Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Za tydzień NASA uruchomi najpotężniejszą rakietę w historii

Rekomendowane odpowiedzi

Za niecały tydzień, 17 stycznia, NASA odpali najpotężniejszą rakietę, jaka kiedykolwiek została uruchomiona na Ziemi. Na ten dzień przewidziano pierwszy gorący test Space Launch System (SLS). To długo oczekiwana i bardzo opóźniona względem pierwotnych planów rakieta, którą NASA chce używać w niekomercyjnych misjach załogowych. Stanowi ona centralny element planów NASA zakładających powrót człowieka na Księżyc.

Ten tzw. gorący rozruch rakiety to ostatni z ośmiu testów serii Green Run. Siódmy test Green Run miał miejsce 20 grudnia ubiegłego roku. Wtedy też po raz pierwszy do silników RS-25 podłączony było kriogeniczne płynne paliwo. Podczas tego testu sprawdzano wytrzymałość całej struktury, testowano oprogramowanie, komputery i awionikę, przetestowano wszystkie elementy systemu. Głównym elementem było zaś sprawdzenie całego systemu przepływu paliwa. W jego trakcie bez problemu wpompowano do zbiorników i usunięto z nich 265 000 litrów paliwa. Test zakończył się kilka minut przed czasem z powodu zamknięcia się zaworów. Późniejsze analizy wykazały, że do zamknięcia zaworów doszło na ułamki sekundy zbyt wcześnie, w związku z czym uruchomiły się wszystkie odpowiednie systemy zatrzymujące test. Po analizie czas zamknięcia zaworów poprawiono i obecnie całość gotowa jest do ostatniego testu z serii Green Run.

Wcześniejsze, przeprowadzone z powodzeniem, elementy Green Run to: test 1 – symulacja sił działających na główny stopień rakiety podczas startu, test 2 – sprawdzenie awioniki, test 3 – symulacja potencjalnych problemów z systemem testowym i sprawdzenie czy w razie ich wystąpienia, wszystkie elementy zostaną prawidłowo wyłączone, test 4 – test głównych systemów napędowych łączących się z silnikami, test 5 – sprawdzono system kontroli dysz silnika i związane z nim elementy hydrauliczne, test 6 – symulacja sekwencji startowej w celu upewnienia się, że jest ona prawidłowa i każdy jej element odbywa się w przewidzianym czasie.

Teraz nadszedł czas na uruchomienie najpotężniejszej rakiety w historii.

Tutaj należy dodać kilka słów wyjaśnienia. Gdy NASA przed kilkoma laty poinformowała, że SLS będzie najpotężniejszą rakietą w dziejach, gdyż będzie w stanie wynieść na niską orbitę okołoziemską (LEO) ładunek o masie 130 ton, natychmiast pojawiły się głosy, że słynna Saturn V, która zawiozła astronautów na Księżyc, była w stanie wynieść 140 ton na LEO.

NASA wyjaśniła, że Saturn V wynosił na LEO 140 ton włącznie z masą własną i masą paliwa. Tymczasem 130 ton SLS to masa samego ładunku.

NASA doprecyzowała więc używaną terminologię i obecnie mówiąc o możliwościach rakiety odnosi się wyłącznie do ładunku, dodatkowego obciążenia, które może ona ze sobą zabrać. W przypadku SLS wynosi ono 130 ton na LEO, w przypadku zaś Saturna V było to 122,5 tony na LEO. Na potrzeby porównania z dawniej używaną terminologią specjaliści z NASA ukuli nieformalny termin „masa wystrzelona”, który obejmuje rakietę z paliwem oraz ładunkiem. Dla Saturna V „masa wystrzelona” na LEO wynosiła wspomniane 140 ton, dla SLS jest to zaś 157 ton.

