Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Wokół Słońca krążyła kiedyś inna gwiazda? Nowa teoria wyjaśnia istnienie Planety X i Obłoku Oorta

Rekomendowane odpowiedzi

Astrofizycy z Uniwersytetu Harvarda opublikowali na łamach The Astrophysical Journal Letters teorię, zgodnie z którą Słońce było kiedyś częścią układu podwójnego. Nasza gwiazda miała krążącego wokół niej towarzysza o podobnej masie. Jeśli teoria ta zostanie potwierdzona, zwiększy to prawdopodobieństwo istnienia Obłoku Oorta w takim kształcie, jak obecnie przyjęty i będzie można uznać teorię mówiącą, że tajemnicza Dziewiąta Planeta (Planeta X) została przez Układ Słoneczny przechwycona, a nie uformowała się w nim.

Autorzy nowej teorii – profesor Avi Loeb i jego student Amir Siraj – postulują, że obecność towarzysza Słońca w klastrze, w którym gwiazdy się uformowały, pozwala wyjaśnić istnienie Obłoku Oorta. Naukowcy mówią, że dotychczasowe teorie pozostawiały wiele niewyjaśnionych zagadnień związanych z Obłokiem Oorta. Przyjęcie, że Słońce było częścią układu podwójnego, pozwala wyjaśnić liczne wątpliwości. Tym bardziej, że nie jest to wcale nieprawdopodobne. Większość gwiazd podobnych do Słońca zaczyna życie w układach podwójnych, mówią uczeni.

Jeśli Obłok Oorta rzeczywiście został utworzony z obiektów przechwyconych dzięki pomocy towarzysza Słońca, to będzie to niosło istotne implikacje dla naszego rozumienia uformowania się Układu Słonecznego. Układy podwójne znacznie efektywniej przechwytują różne obiekty niż pojedyncze gwiazdy. Jeśli Obłok Oorta rzeczywiście tak się utworzył, będzie to znaczyło, że Słońce miało towarzysza o podobnej masie, stwierdza Loeb.

Przyjęcie teorii o układzie podwójnym ma też znaczenie dla wyjaśnienia pojawienia się życia na Ziemi. Obiekty z zewnętrznych części Obłoku Oorta mogły odgrywać istotną rolę historii Ziemi. Mogły dostarczyć tutaj wodę i spowodować zagładę dinozaurów. Zrozumienie ich pochodzenia jest bardzo ważne, przypomina Siraj.

Obaj naukowcy podkreślają, że ich teoria ma też znacznie dla wyjaśnienia zagadki Planety X. Dotyczy to nie tylko Obłoku Oorta ale również ekstremalnie dalekich obiektów transneptunowych, takich jak Dziewiąta Planeta. Nie wiadomo, skąd one pochodzą, jednak nasz model przewiduje, że jest więcej obiektów o orbitach takich jak Dziewiąta, stwierdza Loeb.

