epitopów dla limfocytów B i T jest takich samych w SARS-CoV i SARS-CoV-2. To dobry punkt wyjścia do prac nad szczepionką. Szczepionki, które brałyby na cel te regiony nie tylko działałyby na oba wirusy, ale też wirusy miałyby problemy, by zyskać na nie oporność, mówi główny autor badań, Alessandro Sette z La Jolla Institute. Wstępna wersja artykułu « powrót do artykułu
  22. W miarę, jak koronawirus SARS-CoV-2 infekuje coraz więcej osób i dociera do kolejnych krajów, świat z rosnącą niecierpliwością czeka na szczepionkę. Jednak jej opracowanie nie będzie łatwe i wszystko wskazuje na to, że szczepionka może pojawić się nie wcześniej niż pod koniec przyszłego roku, co i tak będzie bardzo dobrym wynikiem. Koronawirus SARS-CoV-2 jest znacznie mniej śmiercionośny, niż SARS i MERS, które zaatakowały w ciągu ostatnich kilkunastu lat. Jest jednak bardziej śmiercionośny niż sezonowa grypa. Na nią umiera zwykle około 0,1% zarażonych, tymczasem odsetek zgonów na COVID-19 wynosi ponad 3%. Zdecydowana większość zarażonych przechodzi chorobę łagodnie. Rosnąca panika wokół wirusa i powodowanej przez niego choroby COVID-19 wynika głównie z faktu, że jest to nowe zagrożenie. Kraje rozwinięte zapomniały już o epidemiach chorób zakaźnych. Większość z nich wyeliminowały szczepionki. Do licznych zachorowań na sezonową grypę już się przyzwyczailiśmy, ponadto dysponujemy szczepionkami na nią. Stąd też niecierpliwe oczekiwanie na szczepionkę przeciwko nowemu koronawirusowi. Jak powstają szczepionki Celem szczepionki jest wystawienie organizmu na działanie patogenu lub czegoś, co jak najbardziej go przypomina po to, by w razie prawdziwego zarażenia, układ odpornościowy, pamiętający dzięki szczepionce patogen, szybko przystąpił do ataku i nie pozwolił rozprzestrzenić się bakterii lub wirusowi. Tutaj możemy zauważyć pierwszą podstawową trudność związaną z wytworzeniem szczepionki. Podany w niej patogen musi być jak najbardziej podobny do prawdziwego patogenu, by układ odpornościowy nauczył się go rozpoznawać, jednak nie może wywoływać zachorowania. Każda ze szczepionek musi zachować tę delikatną równowagę. Obecnie istnieją dwa główne typy szczepionek Pierwszy z nich to szczepionki żywe, które zawierają atenuowane, czyli osłabione drobnoustroje. Przygotowuje się je w ten sposób, że prawdziwy patogen poddaje się wielokrotnym mutacjom w specjalnych warunkach, uzyskuje w ten sposób różne szczepy, a następnie do produkcji szczepionek wykorzystuje się te z nich, które w znacznej mierze utraciły swoją zjadliwość. Po podaniu szczepionki takie pozbawione zjadliwości bakterie lub wirusy namnażają się nie powodując zachorowania, układ odpornościowy rozpoznaje patogeny i je zwalcza. Dzięki temu zapamiętuje je i gdy zarazimy się zjadliwym patogenem, nasz organizm natychmiast przystępuje do obrony. Wadą szczepionek żywych jest fakt, że u osób z osłabionym układem odpornościowym mogą one wywołać zachorowanie. Dlatego też tego typu szczepionek nie podaje się kobietom w ciąży oraz osobom przyjmującym leki immunosupresyjne. Do szczepionek żywych należą szczepionki przeciwko odrze, różyczce, śwince, ospie wietrznej, gruźlicy czy cholerze. Drugi typ to szczepionki inaktywowane. Tam stosuje się zabite patogeny lub ich fragmenty. Plusem takiego rozwiązania jest fakt, że nie ma obawy, by u kogokolwiek szczepionka taka mogłaby wywołać chorobę. Jednak, jako że zabite patogeny nie namnażają się, potrzeba wielu powtórzeń szczepionki, by organizm nauczył się rozpoznawać patogen. Przykładami szczepionek inaktywowanych są szczepionki przeciwko polio, wściekliźnie, kleszczowemu zapaleniu mózgu czy krztuścowi. Trwają też prace, o różnym stopniu zaawansowania, nad kilkoma innymi typami szczepionek. Nie można więc wykluczyć, że szczepionka na SARS-CoV-2 będzie szczepionką nowego typu. « powrót do artykułu