NASA zastrzega jednak, że nie są to liczby ostateczne, gdyż SLS nie jest projektem zamkniętym, może ewoluować. Ponadto system ten nie powstał z myślą o wynoszeniu ładunków na orbitę okołoziemską. Ma on zawieźć astronautów na Marsa, zatem jego możliwości transportowe na LEO nie są najważniejszym parametrem.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Uniwersytetów w Bath i Bristolu nie tylko wykazali, że ich technologia Fastball EEG jest w stanie wykryć wczesne oznaki choroby Alzheimera na całe lata przed czasem, w którym możliwa jest diagnoza kliniczna, ale również, że kilkuminutowy test można łatwo przeprowadzić w domu pacjenta. To zaś daje możliwość wykonywania szeroko zakrojonych badań przesiewowych.
      Podczas krótkiego, zaledwie 3-minutowego badania za pomocą Fastball EEG, rejestrowana jest aktywność mózgu w czasie, czy uczestnik badania ogląda obrazki. W ten sposób można zidentyfikować osoby z łagodnym zaburzeniem poznawczym (MCI). To stan przejściowy pomiędzy naturalnymi skutkami starzenia się, który może prowadzić do rozwoju alzheimera.
      Obecnie dysponujemy dobrymi lekami spowalniającymi postępy choroby Alzheimera. Jednak ich skuteczność zależy od wczesnego podania. Dlatego niezwykle ważne są metody pozwalające na jak najwcześniejsze zidentyfikowanie pierwszych sygnałów mogących prowadzić do tej choroby. Obecnie w wielu przypadkach chorzy otrzymują diagnozę na tyle późno, że stosowanie najbardziej efektywnych form leczenia staje się nieskuteczne.
      Doktor George Stothart z Wydziału Psychologii Uniwersytetu w Bath mówi, że obecnie stosowane narzędzia diagnostyczne wyłapują chorobę Alzheimera na 10 do 20 lat po tym, jak zaczyna się ona rozwijać. Szybki pasywny test Fastball może to zmienić, dostarczając obiektywną diagnozę znacznie wcześniej, stwierdza uczony. Nowa technika działa wyłącznie dzięki rejestrowaniu fal mózgowych w reakcji na oglądane obrazki. Nie wymaga od osoby badanej przestrzegania jakichś instrukcji, czy przypominania sobie czegoś. Dzięki temu test jest bardziej obiektywny i łatwiejszy do przeprowadzenia, niż tradycyjne testy pamięciowe.
      Badania omówiono na łamach Brain Communications.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Któż by się spodziewał, że kanapka z wołowiną może stać się przedmiotem dyskusji podczas uchwalania budżetu NASA przez Izbę Reprezentantów, a w jej sprawie będzie wypowiadał się sam szef NASA, James Webb (tak, tak, ten od Teleskopu Webba)? A jednak...
      Misja Gemini III (23 marca 1965) była pierwszą załogową misją w ramach projektu Gemini i 7. amerykańską misją załogową w historii. Udział w niej wzięli Virgil „Gus” Grissom i John Young. Trwała niecałe 5 godzin, ale w jej ramach NASA chciała przetestować m.in. system wyżywienia astronautów dla planowanych dłuższych misji. Astronauci mieli sprawdzić szczelność plastikowych torebek z liofilizowaną żywnością, system dostarczania wody do torebek, system pozbywania się śmieci.
      Już podczas treningu na Ziemi Grissom narzekał na okropny smak kosmicznego jedzenia. Sam Young określał niektóre dania jako „ledwie możliwe do przełknięcia”, a jeszcze inny astronauta opisywał posiłki serwowane załogom misji Gemini jako „dziwaczne”. Jedzenie było tak okropne, że podczas naziemnego treningu, który odbywał się m.in. w panamskiej dżungli, przez dwa pierwsze dni astronauci woleli w ogóle nie jeść. Trzeciego dnia pokonał ich głód. Sytuację pogarszał fakt, że liofilizowaną masę musieli najpierw nawodnić zimną wodą. Z ciepłą dałoby się to jeszcze jakoś przełknąć. Ale na pokładzie była tylko zimna.
      Young postanowił zrobić przyjemność bardziej doświadczonemu koledze. Przed startem poprosił innego astronautę, Waltera Schirrę, o kupno w pobliskim barze kanapki z marynowaną wołowiną. Gdy Grissom i Young szli w kierunku stanowiska startowego, Schirra podał Youngowi kanapkę, a ten schował ją do kieszeni skafandra.
      Dwie godziny po starcie Young miał za zadanie rozpocząć eksperyment z żywnością. Wyjął więc kanapkę z kieszeni i zaproponował ją swojemu dowódcy. To, co działo się w kabinie, zarejestrowały systemy komunikacji z Ziemią. Young zapytał Grissoma, czy chce. Grissom zapytał, co to i skąd to jest, na co Young odpowiedział, że zabrał ze sobą. Jednak gdy Grissom ugryzł kanapkę poczuł w ustach okruszki. Schował więc kanapkę do kieszeni, by okruszki nie zaczęły unosić się w kabinie.