Obecnie nie posiadamy instrumentów, które pozwoliłyby zaobserwować Obłok Oorta czy Dziewiątą Planetę. Jednak już w przyszłym roku ma zacząć działać Vera C. Rubin Observatory (VRO). Będzie ono w stanie zweryfikować istnienie Dziewiątej Planety. Jeśli VRO potwierdzi, że Dziewiąta Planeta istnieje i została przechwycona oraz zaobserwuje podobnie przechwycone planety karłowate, wtedy model binarny zyska przewagę nad obecnymi teoriami o początkach Słońca, mówi Siraj.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Sihao Cheng z Institute for Advanced Study oraz Jiaxuan Li i Eritas Yang z Princeton University informują o odkryciu na krawędzi Układu Słonecznego niezwykłego obiektu transneptunowego 2017 OF201. Niewykluczone, że jest on na tyle duży, by zaliczyć go do planet karłowatych, zatem do tej klasy obiektów, co Pluton. Jest to jeden z najbardziej odległych widocznych obiektów Układu Słonecznego.
      Istnienie nieznanego dotychczas ciała niebieskiego zostało oficjalnie ogłoszone przez Minor Planet Center Międzynarodowej Unii Astronomicznej, a szczegóły odkrycia zostały opublikowane w artykule udostępnionym w arXiv.
      Obiekty transneptunowe (TNO) to planetoidy znajdując się zwykle poza orbitą Neptuna. Największe z nich to planety karłowate, zaliczane do plutoidów. Planety karłowate to obiekty obiegające Słońce o na tyle dużej masie, że mają kształt niemal kulisty, które nie oczyściły swojej orbity z innych obiektów i nie są satelitami innych obiektów.
      Obiekt 2017 OF201 ma niezwykłą orbitę. Jej aphelium – najdalszy punkt od Słońca – znajduje się w odległości ponad 1600 razy większej, niż odległość Ziemi od Słońca. Tymczasem peryhelium – punkt najbliższy Słońcu – jest w odległości 44,5 jednostek astronomicznych, czyli podobnej do orbity Plutona, mówi Cheng. Tak niezwykle wydłużona orbita powoduje, że 2017 OF201 obiega Słońce w ciągu około 25 000 lat. To sugeruje, że w przeszłości doświadczał złożonych interakcji grawitacyjnych.
      Musiał mieć bliskie spotkania z wielkimi planetami, które wyrzuciły go na tak odległą orbitę, stwierdza Yang. Musiał to być wielostopniowy proces. Niewykluczone, że obiekt ten został najpierw wyrzucony do Obłoku Oorta, najbardziej odległego obszaru Układu Słonecznego, który jest domem wielu komet, a następnie przysłany tutaj z powrotem, dodaje Cheng.
      Naukowcy zauważają, że orbity wielu obiektów transneptunowych wydają się zbiegać w tym samym kierunku, a 2017 OF201 wymyka się tej regule. Takie zbieganie się orbit TNO może być pośrednim dowodem na istnienie w Układzie Słonecznym nieznanej planety, nazwanej roboczo Planetą X lub Dziewiątą Planetą.
      Cheng i jego koledzy szacują, że średnica 2017 OF201 może wynosić 700 kilometrów, co czyniłoby go drugim największym obiektem o tak ekstremalnej orbicie. To wciąż znacznie mniej niż średnica Plutona, która wynosi 2377 kilometrów.
      Żeby jednak dowiedzieć się czegoś więcej o potencjalnej nowej planecie karłowatej, potrzebne będą kolejne badania. 2017 OF201 tylko przez 1% swojej orbity wokół Słońca jest na tyle blisko nas, że możemy go wykryć. Jego obecność sugeruje jednak, że mogą istnieć setki obiektów o podobnych orbitach i rozmiarach, jednak są one obecnie zbyt daleko, byśmy mogli je zauważyć, wyjaśnia Cheng.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astronomowie nazywają Jowisza „architektem” Układu Słonecznego. Jego potężne pole grawitacyjne odegrało ważną rolę w ukształtowaniu orbit pozostałych planet, wpłynęło na kształt ich dysków protoplanetarnych. Teraz profesorowie Konstantin Batygin z California Institute of Technology i Fred C. Adam z University of Michigan poinformowali na łamach Nature Astronomy, że w przeszłości Jowisz był znacznie większy i wywierał znacznie silniejsze oddziaływanie grawitacyjne.
      Naszym celem jest zrozumienie, skąd się wzięliśmy. Żeby to wiedzieć, musimy poznać wczesne fazy formowania się planet. To prowadzi nas do zrozumienia, a jaki sposób swój obecny kształt nabył nie tylko Jowisz, ale cały Układ Słoneczny, stwierdza Batygin.
      Naukowcy przyjrzeli się niewielkim księżycom Jowisza, Amaltei i Tebe. Orbity obu są nieco nachylone względem Jowisza, naukowcy wykorzystali je do obliczenia pierwotnej wielkości Jowisza. Z obliczeń tych wynika, że 3,8 miliona lat po tym, jak uformowały się pierwsze planety skaliste Układu Słonecznego, Jowisz miał dwukrotnie, a może nawet dwuipółkrotnie, większą średnicę niż obecnie. Jego pole magnetyczne było zaś 50-krotnie silniejsze niż obecnie. Nasze obliczenia są całkowicie zgodne z teorią o formowaniu się olbrzymich planet i pozwalają na wgląd w system Jowisza pod koniec istnienia mgławicy przedsłonecznej - czytamy na łamach Nature Astronomy.
