Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Nowy biomateriał może skutecznie chronić przed szkodliwym promieniowaniem

Rekomendowane odpowiedzi

Badacze z Northwestern University zsyntetyzowali nową formę melaniny. Jest ona wzbogacona selenem. Selenomelanina, bo tak ją nazwano, ma bardzo obiecujące właściwości. Amerykanie uważają, że może się przydać do ochrony ludzkich tkanek przed promieniowaniem rentgenowskim podczas terapii medycznych czy podróży kosmicznych.

Zważywszy na zwiększone zainteresowanie podróżami kosmicznymi i ogólne zapotrzebowanie na lekkie, wielofunkcyjne i radioprotekcyjne biomateriały, byliśmy podekscytowani potencjałem melaniny - podkreśla Nathan Gianneschi. Dr Wei Cao pomyślał, że melanina zawierająca selen może zapewniać lepszą ochronę niż inne jej formy. W tym momencie pojawiła się intrygująca możliwość, że ta nieodkryta dotąd forma melaniny równie dobrze istnieje w naturze i jest wykorzystywana właśnie w ten sposób. Pominęliśmy [jednak] etap odkrywania i postanowiliśmy wyprodukować ją samodzielnie.

Melanina występuje u wielu organizmów z królestw roślin i zwierząt. Można ją także znaleźć u grzybów czy bakterii. Melanina odpowiada za pigmentację i za ochronę przed promieniowaniem. W naturze zaobserwowano 5 rodzajów melaniny; wykazano, że feomelanina, barwnik o kolorze od czerwonego do żółtego, pochłania promieniowanie rentgenowskie skuteczniej niż eumelanina (barwnik ciemny, o odcieniu od brązowego do czarnego).

Do niechcianej ekspozycji na promieniowanie dochodzi podczas wielu codziennych sytuacji, np. podczas lotu samolotem czy diagnostyki medycznej. Naukowcy wspominają też o ekstremalnych zdarzeniach, takich jak awarie reaktorów jądrowych i lotach kosmicznych. Podczas słynnego Astronaut Twin Study NASA jeden z bliźniaków Scott Kelly spędził rok w kosmosie na pokładzie Międzynarodowej Stacji Kosmicznej (MSK), podczas gdy drugi z braci, Mark, przebywał na Ziemi. Po zakończeniu One-Year Mission u Scotta odkryto m.in. trwałe zmiany w obrębie DNA.

W porównaniu do tradycyjnych materiałów radioprotekcyjnych, takich jak ołów, melanina jest np. znacznie lżejsza. Obecnie próbki melaniny znajdują się na pokładzie MSK. Określa się reakcję materiału na promieniowanie.

Ostatnie badania koncentrowały się na feomelaninie, która zawiera siarkę (uznawano ją za najlepszą kandydatkę do tego celu). Zespół Gianneschiego podejrzewał jednak, że nowy rodzaj melaniny - wzbogacony selenem zamiast siarki - zapewni lepszą ochronę przed promieniowaniem rentgenowskim. Selen to jeden z niezbędnych mikroelementów, który odgrywa ważną rolę w zapobieganiu nowotworom. Autorzy wcześniejszych badań donosili, że związki selenu mogą chronić zwierzęta przed promieniowaniem. Akademicy przypominają też, że aminokwas selenocysteina występuje w licznych białkach enzymatycznych.

Naukowcy z Northwestern zsyntetyzowali nowy biomateriał zwany selenomelaniną. Wykorzystali do tego właśnie selenocysteinę. Okazało się, że nanocząstki selenomelaniny (ang. selenomelanin nanoparticles, SeNPs) chronią ludzkie neonatalne ketatynocyty przed zatrzymaniem cyklu komórkowego w fazie G2/M wskutek wysokich dawek promieniowania rentgenowskiego. Dla porównania prowadzono też badania na komórkach, do hodowli których dodawano m.in. nanocząstki syntetycznej feomelaniny. Uwzględniono również grupę kontrolną. Po otrzymaniu dawki promieniowania, która byłaby śmiertelna dla człowieka, tylko komórki z SeNPs nadal przejawiały normalny cykl komórkowy.

Nasze badania pokazały, że selenomelanina zapewnia lepszą ochronę przed promieniowaniem - mówi Gianneschi. Odkryliśmy także, że łatwiej zsyntetyzować selenomelaninę niż feomelaninę i że to, co wyprodukowaliśmy, jest bliższe temu, co występuje w naturze niż syntetyczna feomelanina.

