Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Droga Mleczna zderzyła się z Krakenem. Odtworzono drzewo genealogiczne naszej galaktyki

Rekomendowane odpowiedzi

Astronomowie nie od dzisiaj wiedzą, że galaktyki mogą rosnąć łącząc się z innymi galaktykami. W ten sposób mogła też ewoluować Droga Mleczna. Międzynarodowy zespół astronomów pracujący pod kierunkiem doktora Diederika Kruijssena z Uniwersytetu w Heidelbergu oraz doktora Joela Pfeffera z Liverpool John Moores University stworzył drzewo genealogiczne naszej galaktyki, a o wynikach swoich badań poinformował na łamach Monthly Notices of the Royal Astronomical Society.

Gromady kuliste to gęste zgrupowania powiązanych grawitacyjnie gwiazd. To bardzo stare struktury. W skład gromady może wchodzić nawet milion gwiazd. Wiemy, że w Drodze Mlecznej występuje ponad 150 takich gromad. Wiele z nich powstało w mniejszych galaktykach, które łączyły się, by w końcu utworzyć Drogę Mleczną taką, jaką znamy ją dzisiaj. Naukowcy od dawna podejrzewali, że gromady kuliste mogą pełnić rolę swoistych „skamieniałości”, dzięki którym uda się kiedyś zbadać przeszłość naszej galaktyki. Teraz mamy już w ręku odpowiednie narzędzia, by podjąć się takiego zadania.

Zespół Kruijssena i Pfeffera odtworzył drzewo genealogiczne Drogi Mlecznej opierając się przy tym wyłącznie na gromadach kulistych. Na potrzeby swoich badań naukowcy stworzyli zestaw zaawansowanych symulacji komputerowych modelujących powstawanie galaktyk podobnych do naszej. Zestaw ten, E-MOSAICS, jest jedynym, który zawiera kompletny model tworzenia się, ewolucji i niszczenia gromad kulistych.

Naukowcy byli w stanie powiązać wiek gromad kulistych, ich skład chemiczny oraz ruch orbitalny z właściwościami galaktyk, w których powstały ponad 10 miliardów lat temu. Stosując tę metodę do gromad kulistych w naszej galaktyce uczeni zdołali obliczyć nie tylko, z ilu gwiazd składały się galaktyki, w skład których oryginalnie gwiazdy z gromad wchodziły, ale również, kiedy doszło do ich połączenia z Drogą Mleczną.

Głównym wyzwaniem był fakt, że zderzenia galaktyk to bardzo chaotyczny proces, podczas którego orbity gromad kulistych zostają całkowicie zmienione. Wykorzystaliśmy więc sztuczną inteligencję, którą pomogła nam zrozumieć cały złożony system, który istnieje dzisiaj. Wytrenowaliśmy sieć neuronową na symulacjach E-MOSAICS tak, by łączyła właściwości gromad kulistych z historią ich oryginalnych galaktyk. Przetestowaliśmy nasz algorytm dziesiątki tysięcy razy i byliśmy zaskoczeni jak dokładnie reoknstruował łączenie się symulowanych galaktyk, wykorzystując w tym celu jedynie gromady kuliste, mówi Kruijssen.

Zachęceni wysoką dokładnością algorytmu naukowcy postanowili odszyfrować za jego pomocą historię Drogi Mlecznej. Symulacje nie tylko ujawniły masy moment łączenia się mniejszych galaktyk z Drogą Mleczną, ale pozwoliły na odkrycie nieznanej dotychczas kolizji Drogi Mlecznej z galaktyką, którą badacze nazwali Krakenem.

Zderzenie z Krakenem musiało być najważniejszym takim wydarzeniem w historii Drogi Mlecznej. Dotychczas powszechnie sądzono, że największym zderzeniem była kolizja z galaktyką karłowatą Gaia-Enceladus do którego doszło przed 9 miliardami lat.
Teraz dowiadujemy się, że 11 miliardów lat temu, gdy Droga Mleczna była 4-krotnie mniej masywna, połączyła się z galaktyką Kraken. Kolizja ta musiała całkowicie zmienić wygląd Drogi Mlecznej, mówi Kruijssen.