      Dwa dni później, podczas konferencji prasowej, na której zgromadzili się dziennikarze z całego świata, padło pytanie o kanapkę. Young wydawał się zaskoczony. Najpierw zapytał, skąd dziennikarz o tym wie, a potem wybuchnął śmiechem i stwierdził, że Grissom ją zjadł.
      Astronauta z pewnością nie spodziewał się, że jego kanapką zajmie się niezwykle poważne grono. Dnia 5 kwietnia 1965 roku podkomitecie Izby Reprezentantów, który był częścią komitetu decydującego o wydatkowaniu pieniędzy budżetowych, trwała m.in. dyskusja na temat kolejnego budżetu NASA.
      Dyskusja zeszła na program Gemini. W pewnym momencie deputowany George E. Shipley zapytał dyrektora NASA, Jamesa Webba, dlaczego Agencja zmniejsza finansowanie programu. Odpowiedzi udzielił wicedyrektor ds. misji załogowych, George Mueller, który wyjaśnił, że w związku z zakończeniem testów naziemnych spadły też koszty misji.
      W pewnym momencie Shipley stwierdził: To bardzo udany program. Proszę mi powiedzieć o ostatniej misji oraz o kanapce, która znalazła się na pokładzie. Czy Pan to zatwierdził? [...] Myślę, że po wydaniu takich pieniędzy i przeznaczeniu takiej ilości czasu, wniesienie na pokład pojazdu kanapki jest czymś niewłaściwym. [...] Czytałem artykuł, z którego wynikało, że okruszki z kanapki latały po całej kabinie. Wiem, ze wszystko sterylizujecie i dokładnie czyścicie, że pojazd jest niemal jak sala operacyjna, a tutaj ktoś wnosi kanapkę. Co Pan o tym myśli?.
      Pomiędzy Shipleyem a urzędnikami NASA wywiązała się utarczka słowna, którą przerwał jeden z deputowanych pytaniem, czy kanapka zagroziła powodzeniu misji. Przedstawiciele NASA zapewnili, że nie. W końcu włączył się w to dyrektor Webb, który przyznał Shipleyowi rację, że takie rzeczy nie powinny mieć miejsca. Dodał, że program kosmiczny jest zbyt ważny, by można było pozwolić astronautom na samodzielne decydowanie, co mogą ze sobą zabrać.
      Webb miał rację, gdyż narażenie na niebezpieczeństwo dopiero rozwijającego się programu załogowych misji kosmicznych mogłoby stanowić poważne utrudnienie w realizacji tak ważnego celu, jakim było lądowanie człowieka na Księżycu. Szczególnie w obliczu ostrej rywalizacji ze Związkiem Radzieckim.
      Od czasu misji Gemini IV NASA wdrożyła ściślejsze reguły, zgodnie z którymi każdy astronauta ma obowiązek przedstawić do akceptacji listę przedmiotów, jakie chce ze sobą zabrać. Zabronione są kanapki czy ciężkie przedmioty z metalu.
      Pomimo krytycznej uwagi dyrektora Webba, Young nie dostał nawet nagany za swoje zachowanie. A kanapka nie przeszkodziła mu w jego rozwijającej się i – jak się z czasem okazało – wyjątkowej karierze. Był pierwszym astronautą w historii, który poleciał w kosmos sześciokrotnie (2xGemini, 2xApollo, 2xSTS), pierwszym dowódcą promu kosmicznego i przez 13 lat był dyrektorem Astronaut Office, które zarządza astronautami, a szef biura osobiście decyduje, kto zostanie dowódcą, pilotem czy specjalistą danej misji. Ciekawe, czy w tej roli uczulał swoich młodszych kolegów, by nie brali ze sobą kanapek.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Pełniący obowiązki administratora NASA Sean Duffy, wydał dyrektywę, której celem jest przyspieszenia budowy reaktora atomowego na powierzchni Księżyca. Agencja niejednokrotnie prowadziła prace nad reaktorami służącymi eksploracji kosmosu. Dotychczas żaden nie przyniósł oczekiwanych rezultatów. Administracja prezydenta Trumpa – w obliczu rosnącej konkurencji ze strony Chin i Rosji – chce wreszcie doprowadzić tę kwestię do końca.
      Chiny i Rosja mają ambitne plany. Chcą do połowy lat 30. wybudować w pobliżu bieguna południowego Księżyca stację zasilaną energią jądrową. Biegun południowy znajduje się też w kręgu zainteresowań USA, które chcą w 2027 roku wysłać tam misję załogową. W tamtym regionie znajdują się wiecznie zacienione kratery, zawierające zamarzniętą wodę, którą można wykorzystać zarówno do picia, jak i do produkcji paliwa.