      Ważnym aspektem badań jest oparcie się przez naukowców na danych, które nie są obarczone takim poziomem niepewności jak zwykle używane modele, w których przyjmuje się założenia odnośnie przejrzystości gazu, tempa akrecji czy masy jądra formującej się planety. Batygin i Adams wykorzystali dynamikę orbitalną księżyców Jowisza oraz moment pędu samej planety, czyli wartości, które można bezpośrednio zmierzyć.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Inżynierowie misji Voyager wyłączyli niedawno CRS (Cosmic Ray Subsystem) na Voyagerze 1, a za dwa tygodnie wyłączą Low-Energy Charged Particle (LECP) na Voyagerze 2. Instrumenty, jak można domyślić się z ich nazw, odpowiadają za badanie promieniowania kosmicznego oraz niskoenergetycznych jonów. Po wyłączeniu wspomnianych urządzeń na każdej z sond będzą działały po 3 instrumenty naukowe. Odłączanie instrumentów ma na celu zaoszczędzenie energii i przedłużenie czasu działania sond – jedynych wysłanych przez człowieka obiektów, które opuściły Układ Słoneczny.
      Voyagery zasilane są przez radioizotopowe generatory termoelektryczne, generujące energię z rozpadu dwutlenku plutonu-238. Początkowo generatory wytwarzały energię o mocy około 475 W, jednak w miarę zużywania się paliwa tracą rocznie około 4,3 W. W przestrzeni kosmicznej przebywają już od 48 lat. Sposobem na poradzenie sobie ze zmniejszaniem mocy, jest wyłączanie kolejnych instrumentów. Jeśli byśmy nie wyłączali instrumentów, Voyagerom zostałoby prawdopodobnie kilka miesięcy pracy, mówi Suzanne Dodd.
      Na pokładzie każdej z sond znajduje się 10 identycznych instrumentów naukowych. Zadaniem części z nich było zabranie danych z gazowych olbrzymów Układu Słonecznego, zostały więc wyłączone zaraz po tym, jak sondy skończyły badania tych planet. Włączone zostały te instrumenty, które naukowcy uznali za potrzebne do zbadania heliosfery i przstrzeni międzygwiezdnej. Voyager 1 dotarł do krawędzi heliosfery w 2012 roku, Voyager 2 – w roku 2018.
      W październiku ubiegłego roku na Voyagerze 2 wyłączono instrument badający ilość plazmy i kierunek jej ruchu. W ostatnich latach instrument ten zebrał niedużą ilość danych, gdyż jest zorientowany w kierunku przepływu plazmy w ośrodku międzygwiezdnym. Voyager 1 przestał badać plazmę wiele lat temu, ze względu na spadającą wydajność urządzenia.
      Wyłączony właśnie CRS na Voyagerze 1 to zestaw trzech teleskopów badających m.in. protony z przestrzeni międzygwiezdnej i Słońca. Dane te pozwoliły określić, w którym miejscu i kiedy Voyager 1 opuścił heliosferę. LECP na Voyagerze 2, który ma zostać wkrótce wyłączony, bada różne jony, elektrony i promieniowanie kosmiczne zarówno z Układu Słonecznego, jak i spoza niego.
      Oba instrumenty wykorzystują obracające się platformy, mogą więc prowadzić badania w promieniu 360 stopni. Platformy wyposażono w silniki krokowe, które o obracały je co 192 sekundy. Na Ziemi platformy zostały przetestowane na 500 000 kroków. Tyle, ile potrzeba było, by misje doleciały do Saturna. Okazały się jednak znacznie bardziej wytrzymałe. Mają za sobą już ponad 8,5 miliona kroków.
      Voyagery miały zbadać zewnętrzne planety Układu Słonecznego i już dawno przekroczyły przewidywany czas działania. Każdy bit dodatkowych danych, które od tej pory udało się zebrać, to nie tylko wartościowa informacja dla heliofizyki, ale też świadectwo niezwykłych osiągnięć inżynieryjnych, stwierdza Patrick Koehn, odpowiedzialny za program naukowy Voyagerów.
      Inżynierowie NASA starają się, by instrumenty naukowe na sondach działały jak najdłużej, gdyż dostarczają unikatowych danych. W tak dalekich regionach kosmosu nie pracował jeszcze żaden instrument i przez najbliższe dziesięciolecia żaden nowy nie zostanie tam wysłany.
      Wyłączenie wspomnianych urządzeń oznacza, że sondy będą miały wystarczająco dużo energii, by działać przez około rok, zanim zajdzie konieczność wyłączenia następnych urządzeń. W tej chwili na Voyagerze 1 pracuje magnetometr i Plasma Wave Subsystem (PWS), odpowiedzialny za badanie gęstości elektronowej. Działa też LECP, który zostanie wyłączony w przyszłym roku. Na Voyagerze 2 działają zaś – nie licząc LECP, który wkrótce będzie wyłączony – magnetometr, PWS oraz CRS. W przyszłym roku inżynierowie wyłączą ten ostatni.