Dzięki rekonstrukcji wiemy, że dotychczas Droga Mleczna wchłonęła około 5 galaktyk, z których każda miała ponad 100 milionów gwiazd oraz około 15 galaktyk, z których każda miała co najmniej 10 milionów gwiazd. Do zderzenia z najbardziej masywną galaktyką doszło pomiędzy 6 a 11 miliardów lat temu.

Pozostałości po pięciu wielkich galaktykach zostały już zidentyfikowane. Obecne i przyszłe teleskopy powinny umożliwić identyfikację pozostałości wszystkich galaktyk wchłoniętych przez Drogę Mleczna, mówi Kruijssen.

Warto tutaj przypomnieć, że – jak informowaliśmy – naukowcy sądzą, że za kilka miliardów lat dojdzie do połączenia Drogi Mlecznej i Galaktyki Andromedy.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Coś mi się to nie zgadza z liczbami, a przynajmniej z ich rzędami.

 

Policzmy:

5 × ~100 mln = ~500 mln

15 × ~10 mln = ~150 mln

stała kowalskiego 1,25

(500 mln + 150 mln ) × 1,25 = ~800 mln

 

Zawartość naszej galaktyki 200÷400 mld, przyjmę ~300 mld gwiazd.

Zatem przyrost masy z wchłoniętych galaktyk wynosi:

800 mln / 300 mld = ~0,25%

 

A na koniec mowa o pięciu wielkich galaktykach. 100 mln gwiazd to raczej zgromadzenie, którego wielkim bym nie określał.

 

 