      Prezydent Trump już w czasie swojej pierwszej kadencji naciskał na zorganizowanie załogowej misji na Księżyc. W 2022 roku NASA, zainspirowana częściowo polityką byłego już wówczas prezydenta, prowadziła projekt, w ramach którego trzy firmy otrzymały po 5 milionów dolarów na opracowanie koncepcji niewielkiego, 40-kilowatowego reaktora atomowego o masie nie przekraczającej 6 ton.
      Projekt Duffy'ego jest bardziej ambitny. Reaktor ma mieć moc co najmniej 100 kW i być gotowy do wystrzelenia w 2029 roku. Teraz NASA ma 30 dni na wyznaczenie urzędnika, który będzie nadzorował cały projekt i 60 dni na opublikowanie oferty dla partnerów.
      Powstanie takiego reaktora na Księżycu może pozwolić też USA de facto na przecięcie niewielkiej części Srebrnego Globu. Traktat o przestrzeni kosmicznej zabrania co prawda jakiemukolwiek państwu zawłaszczania jakiegokolwiek fragmentu przestrzeni kosmicznej czy ogłaszania swojego zwierzchnictwa nad nim, jednak ten sam traktat mówi, o konieczności poszanowania uzasadnionych interesów innych państw. To zaś może oznaczać, że w pewnej odległości od takiego reaktora inne państwa nie będą mogły prowadzić żadnej działalności mogącej utrudnić jego działanie. De facto mogłaby powstać w jego pobliżu wyłączna strefa zarządzana przez USA.
      Wielu ekspertów wątpi, czy rok 2029 jest realistycznym terminem wysłania na Księżyc reaktora atomowego. Tym bardziej, że – ich zdaniem – zorganizowanie misji załogowej w 2027 roku też jest zbyt ambitnym celem.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Łaziki pracujące na Marsie czy Księżycu, mierzą się z wieloma problemami. Jednym z nich jest ryzyko utknięcia w grząskim gruncie. Gdy tak się stanie operatorzy podejmują serię delikatnych manewrów, by pojazd wydobyć. Nie zawsze się to udaje. Łazik Spirit zakończył misję jako stacjonarna platforma badawcza po tym, jak utknął w luźnym piasku. Czy takim wydarzeniom da się zapobiec? Inżynierowie z University of Wisconsin-Madison informują o znalezieniu poważnego błędu w procedurach testowania łazików. Jego usunięcie może spowodować, że pojazdy na Marsie i Księżycu będą narażone na mniejsze ryzyko.
      Błąd ten polega na przyjęciu zbyt optymistycznych i uproszczonych założeń co do tego, jak łaziki zachowują się poza Ziemią. Ważnym elementem testów naziemnych takich pojazdów jest sprawdzenie, w jaki sposób mogą się one poruszać po luźnym podłożu. Na Księżycu grawitacja jest 6-krotnie mniejsza niż na Ziemi, więc przez dekady, testując łaziki, naukowcy tworzyli prototypy o masie sześciokrotnie mniejszej niż łazik docelowy i testowali je na pustyni. Jednak ta metoda pomijała pewien istotny szczegół – wpływ grawitacji na piasek.
      Profesor Dan Negrut i jego zespół przeprowadzili symulacje, które wykazały, że Ziemia przyciąga ziarenka piasku silniej niż Mars czy Księżyc. Dzięki temu piasek na Ziemi jest bardziej zwarty. Jest mniejsze prawdopodobieństwo, że ziarna będą się pod nimi przesuwały. Jednak na Księżycu piasek jest luźniejszy, łatwiej się przemieszcza, więc obracające się koła trafiają na mniejszy opór. Przez to pojazdowi trudniej się w nim poruszać.
      Jeśli chcemy sprawdzić, jak łazik będzie sobie radził na Księżycu, musimy rozważać nie tylko wpływ grawitacji na pojazd, ale również wpływ grawitacji na piasek. Nasze badania pokazują, jak ważne są symulacje do badania możliwości jezdnych łazika na luźnym podłożu, wyjaśnia uczony.
      Uczeni dokonali swojego odkrycia podczas prac związanych z misją łazika VIPER, który ma trafić na Księżyc. We współpracy z naukowcami z Włoch stworzyli silnik Chrono, służący do symulacji zjawisk fizycznych, który pozwala na szybkie modelowanie złożonych systemów mechanicznych. I zauważyli istotne różnice pomiędzy wynikami testów VIPERA na Ziemi, a wynikami symulacji. Po przeanalizowaniu problemu znaleźli wspomniany błąd w procedurach testowych.
      Chrono to produkt opensource'owy, z którego skorzystały już setki firm i organizacji. Pozwala on lepiej zrozumieć najróżniejsze złożone mechanizmy, od mechanicznych zegarków po czołgi jeżdżące poza utwardzonymi drogami.
      Źródło: A Study Demonstrating That Using Gravitational Offset to Prepare Extraterrestrial Mobility Missions Is Misleading

