Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Gigantyczna sieć czujników na powierzchni 200 000 km2 pomoże badać neutrina?

Recommended Posts

Naukowcy skupieni wokół GRAND Collaboration chcą wybudować gigantyczny wykrywacz neutrin obejmujących powierzchnię... 200 000 km2. Siedzibą GRAND (Giant Radio Array for Neutrino Detection) jest francuskie Narodowe Centrum Badań Naukowych (CNRS). GRAND Collaboration odbyła już kilka warsztatów i stworzyła plan budowy gigantycznego detektora.

Uczestnicy GRAND chcą poszukiwać i badań neutrin o bardzo wysokich energiach. Dotychczas takich neutrin nie udało się zaobserwować. Takie neutrina mogą pochodzić z dwóch źródeł. Jednym z nich jest ultrawysokoenergetyczne promieniowanie kosmiczne (UHE), a drugie źródło to interakcja UHE z mikrofalowym promieniowaniem tła.

Naukowców z GRAND szczególnie interesują neutrina taonowe. Neutrina takie powinny być stosunkowo łatwe do wykrycia. Naukowcy z GRAND uważają, że istnieje duże prawdopodobieństwo, iż neutrina z UHE wchodzą w interakcje z materią. Ze wszystkich trzech rodzajów neutrin obecnych w UHE neutrina elektronowe zostają uwięzione w materii, z którą wchodzą w interakcje, a neutrina mionowe przechodzą przez tę materię. Uczeni chcą złapać neutrino taonowe, które wchodzi w reakcje z materią i rozpada się w odległości do 50 kilometrów od miejsca interakcji. Olbrzymi teleskop GRAND miałby rejestrować te rozpady. Z kolei materia, z którą neutrina taonowe mają wchodzić w interakcje to sama Ziemia. Koncepcja jej wykorzystania nie jest nowa. A pomysłodawcy GRAND Collaboration chcą w tym celu wykorzystać tereny górskie. Spróbują złapać neutrina taonowe, które przeszły przez skorupę ziemską i rozpadają się w powietrzu, powodując cały deszcz cząstek.

Pomysł GRAND polega na ustawieniu 200 000 specjalnych czujników. Potrzeba jednego takiego czujnika na 1 km2. Każda z takich stacji będzie składała się ze specjalnej anteny, wzmacniacza oraz sprzętu do rejestrowania i przechowywania danych.
Dotychczas naukowcom udało się zebrać około 160 000 euro i stworzyć 35 prototypowych stacji. Teraz zaczynają wdrażać pilotażowy program GRANDProto300, w ramach którego kosztem 1,6 miliona euro chcą ustawić swoje czujniki na powierzchni 300 km2.

Mają nadzieję, że w ciągu najbliższych 5–10 lat koszt pojedynczej stacji spadnie do około 500 USD. W ten sposób koszty całego projektu, zakładającego budowę czujników oraz stworzenie hotspotu z pełnowymiarową anteną na każde 10 000 km2 powinny zamkną się kwotą 200 milionów euro.

 


