Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Nowe sposoby obserwacji bozonu Higgsa

Rekomendowane odpowiedzi

Podczas konferencji Large Hadron Collider Physics 2020 eksperymenty ATLAS i CMS przedstawiły najnowsze wyniki dotyczące rzadkich sposobów rozpadu bozonu Higgsa produkowanego na Wielkim Zderzaczu Hadronów w CERN. Nowe kanały obejmują rozpady Higgsa na bozon Z, współodpowiedzialny za słabe oddziaływania jądrowe, oraz inną cząstkę, jak również rozpady na cząstki „niewidzialne”. Te pierwsze, w razie rozbieżności z przewidywaniami Modelu Standardowego, mogą świadczyć o zjawiskach wykraczających poza znaną nam fizykę (tzw. nowa fizyka), podczas gdy niewidzialne rozpady cząstki Higgsa rzuciłyby nowe światło na naturę cząstek tzw. ciemnej materii kosmicznej. Przedstawione analizy oparte są o całość danych zebranych w latach 2015-2018, czyli około miliarda milionów zderzeń proton-proton.

Eksperyment ATLAS zmierzył częstość rozpadu Higgsa na Z i foton (γ) na 2.0+1.0−0.9 częstości przewidzianej w Modelu Standardowym, tym samym zbliżając się do czułości umożliwiającej obserwację ewentualnych odstępstw od przewidywań modelu. Eksperyment CMS poszukiwał o wiele rzadszych rozpadów na Z i mezon ρ lub φ i stwierdził, że w nie więcej niż 1.9% przypadków może nastąpić rozpad na Zρ, a nie więcej niż w 0.6% przypadków na Zφ. Obserwacja tego typu rozpadów przy obecnie zebranej ilości danych świadczyłaby o zjawiskach związanych z istnieniem nowej fizyki.

Niektóre hipotezy dotyczące nowej fizyki przewidują, że bozon Higgsa może rozpadać się na dwie tzw. słabo oddziałujące masywne cząstki (ang.: WIMP), odpowiedzialne za ciemna materię kosmiczną, a niewidoczne dla aparatury eksperymentalnej. Zespół eksperymentu ATLAS wykluczył, aby prawdopodobieństwo takiego procesu przekraczało 13%. Analogiczne wykluczenie rozpadu bozonu Higgsa na parę tzw. ciemnych fotonów przedstawiła współpraca CMS.

