Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Wielki Zderzacz Hadronów odkrył wyjątkowy tetrakwark. Może należeć do nieznanej klasy cząstek

Recommended Posts

Wielki Zderzacz Hadronów odkrył nieznaną dotychczas cząstkę składającą się z czterech kwarków. Naukowcy pracujący przy eksperymencie LHCb poinformowali o zarejestrowaniu tetrakwarka, który może być pierwszą z nieznanej dotychczas klasy cząstek. Odkrycie pozwoli fizykom na zrozumienie sposobu, w jaki kwarki tworzą inne cząstki, jak protony i neutrony obecne w jądrze atomowym.

Kwarki zwykle łączą się w grupy po dwa lub trzy tworząc hadrony. Przez dziesięciolecia teoretycy przewidywali, że istnieją hadrony złożone z czterech i pięciu kwarków, zwane tetra- i pentakwarkami. W ciągu ostatnich lat udało się potwierdzić ich istnienie. Informowaliśmy zarówno o niezwykłym tetrakwarku, jak i o pentakwarkach odkrytych przez polskiego uczonego.

Już samo istnienie cząstek stworzonych z czterech kwarków jest czymś niezwykłym. Teraz odkryliśmy pierwszą cząstkę złożoną z czterech ciężkich kwarków tego samego typu. Jest ona zbudowana z dwóch kwarków powabnych i dwóch antykwarków powabnych, mówi Giovanni Passaleva, rzecznik prasowy LHCb. Dotychczas znaliśmy tetrakwarki składające się co najwyżej z dwóch ciężkich kwarków i nigdy nie zawierały one więcej niż dwóch kwarków tego samego typu.

Odkrycie egzotycznych ciężkich cząstek to dla naukowców okazja, by przetestować modele teoretyczne, które następnie można będzie wykorzystać do wyjaśnienia natury materii. Dzięki niezwykłemu tetrakwarkowi możemy więcej dowiedzieć się o protonach i neutronach.

Nową cząstkę odkryto analizując nadmiarowe sygnały pochodzące ze zderzeń. Podczas przeszukiwania pełnych danych z dwóch kampanii badawczych LHC (2009–2013 i 2015–2018) naukowcy natknęli się na skok w dystrybucji masy pary cząstek J/ψ, która zawiera kwark powabny i antykwark powabny. Istotność statystyczna przekracza w tym przypadku 5 sigma, jest więc powyżej poziomu, od którego z całą pewnością mówimy o odkryciu. Szczegółowa analiza wykazała, że za zauważony nadmiar jest związany z istnieniem wspomnianego tetrakwarka.

Naukowcy – podobnie jak w przypadku wcześniej odkrytych tetrakwarków – nie mają jeszcze pewności, czy mamy do czynienia z „prawdziwym tetrakwarkiem”, w którym wszystkie kwarki są silnie ze sobą związane czy też z dwiema cząstkami składającymi się z dwóch kwarków każda, słabo powiąznymi w strukturze przypominającej molekukłę.

Niezależnie jednak od tego, nowa cząstka pozwoli na testowanie modeli chromodynamiki kwantowej.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy pracujący przy Wielkim Zderzaczu Hadronów (LHC) poinformowali o nowym sposobie używania tego niezwykłego urządzenia badawczego. Eksperyment ATLAS zaobserwował pierwsze zderzenie fotonów, w wyniku którego powstała para bozonów W, będących nośnikami oddziaływań słabych. Okazuje się zatem, że LHC można wykorzystywać też do bezpośrednich badań oddziaływań słabych. Obserwacje potwierdzają jedno z najważniejszych przewidywań teorii dotyczących tych oddziaływań – ich nośniki mogą oddziaływać ze sobą.
      Klasyczna elektrodynamika mówi, że dwa przecinające się promienie światła nie odbiją się od siebie, nie będą się absorbowały lub nawzajem niszczyły. Jednak elektrodynamika kwantowa dopuszcza interakcje pomiędzy fotonami.