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Kosmiczny Nancy Grace Roman przeszedł niezwykle ważny test wibracyjny. Symulowano podczas niego warunki, jakie będą panowały podczas wystrzeliwania teleskopu w przestrzeń kosmiczną, by upewnić się, że urządzenie przetrzyma podróż. Taki test jest jak dość silne trzęsienie ziemi, jednak z pewnymi różnicami. W przeciwieństwie do trzęsienia ziemi, poszczególnie częstotliwości wstrząsów są aplikowane jedna po drugiej. Rozpoczynamy od wstrząsów o niskiej amplitudzie i przechodzimy do coraz wyższych, a po drodze wszystko sprawdzamy. To bardzo skomplikowany proces, mówi Cory Powell, analityk NASA odpowiedzialny za integralność strukturalną teleskopu.
      Podczas testu symulowano siły o 25% większe, niż te, które będą oddziaływały na teleskop w czasie startu. Po teście teleskop został przewieziony do clean roomu, gdzie zostanie szczegółowo zbadany. Badania mają potwierdzić, że wyszedł z testu bez szwanku i można montować na nim antenę nadawczo-odbiorczą. Kolejnym ważnym testem będzie sprawdzenie całej elektroniki, następnie urządzenie zostanie poddane testom termicznym w warunkach obniżonego ciśnienia. Sprawdzą one, czy urządzenia przetrwają warunki panujące w kosmosie.
      Jeśli wszystko pójdzie zgodnie z planem, w listopadzie rozpocznie się proces składania całego teleskopu. Przed końcem roku ma on przejść ostateczne testy. Jego wystrzelenie planowane jest na maj 2027, ale pracujący przy nim zespół chce, by urządzenie było gotowe do startu już jesienią przyszłego roku.
      Grace Nancy Roman Space Telescope to urządzenie pracujące w podczerwieni. Powstał dzięki niezwykłemu prezentowi od Narodowego Biura Rozpoznania, które przed laty przekazało NASA... dwa nieużywane teleskopy kosmiczne klasy Hubble'a. Teleskop Roman dostarczy równie wyraźnych obrazów co Hubble, jednak jego pole widzenia jest 100-razy większe. Dzięki temu praca, którą Hubble wykonuje w 650 godzin, Teleskop Roman wykona w 3 godziny.
      Celem jego misji naukowej będzie badanie ciemnej materii – ma to robić za pomocą trzech niezależnych technik: badania barionowych oscylacji akustycznych, odległych supernowych oraz słabego soczewkowania grawitacyjnego – poszukiwanie planet pozasłonecznych, bezpośrednie obrazowanie planet pozasłonecznych i wykrywanie pierwotnych czarnych dziur.
      Podstawowa misja naukowa teleskopu planowana jest na 5 lat. Można jednak przypuszczać, że – podobnie jak w przypadku wielu innych misji – teleskop będzie w na tyle dobrym stanie, że zostanie ona przedłużona.


      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...