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Fizycy z Oak Ridge National Laboratory zaobserwowali nowy rodzaj interakcji neutrin. Naukowcy pracujący przy eksperymencie COHERENT nie tylko poszerzyli naszą wiedzę z dziedziny fizyki, ale również udoskonalili technologię wykrywaczy neutrin i zdobyli nowe informacje na temat tego, co dzieje się w przestrzeni kosmicznej.
      Prawdopodobnie badanie neutrin pozwoli nam z czasem odpowiedzieć na wiele otwartych obecnie pytań, mówi profesor Rex Tayloe z Indiana University, który nadzorował instalację, pracę i analizę danych z kriogenicznego argonowego wykrywacza neutrin Spallation Neutron Source (SNS).
      Grupa Tayloe'a zaobserwowała, że niskoenergetyczne neutrina wchodzą w interakcje z jądrami argonu w procesie nazwanym koherentnym elastycznym rozpraszaniem neutrino-jądro (CEvNS, coherent elastic neutrino-nucleus scattering). Neutrino uderzając w jądro argonu przekazuje mu minimalną ilość energii, co powoduje, że jądro jest niemal niezauważalnie odrzucane.
      Podstawą do przeprowadzonych obecnie badań było studium opisane w 2017 roku w Science, podczas którego zauważono pierwsze oznaki procesu CEvNS, jaki miał miejsce, gdy neutrino wchodziły w interakcje ze znacznie cięższymi jądrami cezu i jodu. Wówczas odrzut cięższych jąder był jeszcze mniejszy niż zaobserwowany obecnie.
      Model Standardowy przewiduje istnienie koherentnego elastycznego rozpraszania neutrino na jądrze. Zaobserwowanie interakcji neutrino z argonem, najlżejszym jądrem w przypadku którego interakcję tą udało się zmierzyć, pozwoliło na potwierdzenie wcześniejszych obserwacji prowadzonych z cięższymi jądrami. Wykonane przez nas dokładne pomiary pozwalają na określenie granic dla alternatywnych modeli teoretycznych, stwierdziła rzecznik prasowa COHERENT fizyk Kate Scholberg z Duke University.
      Yuri Efremenko, fizyk z Univeristy of Tenessee, którego zadaniem było stworzenie bardziej czułych fotodetektorów, powiedział: Argon stał się dla nas rodzajem „drzwi”. Proces CEvNS jest jak budynek, o którym wiemy tyle, że powinien istnieć. Pierwsze pomiary z udziałem cezu i jodu były jednymi z „drzwi”, którymi weszliśmy do budynku. Teraz otworzyliśmy „drzwi” argonowe. Pomiary dokonane z udziałem argonu są zgodne z granicami błędu dopuszczonymi przez Model Standardowy. Jednak zwiększenie precyzji pomiarów może pozwolić na odkrycie czegoś nowego.
      Szukamy sposobów na zaburzenie Modelu Standardowego. Uwielbiamy go, to bardzo skuteczny model. Ale istnieją kwestie, których na jego gruncie nie można wyjaśnić. Podejrzewamy, że w tych drobnych kwestiach, gdzie możemy zaburzyć Model Standardowy, kryją się odpowiedzi na wielkie pytania o naturę wszechświata, antymaterię czy ciemną materię, dodaje fizyk Jason Newby.
      Teraz, po 18 miesiącach prowadzenia eksperymentów, w czasie których zarejestrowano 159 wydarzeń CEvNS - co jest zgodne z Modelem Standardowym – naukowcy poinformowali o wynikach swoich prac na łamach Physical Review Letters.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzięki wykryciu neutrin pochodzących z jądra Słońca fizycy byli w stanie potwierdzić ostatni brakujący element opisu fuzji zachodzącej wewnątrz naszej gwiazdy. Potwierdzili tym samym obowiązujący od dziesięcioleci model teoretyczny przewidujący, że część energii słonecznej pochodzi z łańcucha reakcji, w którym udział mają atomy węgla i azotu.
      W procesie tym cztery protony łączą się w jądro helu. Dochodzi do uwolnienia dwóch neutrin, innych cząstek subatomowych i olbrzymich ilości energii. Ten cykl węglowo-azotowo-tlenowy (CNO) nie odgrywa większej roli w Słońcu, gdzie dzięki niemu powstaje mniej niż 1% energii. Uważa się jednak, że gdy gwiazda się starzeje, zużywa wodór i staje się czerwonym olbrzymem, wówczas rola cyklu CNO znacząco rośnie.