Dalsze badania z bakteriami wykazały, że selenomelaninę można biosyntetyzować. Z bogatym źródłem selenu w środowisku pewne organizmy mogą być w stanie przystosować się do ekstremalnych okoliczności, takich jak promieniowanie [...].

Gianneschi mówi, że nowy biomateriał można by, na przykład, nakładać na skórę, jak bazujący na melaninie filtr.

Wyniki badań ukazały się w Journal of the American Chemical Society.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Przede wszystkim może być to lepszy, mniej szkodliwy kontrast do diagnostyki medycznej.
Chyba że pojawią się efekty uboczne w postaci przejściowego lub trwałego zwiększenia diversity u pacjentów.
 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Kosmiczna niezwykłość, która rzuca wyzwanie naszemu rozumieniu wszechświata, pokazuje, jaki los może spotkać Drogę Mleczną. Międzynarodowy zespół naukowy, który pracował pod kierunkiem ekspertów z CHRIST University w Bangalore, badał olbrzymią galaktykę spiralną położoną w odległości miliarda lat świetlnych od Ziemi. W centrum galaktyki znajduje się supermasywna czarna dziura o masie miliardy razy większej od masy Słońca, która napędza gigantyczne dżety radiowe o długości 6 milionów lat świetlnych.
      Badana galaktyka jest jedną z największych znanych galaktyk spiralnych. Równie wyjątkowe są jej dżety. Tak potężne znajdowano dotychczas niemal wyłącznie w galaktykach eliptycznych, nie spiralnych. To oznacza, że potencjalnie i Droga Mleczna mogłaby wygenerować w przyszłości tak potężne dżety. Jeśli by do tego doszło, mogłoby to oznaczać masowe wymieranie na Ziemi w wyniku intensywnego promieniowania
      To odkrycie skłania nas do przemyślenia ewolucji galaktyk, zwiększania masy czarnych dziur i oraz sposobu, w jaki kształtują one swoje otoczenie. Jeśli galaktyka spiralna jest w stanie nie tylko przetrwać, ale i rozwijać się w tak ekstremalnych warunkach, co to oznacza dla przyszłości Drogi Mlecznej? Czy nasza galaktyka doświadczy w przyszłości takiego wysokoenergetycznego zjawiska, które będzie miało poważne konsekwencje dla życia?, zastanawia się główny autor badań, profesor Joydeep Bagchi.
      Badacze wykorzystali Teleskop Hubble'a, Giant Metrewave Radio Telescope oraz Atacama Large Millimeter Wave Array za pomocą których przyjrzeli się galaktyce 2MASX J23453268−0449256. Ma ona średnicę 3-krotnie większą od Drogi Mlecznej. W jej wnętrzu odkryli supermasywną czarną dziurę emitującą potężne dżety. Właśnie te dżety są najbardziej zaskakujące. Obowiązuje bowiem pogląd, zgodnie z którym tak aktywne dżety powinny zniszczyć delikatną strukturę galaktyki spiralnej.
      Tymczasem 2MASX J23453268−0449256 ma dobrze widoczne ramiona, niewielką poprzeczkę oraz otaczający ją niezakłócony wewnętrzny pierścień gwiazd o średnicy 4,4 kpc (ponad 14 000 lat świetlnych). Galaktykę otacza rozległe halo gorącego gazu emitującego promieniowanie rentgenowskie. Halo powoli stygnie, jednak potężne dżety działają jak piec, uniemożliwiając tworzenie się tam gwiazd, pomimo wystarczającej do ich powstania ilości materiału.
      Centralna czarna dziura w Drodze Mlecznej – Sagittarius A (Sgr A*) – ma masę 4 milionów mas Słońca i jest wyjątkowo spokojna. Jednak, jak mówią badacze, może się to zmienić, jeśli wchłonie duża chmurę gazu, gwiazdę czy galaktykę karłowatą. W takiej sytuacji mogłyby pojawić się duże dżety. Takie zjawiska, zwane rozerwaniami pływowymi (TDE – tidal disruption event), obserwowano już w innych galaktykach. Gdyby Sgr A* zaczęła napędzać dżety, to ich wpływ zależałby od siły, kierunku i emisji energii. Taki dżet skierowany w pobliże Układu Słonecznego mógłby pozbawić planety atmosfery, doprowadzić do uszkodzeń DNA w wyniku zwiększonego promieniowania. pozbawić Ziemię warstwy ozonowej i doprowadzić do masowego wymierania.