      Eksperci z NASA mają nadzieję, że dzięki tego typu działaniom jeszcze w latach 30. bieżącego wieku na każdym z Voyagerów będzie pracował jeszcze co najmniej 1 instrument naukowy. Czy tak się stanie, tego nie wiadomo. Trzeba pamiętać, że obie sondy od dziesięcioleci ulegają powolnej degradacji w surowym środowisku pozaziemskim.
      Obecnie Voyager 1 znajduje się w odległości ponad 25 miliardów kilometrów od Ziemi, a do Voyagera 2 dzieli nas 21 miliardów km. Sygnał radiowy do pierwszego z nich biegnie ponad 23 godziny, do drugiego – 19,5 godziny.
      W każdej minucie każdego dnia Voyagery badają zupełnie nieznane nam regiony, dodaje Linda Spilker z Jet Propulsion Laboratory. Oba pojazdy można na bieżąco śledzić na stronach NASA.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Analiza ponad 50 000 gwiazd wykazała, że rozbłyski słoneczne mogą być setki razy potężniejsze, niż najsilniejszy rozbłysk kiedykolwiek zanotowany przez astronomów. Na łamach pisma Science badacze z Instytutu Badań Układu Słonecznego im Maxa Plancka poinformowali, że po przebadaniu 56 540 gwiazd doszli do wniosku, że każda z nich średnio co 100 lat doświadcza gigantycznego rozbłysku. Wyniki badań wskazują, że dotychczas potencjał gwiazd był niedoszacowany. Z danych zebranych przez Teleskop Keplera wynika bowiem, że gigantyczne rozbłyski mają miejsce 10-100 razy częściej niż sądzono.
      Już wcześniejszych badań wiadomo było, że na Słońcu może dochodzić do potężnych erupcji. Ich ślady znajdowano w prehistorycznych drzewach i lodzie z lodowców. Jednak na podstawie takich źródeł nie można było stwierdzić, jak często tego typu wydarzenia mają miejsce. Bezpośrednie pomiary ilości promieniowania docierającego ze Słońca na Ziemię potrafimy wykonywać dopiero od kilkudziesięciu lat.
      Istnieje jednak inny sposób na zdobycie danych na temat długoterminowego zachowania się Słońca. Współczesne teleskopy kosmiczne obserwują tysiące gwiazd i zbierają dane o zmianach ich jasności. W danych tych widać też potężne rozbłyski. Nie możemy obserwować Słońca przez tysiące lat. Możemy jednak badać zachowanie tysięcy gwiazd bardzo podobnych do Słońca w krótkim okresie czasu. To pozwala nam ocenić, jak często dochodzi do superrozbłysków, mówi współautor badań, profesor Sami Solanki.
      Naukowcy z Niemiec, Austrii, USA, Japonii, Finlandii i Francji przeanalizowali dane z 56 450 gwiazd dostarczone w latach 2009–2013 przez Teleskop Kosmiczny Keplera. W sumie Kepler dostarczył nam danych z 220 tysięcy lat aktywności słonecznej, wyjaśnia profesor Alexander Shapiro z Uniwersytetu w Grazu.
      Kluczowym elementem był dobór gwiazd jak najbardziej podobnych do naszej. Badacze wybrali więc te, których temperatura powierzchni i jasność były jak najbardziej zbliżone. W czasie badań zidentyfikowano 2889 superrozbłysków, które miały miejsce na 2527 gwiazdach spośród 56 450 wybranych. To oznacza, że każda z gwiazd generuje jeden superrozbłysk w ciągu stu lat. To było zaskakujące. Naukowcy nie spodziewali się, że potężne rozbłyski mają miejsce tak często. Dotychczas bowiem, na podstawie dowodów znalezionych na Ziemi, wydawało się, że dochodzi do nich znacznie rzadziej.
      Gdy cząstki z potężnego rozbłysku trafią do ziemskiej atmosfery, dochodzi do wytwarzania mierzalnych ilości pierwiastków promieniotwórczych, takich jak węgiel-14. Pierwiastki te trafiają do naturalnych archiwów, jak pierścienie drzew czy lód w lodowcach. Więc informacje o takim wydarzeniu na Słońcu można odczytać tysiące lat później na Ziemi. W ten sposób naukowcom udało się zidentyfikować 5 ekstremalnych wydarzeń tego typu i 3 kandydatów na rozbłyski. Doszło do nich w ciągu ostatnich 12 tysięcy lat. Z tego też powodu sądzono, że Słońce generuje superrozbłyski raz na około 1500 lat. I o ile wiadomo, ostatnie takie wydarzenie miało miejsce w 775 roku.
      Wyniki badań mogą niepokoić. O ile w roku 775 wynikiem skierowanego w stronę Ziemi rozbłysku mógł być niewielki wzrost zachorowań na nowotwory skóry, to współczesna cywilizacja techniczna bardzo boleśnie odczułaby skutki takiego wydarzenia.
      Już przed kilkunastu laty amerykańskie Narodowe Akademie Nauk opublikowały raport dotyczący ewentualnych skutków olbrzymiego koronalnego wyrzutu masy, który zostałby skierowany w stronę Ziemi. Takie wydarzenie spowodowałoby poważne perturbacje w polu magnetycznym planety, co z kolei wywołałoby przepływ dodatkowej energii w sieciach energetycznych. Nie są one przygotowane na tak gwałtowne zmiany.