Edytowane przez lester

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W Kwintecie Stephana, na galaktycznym skrzyżowaniu, w którym dawne kolizje galaktyk pozostawiły po sobie liczne szczątki, dochodzi właśnie do kolejnego zderzenia. Bierze w nim udział galaktyka pędząca z prędkością 3,2 milionów km/h. Kolizję, w bezprecedensowej rozdzielczości, zaobserwował międzynarodowy zespół naukowy korzystający z William Herschel Telescope Enhaced Area Velocity Explorer (WEAVE). To supernowoczesny spektrograf, zamontowany przed dwoma laty na William Herschel Telescope na Wyspach Kanaryjskich.
      Zderzenie zostało spowodowane przez galaktykę NGC 7318b, która przedziera się przez Kwintet. W jego efekcie powstała potężna fala uderzeniowa, podobna do fali, jaka ma miejsce, gdy samolot przekracza barierę dźwięku.
      Kwintet Stephana został odkryty około 150 lat temu. To grupa powiązanych ze sobą grawitacyjnie pięciu galaktyk. Cztery z nich znajdują się w odległości około 290 milionów lat świetlnych od nas, piąta położona jest w odległości 40 milionów lś. Kwintet jest idealnym naturalnym laboratorium służącym do badań interakcji pomiędzy galaktykami. Nic więc dziwnego, że stał się pierwszym celem obserwacyjnym WEAVE.
      Doktor Marina Arnaudova z University of Hertfordshire, która stoi na czele grupy badawczej, mówi, że Kwintet nie tylko doświadcza kolejnego w swej historii potężnego zderzenia, ale dzięki niemu astronomowie odkryli podwójną naturę fali uderzeniowej. W miarę, jak wędruje ona przez zimy gaz, ma prędkość hipersoniczną, w medium międzygalaktycznym Kwintetu porusza się z prędkością kilkunastokrotnie większą od prędkości dźwięku. Fala jest tak potężna, że wyrywa elektrony z atomów, pozostawiając za sobą świecący gaz, który obserwujemy za pomocą WEAVE. Jednak gdy fala przechodzi przez otaczający Kwintet gorący gaz, staje się znacznie słabsza. Zamiast dokonywać w nim zniszczeń, fala kompresuje gaz, co prowadzi do pojawienia się emisji w zakresie fal radiowych, którą rejestrują radioteleskopy, takie jak Low Frequency Array (LOFAR), doaje doktorant Soumyadeep Das.
      Nowe, niezwykle szczegółowe informacje, zebrano dzięki połączeniu danych z WEAVE, LOFAR, Very Large Array i Teleskopu Jamesa Webba. Eksperci są przede wszystkim zachwyceni możliwościami WEAVE. Maja nadzieję, że nowy instrument zrewolucjonizuje naszą wiedzę o wszechświecie. Już ta pierwsza praca naukowa powstała za jego pomocą pokazała, jak wielki potencjał tkwi w spektrografie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po kilkudziesięciu latach poszukiwań astronomowie znaleźli gwiazdy w Strumieniu Magellanicznym. Ten strumień gazowych chmur o dużej prędkości rozciąga się na 600 000 lat świetlnych i znajduje w odległości około 180 000 lat świetlnych od Drogi Mlecznej. Zauważono go po raz pierwszy z 1965 roku, a w 1972 stwierdzono, że łączy on Wielki i Mały Obłok Magellana i jest z nimi powiązany. Pomimo tego, że – wedle obowiązujących teorii naukowych – w strumieniu powinny znajdować się gwiazdy, dotychczas jednoznacznie ich nie odnaleziono. Aż do teraz.
      Vedant Chandra z Center for Astrophysics Harvard & Smithsonian oraz naukowcy z USA i Australii zaobserwowali 13 czerwonych olbrzymów położonych w odległości od 200 do 325 tysięcy lat świetlnych od Ziemi, które mają ten sam moment pędu i podobny skład chemiczny, co gaz w Strumieniu.
      Odkrycia dokonano dzięki analizie katalogu Gaia, w którym znajdują się informacje o ponad miliardzie gwiazd. Naukowcy najpierw odrzucili gwiazdy, które prawdopodobnie należą do Drogi Mlecznej, następnie zaś skupili się na gwiazdach o składzie chemicznym podobnym do składu Strumienia.
      Po raz pierwszy obserwujemy gwiazdy towarzyszące Strumieniowi. To nie tylko rozwiązuje zagadkę samych gwiazd, ale również zdradza nam wiele użytecznych informacji na temat ruchu samego gazu, wyjaśnia Chandra. Obserwacje nowo odkrytych gwiazd pozwolą nie tylko bardziej precyzyjnie określić pozycję i ruch Strumienia, ale również zbadać ruch Obłoków Magellana, galaktyk satelitarnych Drogi Mlecznej.