      Nie są to pierwsze badania fotonów przeprowadzone przy użyciu LHC. Obserwowano rozpraszanie światła przez światło, kiedy to pary fotonów wchodziły w interakcje tworząc inną parę fotonów. W eksperymencie ATLAS zdobyto pierwsze bezpośrednie dowody takiego rozpraszania.
      Podczas nowych eksperymentów badano zupełnie inne zjawisko. W wyniku interakcji pomiędzy dwoma fotonami pojawiły się dwa bozony W o przeciwnych ładunkach elektrycznych. Już kilka lat temu uzyskano pierwsze wskazówki, że zjawisko takie zachodzi. Potrzeba było jednak więcej danych, by je potwierdzić. Teraz naukowcy zyskali pewność. Wynosi ona bowiem 8,4 sigma, a o odkryciu mówi się już przy poziomie 5 sigma.
      W centralnym detektorze były widoczne tylko produktu rozpadu dwóch bozonów W, elektron i mion. Co prawda pary bozonów W powstają też – i to znacznie częściej – w wyniku interakcji pomiędzy kwarkami i gluonami w zderzających się protonach, jednak w takim przypadku widoczne są jeszcze inne sygnały niż gdy powstają one w wyniku zderzeń fotonów.
      Nowe badania potwierdziły, że bozony cechowania – bozony W, Z i fotony – również wchodzą ze sobą w interakacje. Ich badanie może stać się nowym sposobem testowania Modelu Standardowego.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      CERN informuje, że eksperymenty ATLAS i CMS zdobyły pierwsze dowody wskazujące, że bozon Higgsa rozpada się na dwa miony. Mion to cięższa kopia elektronu, jednej z podstawowych cząstek, z których zbudowany jest cała materia. O ile jednak elektrony są cząstkami pierwszej generacji, to miony należą do generacji drugiej. Rozpad bozonu Higgsa do mionów to rzadkie zjawisko, zachodzące w 1 na 5000 rozpadów. To ważne odkrycie, gdyż wskazuje, że bozon Higgsa wchodzi w interakcje z cząstkami drugiej generacji.
      Według Modelu Standardowego cała materia zbudowana jest z fermionów. Jest ich 12 i dzielą się na 6 kwarków i 6 leptonów. Otaczającą nas materię trwałą tworzą cząstki pierwszej generacji: elektron, neutrino elektronowe, kwark dolny i kwark górny. Druga generacja cząstek to mion, neutrino mionowe, kwark dziwny i kwark powabny. Istnieje jeszcze trzecia generacja fermionów (taon, neutrino taonowe, kwark spodni i kwark szczytowy) oraz 4 bozony cechowania przenoszące oddziaływania i bozon Higgsa, nadający masę cząstkom, z którymi oddziałuje.
      Bozon Higgsa jest przedmiotem intensywnych badań od czasu jego wykrycia w 2012 roku. Jego znalezienie było głównym zadaniem Wielkiego Zderzacza Hadronów. Jedną z podstawowych metod badań jest obserwacja jego rozpadu. Eksperyment CMS wykazał, że bozon Higgsa rozpada się na dwa miony a prawdopodobieństwo takiego wydarzenia wynosi 3 sigma. Oznacza to, że jeśli taki rozpad nie istnieje, to pojawienie się takich danych w CMS wynosi mniej niż 1:700. Z kolei ATLAS wskazał na istnienie rozpadu Higgsa do dwóch mionów z prawdopodobieństwem 2 sigma. Tutaj szanse na otrzymanie fałszywego sygnału to 1:40. Razem z pewnością znacznie przekraczającą 3 sigma można mówić o istnieniu opisanego mechanizmu. Odkrycie ogłasza się przy 5 sigma.
      Wydaje się, że bozon Higgsa wchodzi w interakcje z cząstkami elementarnymi drugiej generacji w sposób zgodny z Modelem Standardowym. Podczas kolejnej kampanii badawczej będziemy uściślali te wyniki, mówi Roberto Carlin, rzecznik prasowy CMS.