  23. W miarę, jak koronawirus SARS-CoV-2 infekuje coraz więcej osób i dociera do kolejnych krajów, świat z rosnącą niecierpliwością czeka na szczepionkę. Jednak jej opracowanie nie będzie łatwe i wszystko wskazuje na to, że szczepionka może pojawić się nie wcześniej niż pod koniec przyszłego roku, co i tak będzie bardzo dobrym wynikiem. Koronawirus SARS-CoV-2 jest znacznie mniej śmiercionośny, niż SARS i MERS, które zaatakowały w ciągu ostatnich kilkunastu lat. Jest jednak bardziej śmiercionośny niż sezonowa grypa. Na nią umiera zwykle około 0,1% zarażonych, tymczasem odsetek zgonów na COVID-19 wynosi ponad 3%. Zdecydowana większość zarażonych przechodzi chorobę łagodnie. Rosnąca panika wokół wirusa i powodowanej przez niego choroby COVID-19 wynika głównie z faktu, że jest to nowe zagrożenie. Kraje rozwinięte zapomniały już o epidemiach chorób zakaźnych. Większość z nich wyeliminowały szczepionki. Do licznych zachorowań na sezonową grypę już się przyzwyczailiśmy, ponadto dysponujemy szczepionkami na nią. Stąd też niecierpliwe oczekiwanie na szczepionkę przeciwko nowemu koronawirusowi. Jak powstają szczepionki Celem szczepionki jest wystawienie organizmu na działanie patogenu lub czegoś, co jak najbardziej go przypomina po to, by w razie prawdziwego zarażenia, układ odpornościowy, pamiętający dzięki szczepionce patogen, szybko przystąpił do ataku i nie pozwolił rozprzestrzenić się bakterii lub wirusowi. Tutaj możemy zauważyć pierwszą podstawową trudność związaną z wytworzeniem szczepionki. Podany w niej patogen musi być jak najbardziej podobny do prawdziwego patogenu, by układ odpornościowy nauczył się go rozpoznawać, jednak nie może wywoływać zachorowania. Każda ze szczepionek musi zachować tę delikatną równowagę. Obecnie istnieją dwa główne typy szczepionek Pierwszy z nich to szczepionki żywe, które zawierają atenuowane, czyli osłabione drobnoustroje. Przygotowuje się je w ten sposób, że prawdziwy patogen poddaje się wielokrotnym mutacjom w specjalnych warunkach, uzyskuje w ten sposób różne szczepy, a następnie do produkcji szczepionek wykorzystuje się te z nich, które w znacznej mierze utraciły swoją zjadliwość. Po podaniu szczepionki takie pozbawione zjadliwości bakterie lub wirusy namnażają się nie powodując zachorowania, układ odpornościowy rozpoznaje patogeny i je zwalcza. Dzięki temu zapamiętuje je i gdy zarazimy się zjadliwym patogenem, nasz organizm natychmiast przystępuje do obrony. Wadą szczepionek żywych jest fakt, że u osób z osłabionym układem odpornościowym mogą one wywołać zachorowanie. Dlatego też tego typu szczepionek nie podaje się kobietom w ciąży oraz osobom przyjmującym leki immunosupresyjne. Do szczepionek żywych należą szczepionki przeciwko odrze, różyczce, śwince, ospie wietrznej, gruźlicy czy cholerze. Drugi typ to szczepionki inaktywowane. Tam stosuje się zabite patogeny lub ich fragmenty. Plusem takiego rozwiązania jest fakt, że nie ma obawy, by u kogokolwiek szczepionka taka mogłaby wywołać chorobę. Jednak, jako że zabite patogeny nie namnażają się, potrzeba wielu powtórzeń szczepionki, by organizm nauczył się rozpoznawać patogen. Przykładami szczepionek inaktywowanych są szczepionki przeciwko polio, wściekliźnie, kleszczowemu zapaleniu mózgu czy krztuścowi. Trwają też prace, o różnym stopniu zaawansowania, nad kilkoma innymi typami szczepionek. Nie można więc wykluczyć, że szczepionka na SARS-CoV-2 będzie szczepionką nowego typu. Kiedy pojawi się szczepionka na nowego koronawirusa i dlaczego będzie to trwało tyle czasu dowiesz się z dalszej części tekstu. « powrót do artykułu