      O odkryciu poinformowali naukowcy pracujący przy włoskim eksperymencie Borexino. To wspaniałe, że udało się potwierdzić jedno z podstawowych założeń teorii dotyczącej gwiazd, mówi Marc Pinsonnealut z Ohio State University.
      Borexino już wcześniej jako pierwszy wykrył neutrina pochodzące z trzech różnych etapów reakcji zachodzącej w Słońcu, która odpowiada za produkcję większości energii naszej gwiazdy. Dzięki obecnemu odkryciu Borexino w pełni opisał dwa procesy zasilające Słońce, mówi rzecznik eksperymentu Gioacchino Branucci z Uniwersytetu w Mediolanie. Kończymy wielkim bum!, dodał Marco Pallavicini z Uniwersytetu w Genui. Może to być bowiem ostatnie odkrycie Borexino, któremu grozi zamknięcie z powodu ryzyka dla źródła wody pitnej.
      Odkrycie neutrin pochodzących z cyklu węglowo-azotowo-tlenowego nie tylko potwierdza teoretyczne modele procesów zachodzących w Słońcu, ale rzuca też światło na strukturę jego jądra, szczególnie zaś na koncentrację w nim metali. Tutaj trzeba podkreślić, że astrofizycy pod pojęciem „metal” rozumieją wszelkie pierwiastki o masie większej od wodoru i helu.
      Liczba neutrin zarejestrowanych przez Borexino wydaje się zgodna ze standardowym modelem przewidującym, że metaliczność jądra jest podobna do metaliczności powierzchni. To ważne spostrzeżenie, gdyż w ostatnim czasie pojawiało się coraz więcej badań kwestionujących taki model.
      Badania te sugerowały, że metaliczność jądra jest niższa niż powierzchni. A jako, że to skład pierwiastków decyduje o tempie przepływu energii z jądra, badania te sugerowały jednocześnie, że jądro jest nieco chłodniejsze niż sądzono. Jako, że proces, w którym powstają neutrina jest niezwykle wrażliwy na temperaturę, dane zarejestrowane przez Borexino wskazują raczej na starsze wartości temperatury, nie na te sugerowane przez nowe badania.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Opaski fitness czy smartzegarki zapewniają wiele użytecznych informacji, np. o liczbie kroków czy tętnie, ale zazwyczaj nie dają głębszego wglądu w stan czyjegoś zdrowia. Koreańscy naukowcy postanowili więc stworzyć bardziej zaawansowane urządzenie. Efektem ich prac są e-okulary, które monitorują fale mózgowe i ruchy ciała użytkownika, a także spełniają funkcję okularów przeciwsłonecznych i pozwalają kontrolować gry za pomocą ruchów gałek ocznych.
      Jak podkreślają autorzy artykułu z pisma ACS Applied Materials & Interfaces, tego typu urządzenie z funkcją EEG i EOG (elektroencefalografii i elektrookulografii) może w przyszłości pomóc np. w diagnozowaniu padaczki czy zaburzeń snu.
      Zespół Suk-Won Hwanga z Uniwersytetu Koreańskiego uzyskał oprawki okularów za pomocą drukarki 3D. Elastyczne kompozytowe elektrody umieszczono w pobliżu uszu (czujnik EEG) i oczu (czujnik EOG). Pomyślano też o czujnikach ruchu i promieniowania UV, a także o soczewkach z jonożelem. Gdy czujnik wykrywał promieniowanie ultrafioletowe o określonym natężeniu, soczewki zmieniały barwę; w ten sposób okulary mogły pełnić rolę zwykłych okularów i okularów przeciwsłonecznych.
      Czujnik ruchu (przyspieszeniomierz) pozwalał akademikom monitorować postawę i chód użytkownika oraz wykrywać upadki. Sensor EEG wykrywał fale alfa. Czujnik EOG umożliwiał zaś przesuwanie cegieł w popularnej grze wideo.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rząd Japonii dał zielone światło budowie Hyper-Kamiokande, największego na świecie wykrywacza neutrin, którego konstrukcja pochłonie 600 milionów dolarów. Gigantyczna instalacja powstanie w specjalnie przygotowanej dlań grocie niedaleko kopalni w miejscowości Kamioka. Pomieści ona 250 000 ton ultraczystej wody. To 5-krotnie więcej niż obecnie używany Super-Kamiokande. Ten z kolei jest następcą 300-tonowego Kamiokande, który działał w latach 1983–1995.