      Bozon Higgsa to kwantowa manifestacja pola Higgsa, które nadaje masę cząstkom elementarnym. Mierząc tempo rozpadu bozonu Higgsa w różne cząstki fizycy mogą obliczyć siłę ich interakcji z polem Higgsa. Im szybszy rozpad, tym silniejsze interakcje.
      Dotychczas Wielki Zderzacz Hadronów wykazał, że bozon Higgsa rozpada się w różne bozony, jak W i Z czy cięższe fermiony, jak leptony tau. Zmierzono też interakcje z najcięższymi kwarkami, górnym i spodnim. Miony są znacznie lżejsze, więc słabiej reagują z polem Higgsa.
      Pomiary bozonu Higgsa osiągnęły wyższy poziom precyzji, dzięki czemu możemy badać rzadsze sposoby rozpadu, mówi Karl Jakobs, rzecznik prasowy eksperymentu ATLAS.
      Poważnym problemem w prowadzeniu opisywanych tutaj badań jest fakt, że na każdy bozon Higgsa rozpadający się na dwa miony przypadają tysiące par mionów powstających w wyniku innych procesów. Charakterystyczną sygnaturą bozonu Higgsa po rozpadzie do mionów jest niewielki nadmiar mas par mionów przy energii 125 GeV, czyli masie bozonu Higgsa. Wyizolowanie tego rozpadu nie jest łatwe. By to zrobić naukowcy musieli mierzyć energię, pęd oraz moment pędu mionów.
      Specjaliści spodziewają się, że dzięki kolejnym kampaniom badawczym oraz wykorzystaniu w przyszłości High-Luminosity LHC można będzie mówić o osiągnięciu pewności (5 sigma) i odkryciu, że bozon Higgsa rozpada się do mionów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Japoński akcelerator cząstek SuperKEKB pobił światowy rekord jasności. Pracujący przy nim naukowcy obiecują, że to dopiero początek. W ciągu najbliższych lat chcą zwiększyć jasność urządzenia aż 40-krotnie, co ma pozwolić zarówno na odkrycie ciemnej materii, jak i wyjście z fizyką poza Model Standardowy. Mamy nadzieję, że akcelerator pozwoli nam wykryć ciemną materię – o ile ona istnieje – i badać ją w niedostępny obecnie sposób, mówi profesor Kay Kinoshita z University of Cincinnati.
      Jasność akceleratora to liczba kolizji, która w nim zachodzi. Podczas tych zderzeń powstają nowe cząstki. Im więc więcej zderzeń, tym więcej cząstek, więcej danych i większa szansa n a zarejestrowanie czegoś nowego.
      SuperKEKB zderza pozytony i elektrony przyspieszane w 3-kilometrowym tunelu. Akcelerator został uruchomiony w 2018 roku i naukowcy ciągle pracują nad zwiększaniem jego jasności. Profesor Alan Schwartz i jego studenci z University of Cincinnati zaprojektowali i zbudowali jeden z detektorów akceleratora. To krok milowy w projektowaniu akceleratorów. SuperKEKB wykorzystuje architekturę tzw. „nano strumieni”. W technice tej strumienie cząstek są ściskane wzdłuż osi pionowej, dzięki czemu są bardzo cienkie, wyjaśnia Schwartz. To pierwszy na świecie akcelerator, który korzysta z tej techniki.
      Ze względu na rozmiary cząstek, szansa, że dojdzie do zderzenia, jest niewielka. Im bardziej ściśnięty strumień, tym większe zagęszczenie cząstek i tym większe prawdopodobieństwo zderzeń. Obecnie wysokość wiązki w punkcie zderzenia wynosi 220 nanometrów. W przyszłości ma to być zaledwie 50 manometrów, czyli około 1/1000 grubości ludzkiego włosa.
      Profesor Kay Kinoshita poświęciła całą swoją naukową karierę zagadnieniu zwiększania jasności akceleratorów. Uczona pracuje nad tym zagadnieniem od 1982 roku. To bardzo interesujące, gdyż jest bardzo wymagające. Wiesz, że robisz coś, czego nikt nigdy nie zrobił, mówi.