      Autorzy badań zauważyli też, że 2MASX J23453268−0449256 zawiera 10-krotnie więcej ciemnej materii niż Droga Mleczna. Jej obecność może być kluczowa dla stabilności tej szybko obracającej się galaktyki. Fascynującym tematem przyszłych badań może być przeanalizowanie zależności pomiędzy ciemną materią, aktywnością czarnej dziury a strukturą tej galaktyki.
      Ze szczegółami można zapoznać się na łamach Monthly Notices of the Royal Astronomical Society.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed laty dowiedzieliśmy się, że konstelacja satelitów Starlink emituje tak dużo promieniowania w zakresie fal radiowych, iż może to zakłócać badania w dziedzinie radioastronomii. Nowe obserwacje przeprowadzone za pomocą radioteleskopu LOFAR (Low Frequency Array) – największego na Ziemi radioteleskopu pracującego w zakresie niskich częstotliwości – wykazały, że druga generacja Starlinków w niezamierzony sposób emituje 32-krotnie więcej promieniowania radiowego niż generacja pierwsza. Grozi to oślepieniem radioteleskopów, co może zakłócić jedną z najważniejszych dziedzin nauki zajmujących się badaniem wszechświata.
      W ostatnich latach gwałtownie zwiększyła się liczba satelitów umieszczonych na niskiej orbicie okołoziemskiej. W ciągu ostatnich pięciu lat firmy takie jak SpaceX czy OneWeb wystrzeliły setki i tysiące satelitów, głównie komunikacyjnych. Z ich planów wynika, że do końca dekady liczba satelitów na orbicie przekroczy 100 000. To zaś prowadzi do zwiększenia sztucznej emisji w zakresie fal radiowych, co zagraża badaniom astronomicznym.
      Za pomocą LOFAR rozpoczęliśmy program monitorowanie niezamierzonych emisji z satelitów należących do różnych konstelacji. Nasze obserwacje pokazały, że satelity Starlink drugiej generacji charakteryzuje silniejsza emisja i w szerszym zakresie promieniowania radiowego, niż satelitów pierwszej generacji, mówi Cees Bassa z Holenderskiego Instytutu Radioastronomii (ASTRON).
      To pokazuje, jak ważne są ścisłe regulacje dotyczące niezamierzonej emisji z satelitów, by nie zakłócały one badań radioastronomicznych, które stanowią podstawę dla naszego poznania wszechświata. Ludzkość zbliża się do punktu, w którym będziemy musieli podjąć działania na rzecz zachowania nieba na potrzeby badań wszechświata prowadzonych z Ziemi. Firmy telekomunikacyjne nie mają zamiaru generować tej emisji, więc jej minimalizowanie powinno być priorytetem. Starlink nie jest jedynym wielkim graczem na niskiej orbicie okołoziemskiej, ale może być tą konstelacją, która ustanowi obowiązujące tam standardy, dodaje Cees Bassa.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Smartfon to urządzenie, bez którego większość z nas nie wyobraża sobie codzienności. To nie tylko rozwiązanie pozwalające na łatwą i szybką komunikację, ale również źródło rozrywki, a także narzędzie pracy. Towarzysząc nam w codzienności, nasz smartfon narażony jest na wiele niebezpieczeństw, takich jak zarysowania czy upadki. Aby im zapobiec i zabezpieczyć telefon przed uszkodzeniem, warto zainwestować w case, czyli etui ochronne. Sprawdź, które etui najlepiej chroni telefon.
      Dlaczego warto wyposażyć się w case na telefon?
      W dobie, gdy telefony kosztują często kilka tysięcy złotych, rozsądnie jest wyposażyć się w akcesoria, takie jak etui lub futerał na telefon. Są one w stanie pomóc nam uniknąć zniszczenia urządzenia, a także wynikających z tego kosztownych napraw. Smartfony najczęściej podróżują z nami w kieszeni lub torebce wraz z innymi przedmiotami, takimi jak na przykład klucze. Z tego względu narażone są na zarysowania i otarcia. Dodatkowa obudowa ochronna czy futerał są w stanie zapobiegać zarysowaniom powstałym na powierzchni urządzenia i zachować jego wygląd w dobrym stanie wizualnym na długi czas. Co więcej, wysokiej jakości case jest w stanie amortyzować siłę uderzenia w sytuacji, kiedy dojdzie do upadku telefonu. W ofercie sprzedawców znajdziemy różne rodzaje etui na telefon.