      Omawiając ten raport, pisaliśmy, że mogłoby dojść do stopienia rdzeni w stacjach transformatorowych i pozbawienia prądu wszystkich odbiorców. Autorzy raportu stwierdzili, że gwałtowny koronalny wyrzut masy mógłby uszkodzić 300 kluczowych transformatorów w USA. W ciągu 90 sekund ponad 130 milionów osób zostałoby pozbawionych prądu. Mieszkańcy wieżowców natychmiast straciliby dostęp do wody pitnej. Reszta mogłaby z niej korzystać jeszcze przez około 12 godzin. Stanęłyby pociągi i metro. Z półek sklepowych błyskawiczne zniknęłaby żywność, gdyż ciężarówki mogłyby dostarczać zaopatrzenie dopóty, dopóki miałyby paliwo w zbiornikach. Pompy na stacjach benzynowych też działają na prąd. Po około 72 godzinach skończyłoby się paliwo w generatorach prądu. Wówczas stanęłyby szpitale.

      Najbardziej jednak przerażającą informacją jest ta, iż taki stan mógłby trwać całymi miesiącami lub latami. Uszkodzonych transformatorów nie można naprawić, trzeba je wymienić. To zajmuje zespołowi specjalistów co najmniej tydzień. Z kolei duże zakłady energetyczne mają na podorędziu nie więcej niż 2 grupy odpowiednio przeszkolonych ekspertów. Nawet jeśli część transformatorów zostałaby dość szybko naprawiona, nie wiadomo, czy w sieciach byłby prąd. Większość rurociągów pracuje bowiem dzięki energii elektrycznej. Bez sprawnego transportu w ciągu kilku tygodni również i elektrowniom węglowym skończyłyby się zapasy. Sytuacji nie zmieniłyby też elektrownie atomowe. Są one zaprojektowane tak, by automatycznie wyłączały się w przypadku poważnych awarii sieci energetycznych. Ich uruchomienie nie jest możliwe przed usunięciem awarii.