      Poprzednik SuperKEKB, akcelerator KEKB, który działał w latach 1999–2010 w KEK (Organizacja Badań nad Akceleratorami Wysokich Energii), również był światowym rekordzistą. Urządzenie pracowało z jasnością 2,11x1034 cm-2s-1. Dopiero w 2018 roku rekord ten został pobity przez Wielki Zderzacz Hadronów, który osiągnął jasność 2,14x1034 cm-2s-1. Rekord LHC nie utrzymał się długo, dnia 15 czerwca 2020 roku SuperKEKB osiągnął jasność 2,22x1034 cm-2s-1. Już tydzień później, 21 czerwca naukowcy poinformowali o nowym rekordzie. Teraz SuperKEKB pracuje z jasnością wynoszącą 2,40x1034 cm-2s-1.
      W ciągu najbliższych lat jasność SuperKEKB ma wzrosnąć 40-krotnie. Docelowo ma ona wynieść 8x1035 cm-2s-1.
      Sukces SuperKEKB to sukces międzynarodowej współpracy. Nadprzewodzące magnesy, które ostatecznie skupiają strumienie cząstek zostały zbudowane we współpracy z amerykańskimi Brookhaven National Laboratory oraz Fermi National Accelerator Laboratory. Systemy monitorowania kolizji to dzieło SLAC National Accelerator Laboratory i University of Hawaii. Naukowcy ze Szwajcarii (CERN), Francji (IJCLab), Chin (IHEP) i USA (SLAC) biorą udział w pracach i badaniach, w których wykorzystywany jest akcelerator. Wykorzystujący diament system monitorowania promieniowania oraz system przerywania wiązki to dzieło włoskich Narodowego Instytutu Fizyki Jądrowej oraz Uniwersytetu w Trieście, a system monitorowania jasności powstał w Rosji.
      Wiązki elektronów i pozytonów rozpędzane w SuperKEKB zderzają się w centrum detektora Belle II, który opisywaliśmy przed 2 laty. To niezwykłe urządzenie zostało zbudowane przez grupę 1000 fizyków i inżynierów ze 119 uczelni z 26 krajów świata. I to właśnie wewnątrz Belle II naukowcy mają nadzieję znaleść ciemną materię i rozpocząć badania jej właściwości.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fizycy z Caltechu i CERN-u przeprowadzili badania, które pozwoliły im na obserwowanie niezwykle rzadkich zjawisk fizycznych. Dzięki wykorzystaniu eksperymentu CMS (Compact Muon Solenoid) mogli jako pierwsi w historii obserwować triplety złożone z bozonów W i Z. To bozony cechowania, będące nośnikami oddziaływań słabych, a więc jednego z czterech rodzajów oddziaływań podstawowych (pozostałe to oddziaływanie grawitacyjne, elektromagnetyczne i silne).
      Różnica pomiędzy bozonami W i Z polega na tym, że bozon Z jest neutralny, a bozony W mają ładunek elektryczny (dodatni lub ujemny). Bozony W i Z są odpowiedzialne za radioaktywność, stanowią podstawowy element procesu termonuklearnego zachodzącego w Słońcu.
      Do powstania tripletów doszło podczas zderzeń wysokoenergetycznych protonów przyspieszonych do prędkości bliskich prędkości światła. Podczas takich kolizji w niezwykle rzadkich przypadkach – w 1 na 1 000 000 000 000 zderzeń – pojawiają się triplety WWW, WWZ, WZZ i ZZZ. Jak mówi jeden z autorów badań, Zhicai Zhang, takie wydarzenia są 50-krotnie rzadsze niż pojawienie się bozonu Higgsa.
      Jak mówi główny autor badań, profesor Harvey Newman, obserwacja tych tripletów nie była głównym celem eksperymentów. Jednak dzięki zebraniu danych na temat tego i innych rzadkich zjawisk, naukowcy mogą z coraz większą precyzją testować Model Standardowy. Takie testy są zaś konieczne, jeśli chcemy rozszerzyć nasze pojmowanie fizyki poza ten model.