      Silikonowe etui - tanie i skuteczne rozwiązanie
      Silikonowy case to jedno z częściej wybieranych rozwiązań, które pozwala zabezpieczyć smartfon przed zniszczeniem. Silikon gwarantuje lekkość i elastyczność, która przekłada się na komfort użytkowania. Dodatkowo dobrze absorbuje wstrząsy i amortyzuje uderzenia. Oprócz tego silikonowe etui dostępne są w różnych wzorach i wariantach kolorystycznych, a także nie kosztują dużo. Szeroki wybór silikonowych case'ów można znaleźć, odwiedzając m.in. stronę https://www.mediaexpert.pl/smartfony-i-zegarki/akcesoria-do-telefonow/pokrowce-i-etui.
      Pokrowiec na telefon - skuteczna ochrona przed zarysowaniem
      Zastanawiając się, jakie etui na telefon wybrać, warto również rozważyć opcję w postaci pokrowca. Tego rodzaju etui sprawdzi się, jeżeli chcemy zapobiec zarysowaniom i otarciom, które mogłyby źle  wpłynąć na wygląd naszego smartfonu. Pokrowce na telefon najczęściej wykonane są z materiału, dzięki czemu są miękkie i przyjemne w dotyku dobrze się prezentując. Mimo że potrafią skutecznie zabezpieczyć telefon przed zarysowaniem, podczas upadku nie stanowią zbyt efektywnej ochrony.
      Etui ze skóry - skutecznie chroni i dobrze wygląda
      Oczywistym kandydatem dla każdego, kto chce wybrać dobre etui na telefon, jest to wykonane ze skóry. W ofercie producentów znajdują się etui skórzane wykonane zarówno ze skóry naturalnej, jak i te bardziej przyjazne środowisku, stworzone z wykorzystaniem materiału syntetycznego. Wybierając etui ze skóry, możemy liczyć nie tylko na wysoką jakość i wytrzymałość. To także skuteczna ochrona urządzenia w razie jego upadku. Ponadto warto wybrać etui skórzane również w przypadku, kiedy zależy nam na elegancji. Modele szyte ze skóry nadają stylu nie tylko telefonowi, ale także jego posiadaczowi.
      Pancerna obudowa na telefon dla wymagających
      Ci z nas, którzy chcą zadbać o maksymalne bezpieczeństwo swojego drogocennego smartfonu, powinni zdecydować się na pancerne etui. Przyodzianie swojego telefonu w pancerz pomoże uchronić go przed wszelkimi konsekwencjami wynikającymi z upadku z wysokości. Odporny materiał doskonale amortyzuje siłę uderzenia, chroniąc telefon w przypadku, kiedy wypadnie nam on z dłoni, lądując na chodniku czy betonie. Pomimo dość wysokiej ceny jest to jedno z najlepszych dostępnych etui na smartfon. Nadal nie wiesz, jak wybrać akcesoria do smartfonu? Odwiedź stronę https://www.mediaexpert.pl/poradniki, gdzie znajduje się wiele przydatnych informacji.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ultraintensywne źródła rentgenowskie (ULX) generują około 10 milionów razy więcej energii niż Słońce. Są tak jasne, że wydają się przekraczać granicę jasności Eddingtona o 100-500 razy, stanowiąc dla naukowców zagadkę. Opublikowane niedawno badania potwierdzają, że ULX rzeczywiście przekraczają jasność Eddingtona, a wszystko to prawdopodobnie dzięki niezwykle silnym polom magnetycznym, zmieniającym interakcje pomiędzy światłem a materią. Jednak hipotezy o wpływie tych pól nie można przetestować. Są one miliardy razy silniejsze niż najpotężniejsze magnesy, zatem pozostają nam tylko badania obserwacyjne.