      Dzięki olbrzymim rozmiarom Hyper-K możliwe będzie zarejestrowanie większej liczby neutrin niż dotychczas. Będą one pochodziły z różnych źródeł – z promieniowania kosmicznego, Słońca, supernowych oraz z akceleratora cząstek. Instalacja posłuży też do ewentualnej obserwacji rozpadu protonów. Istnienie takiego zjawiska przewidują niektóre rozszerzenia Modelu Standardowego, jednak dotychczas nie udało się go zarejestrować.
      Budowa wykrywacza ma kosztować 600 milionów dolarów, z czego Japonia pokryje 85%, a resztę sfinansują inne kraje, w tym Wielka Brytania i Kanada. Dodatkowo Japonia wyda 66 milionów dolarów na rozbudowę akceleratora J-PARC. To znajdujące się 300 kilometrów dalej urządzenie będzie źródłem neutrin dla Hyper-K.
      Głównym elementem nowego wykrywacza będzie zbiornik o głębokości 71 i średnicy 68 metrów. Grota, do której trafi, powstanie 8 kilometrów od istniejącej infrastruktury Kamioka, by uniknąć wibracji mogących zakłócić prace przygotowywanego właśnie do uruchomienia wykrywacza fal grawitacyjnych KAGRA.
      Wnętrze zbiornika Hyper-K zostanie wyłożone fotopowielaczami, które będą przechwytywały fotony powstałe w wyniku zderzeń neutrino z atomami w wodzie.
      Hyper-Kamiokande będzie jednym z trzech dużych instalacji służących do wykrywania neutrin, jakie mają ruszyć w nadchodzącej dekadzie. Dwa pozostałe to Deep Underground Neutrino Experiment (DUNE), który ma zacząć pracę w USA w 2025 roku oraz Jiangmen Underground Neutrino Observatory (JUNO), jaki Chiny planują uruchomić w roku 2021.
      Takaaki Kajita, fizyk z Uniwersytetu Tokijskiego, mówi, że naukowcy są podekscytowani możliwościami Hyper-K, który ma pozwalać na badanie różnic w zachowaniu neutrin i antuneutrin. Już w Super-K zauważono istnienie takich różnic, jednak to Hyper-K i DUNE pozwolą na ich bardziej szczegółowe zbadanie. Zaś dzięki temu, że oba detektory będą korzystały z różnej techniki – w DUNE znajdzie się płynny argon a nie woda – będzie można nawzajem sprawdzać uzyskane wyniki.
      Jednak,jak podkreśla Masayuki Nakahata, fizyk z Uniwersytetu Tokijskiego i rzecznik prasowy Super-K, największą nadzieją, jaką pokłada się w Hyper-K jest odkrycie rozpadu protonu.
      Na razie rząd Japonii nie wydał oficjalnego oświadczenia w sprawie budowy Hyper-Kamiokande. Jednak japońscy naukowcy mówią, że właśnie zaproponowano poprawkę budżetową, w ramach której przewidziano pierwszą transzę w wysokości 32 milionów dolarów na rozpoczęcie budowy wykrywacza. Poprawka musi jeszcze zostać zatwierdzona przez parlament, co prawdopodobnie nastąpi w przyszłym miesiącu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jesteśmy coraz bliżej odkrycia masy neutrino. Przez długi czas sądzono, że neutrino ma zerową masę spoczynkową, jednak obecnie wiadomo, że jednak posiada masę. Najnowsze badania wykazały, że masa ta jest nie większa niż 1/500 000 masy elektronu. Udało się bowiem wyznaczyć górną granicę masy neutrino. Wynosi ona 1,1 elektronowolta. To dwukrotnie mniej niż dotychczasowa górna granica masy.
      We wszechświecie są miliardy razy więcej neutrino niż atomów. Zatem nawet jeśli masa każdego z nich jest niewielka, to w sumie mogą stanowić znaczną część masy wszechświata, mówi Christian Weinheimer z Uniwersytetu w Munster.
      Międzynarodowy zespół naukowców analizował rozpad trytu. W jego trakcie dochodzi do jednoczesnej emisji elektronu i neutrino. Mierząc energię emitowanych elektronów naukowcy byli w stanie bardziej precyzyjnie niż dotychczas określić masę neutrino. Jesteśmy dumni i szczęśliwi, stwierdza Weinheimer. Brał on udział w pracach międzynarodowej grupy naukowców, którzy stali za eksperymentem Karlsruhe Tritium Neutrino.
      Na potrzeby badań powstał specjalny spektrometr o wysokości 24 metrów. To bardzo, bardzo ekscytujące. To najbardziej precyzyjny pomiar ze wszystkich, cieszy się Melissa Uchida z University of Cambridge. Jej zdaniem istnieje szansa, że w ciągu kilku najbliższych lat poznamy masę neutrino. W końcu będziemy w stanie ułożyć puzzle dotyczące powstania wszechświata, dodaje uczona.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...