  24. Wkrótce dowiemy się, czy leki przeciwko HIV i Eboli pomagają w walce z Covid-19, chorobą wywoływaną przez koronawirusa 2019-nCoV. Jak informuje Światowa Organizacja Zdrowia, lekarze w Chinach podali „dużej liczbie pacjentów” kombinację dwóch leków przeciwko HIV – lopinawiru i ritonawiru. Wyniki testu powinny być znane najpóźniej w ciągu kilku tygodni. Ponadto, jak poinformowała Marie-Paule Kieny z WHO, wkrótce w Chinach rozpoczną się też testy leku u nazwie remdesiwir, który został opracowany na potrzeby zwalczania Eboli. Naukowcy nie wykluczają, że może być też pomocy w leczeniu Covid-19. Musimy poczekać kilka tygodni, by się o tym przekonać, mówi Kieny. Dotychczas mieliśmy pojedyncze przypadki wyzdrowienia po podaniu leków. Opisywaliśmy na przykład przypadek starszej kobiety, której stan poprawił się po zastosowaniu Keltry i Tamiflu. Jednak na podstawie takich przykładów nie można orzec, czy rzeczywiście leki pomagają. Specjaliści pracują tez nad czterema szczepionkami mającymi zwalczać koronawirusa z Wuhan. Prawdopodobnie za 3-4 miesiące rozpoczną się testy kliniczne jednej lub dwóch z tych szczepionek. Minie jednak 12-18 miesięcy, zanim szczepionka stanie się powszechnie dostępna, informuje inny przedstawiciel WHO, Soumya Swaminathan. Podczas specjalnego panelu, który zakończył się właśnie w Genewie, eksperci zidentyfikowali trzy główne obszary badawcze, którymi należy pilnie się zająć. Obszar pierwszy to opracowanie metod leczenia ludzi, którzy już chorują na Covid-19, obszar drugi to stworzenie łatwiejszych w użyciu testów na koronawirusa, obszar trzeci, to lepsze zrozumienie zachowania patogenu. Obecnie przeprowadzenie testu na obecność koronawirusa wymaga dostępu do specjalistycznego laboratorium. Byłoby łatwiej, gdyby powstał test, który można wykonać na miejscu. Dominic Dwyer z University of Sydney uważa, że stworzenie takiego testu powinno być priorytetem. Im szybciej postawi się diagnozę, tym szybciej można z tym coś zrobić. Na przykład odizolować chorego. Dotychczas koronawirus zainfekował 64 441 osób na całym świecie, z czego 63 859 w Chinach. Zmarły 1383 osoby (w Chinach 1381), wyzdrowiało 7005 chorych. Pojawiają się jednak poważne pytania o rzetelność danych przekazywanych przez chińskie władze, zatem rzeczywista liczba chorych i zgonów może być inna. « powrót do artykułu
  25. Naukowcy z Massachusetts General Hospital (MGH) informują o odkryciu potencjalnego celu dla uniwersalnej szczepionki antywirusowej, która chroniłaby przed wieloma typami patogenów. Wyniki ich pracy sugerują, że proteina Argonaute 4 (AGO4) jest piętą achillesową wirusów. Opracowanie skutecznej szczepionki antywirusowej to długotrwały proces. Nawet w takiej sytuacji jak obecnie, w obliczu epidemii koronawirusa 2019-nCoV i wywoływanej przezeń choroby o nazwie Covid-19, na szczepionkę trzeba będzie czekać wiele miesięcy. Obecnie dostępne szczepionki są opracowywane bardzo długo i działają tylko na określony szczep wirusa, co oznacza, że ludzie nie są chronieni przed innymi wirusami, a te często i szybko ewoluują. Gdyby jednak powstała uniwersalna szczepionka, bylibyśmy chronieni przed wieloma obecnymi i przyszłymi infekcjami. Wspomniana AGO4 to przedstawicielka większej rodziny AGO. Jeszcze do niedawna nie wiedziano, jaką rolę proteiny te spełniają. Teraz naukowcy z MGH pracujący pod kierunkiem doktor Kate L. Jeffrey odkryli, że AGO4 odgrywa kluczową rolę w ochronie komórek przed infekcją wirusową. Jak informują uczeni na łamach Cell Reports, AGO4 jest proteiną specyficzną dla komórek odpornościowych ssaków. Gdy uczeni próbowali infekować wirusami różne linie komórek, odkryli, że tylko te komórki, którym brakowało AGO4 był bardzo wrażliwe na infekcję. To zaś sugeruje, że niski poziom AGO4 ułatwia infekcje, zatem podniesienie poziomu tej proteiny będzie chroniło nas przed wieloma różnymi wirusami. Naszym celem jest zrozumienie, jak działa układ odpornościowy, dzięki czemu będziemy mogli stworzyć lek na wiele wirusów, zamiast szczepionki na jednego konkretnego, mówi Jeffrey. W kolejnym etapie badań naukowcy postarają się dowiedzieć, jak różne poziomy AGO4 wpływają na możliwość infekcji różnymi wirusami. Później będziemy musieli opracować metodę zwiększenia poziomu AGO4 w komórkach, by zwiększyć ochronę przeciwko wirusom, dodaje Jeffrey. « powrót do artykułu
×
×
  • Create New...