      Cząstki światła, fotony, popychają obiekty, na które natrafiają. Jeśli obiekty takie jak ULX emitują wystarczająco dużo cząstek, siła ich oddziaływania może być większa niż siła grawitacji samego obiektu. W ten sposób obiekt osiąga granicę jasności Eddingtona, poza którą jego własne światło powinno teoretycznie wypychać wszelki gaz i inny materiał opadający na obiekt. Ten moment gdy ciśnienie światła jest większe niż grawitacja, jest niezwykle ważny, gdyż to właśnie opadający na ULX materiał jest źródłem promieniowania. Przypomina to sytuację, jaką znamy z czarnych dziur. Gdy ich grawitacja przyciąga gaz i pył, rozgrzewają się one i promieniują.
      Naukowcy przez długi czas sądzili, że ULX to czarne dziury otoczone jasnymi chmurami gazu. Jednak w 2014 roku NuSTAR (Nuclear Spectroscopic Telescope Array) odkrył, że ULX M82 X-2 jest pulsarem. To rodzaj gwiazdy neutronowej, czyli zdegenerowanej gwiazdy, która powstała w wyniku zapadnięcia się większej gwiazdy. Gwiazdy neutronowe mają średnicę niewielkiego miasta, ale ich masa może przekraczać masę Słońca.
      Gwiazda tworząca M82 X-2 jest więc niezwykle gęsta. Z tym zaś wiąże się silne pole grawitacyjne, które na jej powierzchni jest około 100 bilionów razy silniejsze niż pole grawitacyjne Ziemi. Gaz i pył przyciągany w kierunku gwiazdy osiąga prędkość milionów kilometrów na godzinę i uwalnia olbrzymie ilości energii, gdy uderza w jej powierzchnię. Jak obrazowo wyliczyli to naukowcy z NASA, pianka marshamallow uderzyłaby w pulsar z mocą tysięcy bomb wodorowych. Tak olbrzymie energie wyjaśniają, dlaczego ULX są źródłem tak potężnego promieniowania rentgenowskiego.
      Autorzy najnowszych badań wykorzystali NuSTAR, by ponownie przyjrzeć się M82 X-2 i zauważyli, że ten ULX „kradnie” materię z pobliskiej gwiazdy. Każdego roku pobiera z niej tyle materii, że można by z niej zbudować 1,5 planety o masie Ziemi. Znając ilość materii opadającej na powierzchnię ULX naukowcy mogli obliczyć jasność obiektu. I te obliczenia zgadzają się z pomiarami jasności, co potwierdza, iż M82 X-2 rzeczywiście przekracza limit Eddingtona.
      Jeśli badania te zostaną niezależnie potwierdzone, można będzie odrzucić hipotezę mówiącą, że ULX w rzeczywistości nie przekraczają limitu Eddingtona, ale silne wiatry wiejące z przestrzeni wokół źródła koncentrują kierują większość emisji w jednym kierunku. Jeśli zostanie ona skierowana w stronę Ziemi, może nam się wydawać, że emisja jest tak potężna, iż ULX przekraczają limit Eddingtona.
      Co jednak z limitem jasności Eddingtona i oddziaływaniem fotonów potężniejszym niż grawitacja? Nowe badania mogą być wsparciem dla alternatywnej hipotezy. Mówi ona, że silne pola magnetyczne generowane przez ULX zmieniają sferyczny kształt atomów w kształt podłużny. To zaś zmniejsza zdolność fotonów do wywierania wpływu na atomy, pozwalając na zwiększenie jasności obiektu.
      Możemy tutaj obserwować wpływ niewiarygodnie silnych pól magnetycznych. Takich, jakich nie jesteśmy w stanie obecnie odtworzyć na Ziemi. Na tym właśnie polega piękno astronomii. Obserwując niebo, wzbogacamy naszą wiedzę na temat funkcjonowania wszechświata. Z drugiej jednak strony, nie możemy przeprowadzić eksperymentów, by szybko uzyskać odpowiedzi na trapiące nas pytania, więc musimy czekać, aż wszechświat ujawni nam swoje tajemnice, mówi główny autor badań, Matteo Bachetti z Obserwatorium Cagliari we Włoszech.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ból to sygnał, że z naszym organizmem dzieje się coś niepokojącego. To sygnał ostrzegawczy, który pokazuje nam, że powinniśmy zwrócić uwagę na nasze ciało, bo może dziać się coś niedobrego. Badania przeprowadzone na Uniwersytecie Harvarda sugerują, że ból może być czymś więcej niż tylko sygnałem alarmowym. Może być też formą bezpośredniej ochrony.