      Połowa ze zidentyfikowanych gwiazd jest bogata w metale – tutaj trzeba przypomnieć, że metalami w astronomii określa się pierwiastki cięższe od wodoru i helu – i znajduje się bliżej Strumienia, druga połowa jest uboga w metale, te gwiazdy są bardziej rozproszone. Chandra i jego zespół uważają, że różnica ta bierze się z faktu, że gwiazdy bogate w metale uformowały się niedawno w Strumieniu Magellanicznym, natomiast gwiazdy ubogie w metale to populacja wyrzucona z obrzeży Małego Obłoku Magellana podczas interakcji pomiędzy oboma Obłokami. Zdaniem komentujących odkrycie naukowców, gwiazdy o niskiej metaliczności mogą nie być częścią Strumienia, ale są w jakiś sposób z nim powiązane.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W centrum naszej galaktyki naukowcy znaleźli nieznane wcześniej struktury. Nieco przypominają one gigantyczne jednowymiarowe włókna materii rozciągające się pionowo w pobliżu centralnej supermasywnej czarnej dziury Sagittarius A*, jakie przed 40 laty zaobserwował Farhad Yusef-Zadek z Northwester University. Jednak nowe struktury, odkryte właśnie przez Yusefa-Zadeha i jego zespół, są znacznie mniejsze i ułożone horyzontalnie od Sgr A*, tworzą coś na podobieństwo szprych koła.
      Populacje obu włókien są podobne w niektórych aspektach, jednak zdaniem odkrywców, mają różne pochodzenie. Giganty mają wyraźny kształt włókien o wysokości dochodzącej do 150 lat świetlnych. Tymczasem włókna poziome są niewielkie, przypominają kropki i kreski z kodu Morse'a, a każde z nich znajduje się tylko po jednej stronie czarnej dziury.
      Byłem zaskoczony tym, co zauważyłem. Dużo czasu zajęła nam weryfikacja tego, co widzimy. I odkryliśmy, że te włókna nie są rozłożone przypadkowo, ale wydają się związane z tym, co wydobywa się z czarnej dziury. Badając je, możemy więcej dowiedzieć się o obrocie czarnej dziury i orientacji dysku akrecyjnego mówi Yusef-Zadeh.
      Profesor fizyki i astronomii, Yusef-Zadech, od ponad 40 lat bada centrum Drogi Mlecznej. W 1984 roku był współodkrywcą olbrzymich pionowych włókien w pobliżu czarnej dziury, a przed 4 laty odkrył w centrum Drogi Mlecznej dwa bąble o długości 700 lat świetlnych każdy. W ubiegłym zaś roku, we współpracy z innymi ekspertami, zarejestrował setki poziomych włókien, które ułożone są w pary lub grupy i bardzo często są równomiernie rozłożone, na podobieństwo strun instrumentu. Uczony, specjalista od radioastronomii, mówi, że coraz częstsze odkrycia tego typu to zasługa nowych technologii i dostępnych instrumentów, szczególnie zaś radioteleskopu MeerKAT z RPA. Ten instrument zmienia reguły gry. Rozwój technologiczny i dedykowany czas obserwacyjny dostarczyły nam nowych informacji. To naprawdę duży postęp techniczny w radioastronomii, wyjaśnia uczony.
      Yusef-Zadeh, który od dekad bada gigantyczne pionowe włókna był bardzo zaskoczony, gdy zauważył też mniejsze poziome struktury. Ich wiek ocenił na 6 milionów lat. Zawsze myślałem o włóknach pionowych i o ich pochodzeniu. Jestem przyzwyczajony do tego, że są pionowe. Nigdy nie przyszło mi na myśl, że mogą być też poziome, mówi. Oba rodzaje włókien są jednowymiarowe, można je obserwować za pomocą fal radiowych i wydają się powiązane z aktywnością czarnej dziury. Ale na tym się ich podobieństwa kończą.
      Włókna pionowe są prostopadłe do płaszczyzny galaktyki. Włókna poziome rozciągnięte są równolegle do płaszczyzny galaktyki, ale promieniście wskazują na jej centrum, gdzie znajduje się Sagittarius A*. Pionowe są magnetyczne i relatywistyczne, poziome wypromieniowują ciepło. Włókna pionowe składają się z cząstek poruszających się niemal z prędkością światła, włókna poziome wydają się przyspieszać gorący materiał znajdujący się w chmurze molekularnej. Dotychczas zaobserwowano setki włókien każdego z rodzajów. Ponadto włókna pionowe mają długość do 150 lat świetlnych, a poziome 5–10 lś. Włókna pionowe znajdują się wszędzie wokół środka galaktyki, natomiast poziomie tylko z jednej strony.
      Odkrycie rodzi więcej pytań niż odpowiedzi. Yusef-Zadeh przypuszcza, że włókna poziome powstały podczas jakiegoś emisji z czarnej dziury, która miała miejsce przed milionami lat. Wydają się wynikiem interakcji materiału, który wypływał, z jakimś pobliskim obiektem. Nasza praca nigdy się nie kończy. Zawsze musimy prowadzić nowe badania i weryfikować naszą wiedzę oraz hipotezy, dodaje uczony.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzięki Teleskopowi Webba (JWST) naukowcy odkryli najbardziej odległe od Ziemi złożone molekuły organiczne. Zostały one zarejestrowane w galaktyce znajdującej się ponad 12 miliardów lat świetlnych od Drogi Mlecznej. Profesor Joaquin Vieira i świeżo upieczony magistrant Kedar Phadke połączyli siły z uczonymi z Texas A&M University oraz międzynarodową grupą badawczą, by odróżnić sygnały generowane w podczerwieni przez ziarna pyłu od sygnałów molekuł węglowodorów.