      O tym, że to nie tylko teoretyczne rozważania, świadczy chociażby fakt, że w marcu 1989 roku burza na Słońcu na 9 godzin pozbawiła prądu 6 milionów Kanadyjczyków. Z kolei najpotężniejszym tego typu zjawiskiem, jakie zachowało się w ludzkiej pamięci, było tzw. wydarzenie Carringtona z 1859 roku. Kilkanaście godzin po tym, jak astronom Richard Carrington zaobserwował dwa potężne rozbłyski na Słońcu, Ziemię zalało światło zórz polarnych. Przestały działać telegrafy, doszło do pożarów drewnianych budynków stacji telegraficznych, a w Ameryce Północnej, gdzie była noc, ludzie mogli bez przeszkód czytać gazety. Igły kompasów poruszały się w sposób niekontrolowany, a zorze polarne było widać nawet w Kolumbii. A pamiętać trzeba, że wydarzenie Carringtona było znacznie słabsze, niż superrozbłyski, o których tutaj mowa.

      Obecnie ucierpiałyby nie tylko sieci elektromagnetyczne, ale również łączność internetowa. Na szczególne niebezpieczeństwo narażone byłyby kable podmorskie, a konkretnie zainstalowane w nich wzmacniacze oraz ich uziemienia. Więc nawet gdy już uda się przywrócić zasilanie, problemem będzie funkcjonowanie globalnego internetu, bo naprawić trzeba będzie dziesiątki tysięcy kilometrów kabli.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Sonda Gaia odkryła 55 gwiazd, które z dużą prędkością zostały wyrzucone z gromady R136, znajdującej się Wielkim Obłoku Magellana, galaktyce satelitarnej Drogi Mlecznej. Odkrycie oznacza, że liczba gwiazd uciekających z gromady jest 10-krotnie większa niż dotychczas przypuszczano. Do wyrzucenia gwiazd może dochodzić w młodych gromadach w wyniku bliskich spotkań znajdujących się tam nowo narodzonych gwiazd.
      Naukowcy z Uniwersytetów w Lejdzie, Amsterdamie i Uniwersytetu Radbound odkryli, że młoda gromada R136 w ciągu około 2 milionów lat pozbyła się nawet 1/3 z najbardziej masywnych gwiazd. Zostały one wyrzucone z gromady z prędkością przekraczającą 100 000 km/h. Niektóre z nich dotarły na odległość nawet 1000 lat świetlnych, zanim zakończyły życie jako supernowe.
      Zaskakująca była nie tylko duża liczba gwiazd i ich prędkość, ale również fakt, że doszło do dwóch epizodów ich wyrzucania. Pierwsze takie wydarzenie miało miejsce około 1,8 miliona lat temu, gdy gromada powstała. Epizod ten odpowiada wydarzeniom, jakie mają miejsce podczas powstawania gromad gwiazd. Jednak do drugiego wyrzucenia gwiazd doszło zaledwie 200 000 lat temu i wydarzenie to ma zupełnie inną charakterystykę. Na przykład gwiazdy wyrzucone podczas drugiego epizodu poruszają się wolniej i nie zostały wystrzelone w przypadkowych kierunkach, wyjaśnia doktorant Mitchel Stoop, który stał na czele grupy badawczej.
      Zdaniem naukowców do drugiego epizodu doszło w wyniku interakcji R136 z inną gromadą, którą odkryto w 2012 roku. Ten drugi epizod może być sygnałem, że w niedługiej przyszłości dojdzie do połączenia się obu gromad.
      Masywne gwiazdy szybko kończą życie jako supernowe. Zwykle istnieją kilka milionów lat i eksplodują w tych samych regionach, w których się narodziły. R136 to wyjątkowa gromada. Zawiera setki tysięcy gwiazd, w tym i takie o masie do 300 mas Słońca. Stanowi on część wielkiego regionu formowania gwiazd o średnicy 5 milionów lat świetlnych. Nigdy wcześniej nie odnotowano też, by tak duża liczba szybko poruszających się gwiazd opuszczała tę samą gromadę.
      Teraz, gdy zaobserwowaliśmy, że 1/3 masywnych gwiazd została wyrzucona z obszaru, w którym powstały – a tym samym zaczęły one wywierać wpływ na dalsze regiony – możemy przypuszczać, że wpływ masywnych gwiazd na ewolucję i strukturę galaktyk jest większy, niż dotychczas sądziliśmy. Możliwe nawet, że takie uciekające gwiazdy narodzone we wczesnym wszechświecie miały ważny udział w procesie rejonizacji, kiedy rozproszony wodór został ponownie zjonizowany, stwierdza współautor badań, Lex Kaper.
      Gaia znajduje się w odległości 1,5 miliona kilometrów od Ziemi. Zadaniem sondy jest precyzyjne określanie pozycji, prędkości i kierunku ruchu ponad miliarda gwiazd. Holenderscy naukowcy chcieli przetestować możliwości teleskopu, więc na obiekt badań wybrali R136, który leży w odległości 160 000 lat świetlnych od Ziemi. To granica możliwości Gai. R136 powstała niedawno, więc wystrzelone z niej gwiazdy znajdują się tak blisko, że bardzo trudno jest je zidentyfikować. Jeśli jednak znajdzie się wystarczająco dużo takich gwiazd, można przeprowadzić wiarygodne modelowanie statystyczne, wyjaśnia Alex de Koter. Gaia spisała się wyjątkowo dobrze, dostarczając danych, które zaskoczyły naukowców.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...