      Z obserwacji obrotu i rozkładu galaktyk wiemy, że musi istnieć ciemna materia, która wywiera oddziaływanie grawitacyjne na materię. Jednak ciemna materia nie mieści się w Modelu Standardowym. Nie ma tam miejsca na ciemne cząstki, na grawitację, model ten nie działa w skalach energii wczesnego wszechświata zaraz po Wielkim Wybuchu. Wiemy, że musi istnieć bardziej podstawowa od Modelu Standardowego, nieodkryta jeszcze teoria, mówi Newman.
      Naukowcy przygotowują obecnie Wielki Zderzacz Hadronów do kolejnej trzyletniej kampanii badawczej, zaplanowanej na lata 2021–2024. Pod jej koniec główne eksperymenty LHC będą zdolne do zbierania 30-krotnie większej ilości danych niż obecnie.
      Mamy tutaj duży, wciąż niezrealizowany potencjał. Ilość danych, jakie obecnie zbieramy, to jedynie kilka procent tego, co spodziewamy się gromadzić po rozbudowie CMS i LHC do High Luminosity LHC, który ma ruszyć w 2027 roku. Ma on pracować przez 10 lat. Jesteśmy dopiero na początku przewidzianych na 30 lat badań, dodaje Newman.
      Szczegółowy opis eksperymentu, w ramach którego obserwowano triplety bozonów W i Z, można przeczytać na stronach CERN-u.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Podczas konferencji Large Hadron Collider Physics 2020 eksperymenty ATLAS i CMS przedstawiły najnowsze wyniki dotyczące rzadkich sposobów rozpadu bozonu Higgsa produkowanego na Wielkim Zderzaczu Hadronów w CERN. Nowe kanały obejmują rozpady Higgsa na bozon Z, współodpowiedzialny za słabe oddziaływania jądrowe, oraz inną cząstkę, jak również rozpady na cząstki „niewidzialne”. Te pierwsze, w razie rozbieżności z przewidywaniami Modelu Standardowego, mogą świadczyć o zjawiskach wykraczających poza znaną nam fizykę (tzw. nowa fizyka), podczas gdy niewidzialne rozpady cząstki Higgsa rzuciłyby nowe światło na naturę cząstek tzw. ciemnej materii kosmicznej. Przedstawione analizy oparte są o całość danych zebranych w latach 2015-2018, czyli około miliarda milionów zderzeń proton-proton.
      Eksperyment ATLAS zmierzył częstość rozpadu Higgsa na Z i foton (γ) na 2.0+1.0−0.9 częstości przewidzianej w Modelu Standardowym, tym samym zbliżając się do czułości umożliwiającej obserwację ewentualnych odstępstw od przewidywań modelu. Eksperyment CMS poszukiwał o wiele rzadszych rozpadów na Z i mezon ρ lub φ i stwierdził, że w nie więcej niż 1.9% przypadków może nastąpić rozpad na Zρ, a nie więcej niż w 0.6% przypadków na Zφ. Obserwacja tego typu rozpadów przy obecnie zebranej ilości danych świadczyłaby o zjawiskach związanych z istnieniem nowej fizyki.
      Niektóre hipotezy dotyczące nowej fizyki przewidują, że bozon Higgsa może rozpadać się na dwie tzw. słabo oddziałujące masywne cząstki (ang.: WIMP), odpowiedzialne za ciemna materię kosmiczną, a niewidoczne dla aparatury eksperymentalnej. Zespół eksperymentu ATLAS wykluczył, aby prawdopodobieństwo takiego procesu przekraczało 13%. Analogiczne wykluczenie rozpadu bozonu Higgsa na parę tzw. ciemnych fotonów przedstawiła współpraca CMS.
      Polskie grupy z IFJ, AGH i UJ w Krakowie współtworzą zespól eksperymentu ATLAS, a grupy eksperymentalne z UW i NCBJ w Warszawie uczestniczą w eksperymencie CMS.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...