      Pył absorbuje i ponownie emituje około połowy promieniowania gwiazd we wszechświecie, przez co promieniowanie podczerwone z odległych obiektów jest niezwykle słabe lub w ogóle niewykrywalne przez naziemne teleskopy, wyjaśnia Vieira. Dzięki olbrzymim możliwościom badawczym Teleskopu Webba oraz wykorzystaniu zjawiska soczewkowania grawitacyjnego można było jednak obserwować odległą galaktykę i badać jej spektrum emisji.
      Badacze skierowali Teleskop Webba na obiekt SPT0418-47, który został wykryty przez South Pole Telescope i zidentyfikowany jako przesłonięta pyłem galaktyka. Odkrycia udało się dokonać dzięki temu, że doszło do soczewkowania grawitacyjnego, które powiększyło SPT0418-47 o 30-35 razy. Gdyby nie soczewkowanie grawitacyjne i dostęp do JWST, nigdy nie bylibyśmy w stanie analizować światła tej galaktyki z powodu zasłaniającego ją pyłu, mówi Vieira.
      Dane spektroskopowe uzyskane przez Teleskop Webba wskazują, że SPT0418-47 zawiera ciężkie pierwiastki, co wskazuje, że powstały w niej i zginęły liczne gwiazdy. Jednak najbardziej interesujące były sygnatury wielopierścieniowych węglowodorów aromatycznych (PAH). Na Ziemi związki te powstają m.in. w silnikach spalinowych czy w wyniku pożarów lasów. Molekuły te uznawane są cegiełki budujące najwcześniejsze formy życia.
      Badania te pokazują nam, że jesteśmy w stanie obserwować struktury przesłonięte drobnym pyłem. Regiony, których przed epoką JWST nie mogliśmy badać. Dane spektroskopowe zdradzają nam skład atomowy i molekularny galaktyk, dostarczając ważnych informacji na temat ich powstawania i ewolucji, dodaje Phadke. Naukowcy przyznają, że nie spodziewali się zaobserwowania molekuł organicznych z tak olbrzymiej odległości. Ich zdaniem to pierwszy krok na drodze ku przyszłym przełomowym obserwacjom.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed miesiącem pisaliśmy, że astronomowie z Yale University donieśli o odkryciu czarnej dziury, która ciągnie za sobą gigantyczny ogon gwiazd i materii gwiazdotwórczej. Informacja odbiła się szerokim echem, gdyż takie zjawisko wymagałoby spełnienia całego szeregu wyjątkowych warunków. Liczne zespoły naukowe zaczęły poszukiwać alternatywnego wyjaśnienia zaobserwowanej przez Hubble'a struktury. Naukowcy z Instituto de Astrofísica de Canarias przedstawili na łamach Astronomy and Astrophysics Letters własną interpretację obserwowanego zjawiska.
      Ich zdaniem niezwykła struktura zarejestrowana przez Hubble'a może być płaską galaktyką, którą widzimy od strony krawędzi. Galaktyki takie nie posiadają centralnego zgrubienia i są dość powszechne. Ruch, rozmiary i liczba gwiazd pasują do tego, co widzimy w płaskich galaktykach w lokalnym wszechświecie, mówi główny autor najnowszych badań, Jorge Sanchez Almeida. Proponowany przez nas scenariusz jest znacznie prostszy. Chociaż z drugiej strony szkoda, że to może być wyjaśnieniem, gdyż teorie przewidują, że wyrzucenie czarnej dziury z galaktyki jest możliwe, tutaj więc mielibyśmy pierwszą obserwację takiego zjawiska, dodaje.
      Almeida i jego zespół porównali strukturę zaobserwowaną przez Hubble'a z dobrze znaną nieodległą galaktyką IC5249, która nie posiada centralnego zgrubienia, i znaleźli zaskakująco wiele podobieństw. Gdy przeanalizowaliśmy prędkości w tej odległej strukturze gwiazd okazało się, że odpowiadają one prędkościom obrotowym galaktyk, więc postanowiliśmy porównać tę strukturę ze znacznie nam bliższą galaktyką i okazało się, że są one wyjątkowo podobne, dodaje współautorka artykułu Mireia Montes.
      Naukowcy przyjrzeli się też stosunkowi masy do maksymalnej prędkości obrotowej i odkryli, że to galaktyka, która zachowuje się jak galaktyka, stwierdza Ignacio Trujillo. Jeśli uczeni z Wysp Kanaryjskich mają rację, to Hubble odkrył interesujący obiekt. Dużą galaktykę położoną w odległych od Ziemi regionach, gdzie większość galaktyk jest mniejsza.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...