      Z badań wynika bowiem, że neurony bólowe w jelitach myszy na co dzień regulują poziom chroniącego je śluzu, a gdy pojawia się stan zapalny, to właśnie one stymulują komórki do wytwarzania większej ilości śluzu. Uczeni z Harvarda opisali na łamach Cell cały złożony szlak sygnałowy i wykazali, że neurony bólowe bezpośrednio komunikują się z wydzielającymi śluz komórkami kubkowymi. Okazało się, że ból może chronić nas w sposób bezpośredni, a nie tylko przekazując do mózgu sygnały o potencjalnych problemach. Pokazaliśmy, w jaki sposób neurony bólowe komunikują się z pobliskimi komórkami nabłonka wyściełającymi jelita. To oznacza, że układ nerwowy odgrywa w jelitach większą rolę niż tylko wywoływanie nieprzyjemnych uczuć i jest on kluczowym elementem zapewniającym jelitom ochronę podczas stanu zapalnego, mówi profesor Isaac Chiu.
      W układzie pokarmowym i oddechowym znajdują się komórki kubkowe. Wydzielają one śluz zawierający białka i cukry, który działa jak warstwa chroniąca organy przed uszkodzeniem. Teraz wykazano, że śluz jest wydzielany w wyniku bezpośredniej interakcji komórek kubkowych z neuronami bólowymi.
      Podczas eksperymentów naukowcy zaobserwowali, że u myszy pozbawionych neuronów bólowych, śluz wytwarzany w jelitach miał gorsze właściwości ochronne. Doszło też do dysbiozy, zaburzenia równowagi pomiędzy pożytecznymi a szkodliwymi mikroorganizmami w mikrobiomie jelit. Bliższe badania wykazały, że komórki kubkowe zawierają receptory RAMP1, których zadaniem jest reakcja na sygnały przesyłane przez neurony bólowe. Z kolei neurony bólowe są aktywowane przez sygnały pochodzące z żywności, mikrobiomu, sygnały mechaniczne, chemiczne oraz duże zmiany temperatury. Gdy dochodzi do stymulacji neuronów bólowych, uwalniają one związek chemiczny o nazwie CGRP i to właśnie ten związek wychwytują receptory RAMP1. Co więcej, do wydzielania CGRP dochodziło w obecności niektórych mikroorganizmów, które zaburzały homeostazę w jelitach. To pokazuje nam, że neurony bólowe są pobudzane nie tylko przez stan zapalny, ale również przez pewne podstawowe procesy. Wystarczy obecność spotykanych w jelitach mikroorganizmów, by uruchomić neurony i zwiększyć produkcję śluzu, dodaje Chiu. Mamy tutaj więc mechanizm regulujący prawidłowe środowisko w jelitach. Nadmierna obecność niektórych mikroorganizmów pobudza neurony, neurony wpływają na produkcję śluzu, a śluz utrzymuje odpowiedni mikrobiom.
      Eksperymenty wykazały też, że u myszy, którym brakowały neuronów bólowych, dochodziło do znacznie większych uszkodzeń w wyniku zapalenia okrężnicy. Biorąc zaś pod uwagę fakt, że osoby z tą chorobą często otrzymują środki przeciwbólowe, należy rozważyć potencjalnie szkodliwe skutki blokowania bólu w tej sytuacji. U osób z zapaleniem jelit ból jest jednym z głównych objawów, więc próbujemy jednocześnie blokować ból i leczyć chorobę. Jednak, jak widzimy, ból ten chroni jelita przed uszkodzeniem, zatem trzeba sobie zadać pytanie, jak zarządzać bólem, by nie poczynić dodatkowych szkód, wyjaśnia Chiu.
      Trzeba też wziąć pod uwagę fakt, że wiele leków przeciwbólowych stosowanych przy migrenach tłumi sygnały przekazywane przez CGRP, zatem leki takie mogą prowadzić do uszkodzeń tkanki jelit zaburzając sygnały bólowe. Biorąc pod uwagę fakt, że CGRP bierze udział w produkcji śluzu, musimy dowiedzieć się, jak ciągłe blokowanie tego sygnału za pomocą środków przeciwbólowych wpływa na jelita. Czy leki te zaburzają wydzielanie śluzu oraz skład mikrobiomu?, pyta Chiu.
      Komórki kubkowe spełniają w jelitach wiele różnych ról. Współpracują z układem nerwowym produkując immunoglobulinę IgA, prezentują antygeny komórkom dendrytycznym. Rodzi się więc pytanie, czy zażywanie środków przeciwbólowych wpływa na inne niż wydzielanie śluzu funkcje komórek kubkowych.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...