Polskie grupy z IFJ, AGH i UJ w Krakowie współtworzą zespól eksperymentu ATLAS, a grupy eksperymentalne z UW i NCBJ w Warszawie uczestniczą w eksperymencie CMS.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Doroczna konferencja fizyczna Recontres de Moriond przynosi kolejne – po łamaniu symetrii CP przez bariony – fascynujące informacje. Naukowcy pracujący przy eksperymencie CMS w CERN-ie donieśli o zaobserwowaniu w danych z Wielkiego Zderzacza Hadronów sygnałów, które mogą świadczyć o zaobserwowaniu najmniejszej cząstki złożonej. Uzyskane wyniki wskazują, że kwarki wysokie – najbardziej masywne i najkrócej istniejące ze wszystkich cząstek elementarnych – mogą na niezwykle krótką chwilę tworzyć parę z swoim odpowiednikiem w antymaterii (antykwarkiem wysokim) i tworzyć hipotetyczny mezon o nazwie toponium.
      Model Standardowy, chociaż sprawdza się od dziesięcioleci, ma niedociągnięcia. Naukowcy próbują je wyjaśnić, poszukując dodatkowych, nieznanych obecnie, bozonów Higgsa. Właściwości takich – wciąż hipotetycznych – cząstek, mają być dość proste. Zakłada się, że powinny one oddziaływać z fermionami z siłą proporcjonalną do masy fermionu, a teorie postulujące istnienie dodatkowych bozonów Higgsa mówią, że powinny one łączyć się bardziej masywnymi kwarkami. Stąd też uwaga naukowców skupiona jest na kwarku wysokim. Ponadto, jeśli takie dodatkowe bozony Higgsa miałyby masę większą od 345 GeV – masa znanego nam bozonu Higgsa to 125 GeV – i rozpadałyby się na pary kwark wysoki-antykwark, to w Wielkim Zderzaczu Hadronów powinien pojawić się nadmiar sygnałów świadczących o produkcji takich par.
      W eksperymencie CMS zauważono taki nadmiar, ale – co szczególnie przyciągnęło uwagę naukowców – zauważono go przy energiach stanowiących dolną granicę zakresu poszukiwań. To skłoniło fizyków pracujących przy CMS do wysunięcia hipotezy, że nadmiar ten pochodzi od kwarków wysokich i antykwarków wysokich znajdujących się w stanie quasi-związanym zwanym toponium.
      Gdy rozpoczynaliśmy analizy, w ogólnie nie braliśmy pod uwagę możliwości zauważenia toponium. W analizie wykorzystaliśmy uproszczony model toponium. Hipoteza ta jest niezwykle ekscytująca, gdyż nie spodziewaliśmy się, że LHC zarejestruje toponium, mówi koordynator prac, Andreas Meyer z DESY (Niemiecki Synchrotron Elektronowy).
      Co prawda nie można wykluczyć innych wyjaśnień zaobserwowanych zjawisk, ale z dotychczasowych badań wynika, że toponium w sposób wystarczający wyjaśnia zaobserwowany nadmiar sygnałów. Uzyskany przez nas przekrój czynny (prawdopodobieństwo) dla naszej uproszczonej hipotezy wynosi 8,8 pb (pikobarnów) ± 15%. Można powiedzieć, że to znacząco powyżej 5 sigma [5 sigma to wartość odchyleń standardowych, powyżej której można ogłosić odkrycie - red.], dodaje Meyer.
      Jeśli uda się potwierdzić istnienie toponium, będzie to kolejne poznane kwarkonium, czyli stan utworzony przez kwarka i jego antykwark. Obecnie znamy czarmonium – to kwark powabny (charm) i jego antykwark – oraz bottomonium, czyli kwark spodni (bottom) i antykwark. Czarmonium zostało odkryte w SLAC w 1974 roku, a bottomium znaleziono trzy lata później w Fermilabie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Podczas dorocznej konferencji fizycznej Recontres de Moriond naukowcy z CERN-u poinformowali o dokonaniu ważnego kroku na drodze ku zrozumieniu asymetrii pomiędzy materią a antymaterią. Podczas analizy olbrzymiej ilości danych z Wielkiego Zderzacza Hadronów uczeni znaleźli dowody na naruszenie symetrii CP przez bariony.
      Symetria CP oznacza, że cząstka rozpada się identycznie jak jej antycząstka odbita w lustrze. Fakt, że we wszechświecie istnieje więcej materii niż antymaterii sugeruje, że łamanie symetrii CP jest zjawiskiem powszechnym. Po raz pierwszy zaobserwowano je w 1964 roku w przypadku kaonów (mezonów K). Wtedy zaobserwowano, że rozpadają się one nieco inaczej niż antykaony. Od tej pory naruszenie symetrii CP jest przedmiotem intensywnych badań, które mają wyjaśnić istniejącą nierównowagę między materią a antymaterią.
      Naukowcy wiedzieli, że i w przypadku barionów powinno dochodzić do łamania symetrii CP, jednak dotychczas nie zaobserwowano tego zjawiska. Przyczyną, dla której zaobserwowanie naruszenia symetrii CP przez bariony zajęło tyle czasu jest różnica w sile tego zjawiska i ilości dostępnych danych. Potrzebowaliśmy urządzenia takiego jak Wielki Zderzacz Hadronów, zdolnego do wytworzenia wystarczająco dużej liczby barionów pięknych oraz ich antycząstek i potrzebowaliśmy maszyny zdolnej do znalezienia produktów ich rozpadu. Teraz, dzięki ponad 80 000 rozpadów barionów zauważyliśmy – po raz pierwszy dla tej klasy cząstek – łamanie symetrii CP, mówi rzecznik prasowy eksperymentu LHCb Vincenzo Vagnoni.
      Już od kilku lat w rozpadach barionów pięknych Lambda b (Λb) znajdowano sygnały świadczące o istnieniu różnic w rozpadzie barionów i antybarionów. Bariony te są sześciokrotnie bardziej masywne od swojego kuzyna, protonu. Bariony, do których należy też neutron, są tą rodziną cząstek, która w znacznej mierze tworzy świat.
      Teraz naukowcy pracujący przy eksperymencie LHCb zaobserwowali naruszenie symetrii CP w przypadku cząstek Lambda b (Λb), które zbudowane są z kwarka górnego, dolnego i kwarka b (kwarka pięknego). Szczegółowe analizy rozpadów Λb i anty-Λb wykazały różnice rzędu 5,2 odchyleń standardowych (5,2 sigma). Uzyskanie 5 sigma to poziom pozwalający na ogłoszenie odkrycia. Zatem po raz pierwszy z całą pewnością udało się stwierdzić, że wśród barionów istnieje łamanie symetrii CP.
      Badania tego typu, chociaż ich wyniki są spodziewane, pozwalają lepiej poznać prawa rządzące fizyką. Istnienie naruszenia symetrii CP przewiduje sam Model Standardowy. Jednak naruszenie to jest o całe rzędy wielkości zbyt małe, by na gruncie Modelu Standardowego wyjaśnić obserwowaną asymetrię między materią i antymaterią. To zaś sugeruje, że istnieją źródła naruszenia symetrii CP, których nie przewiduje Model Standardowy. Im zatem lepiej poznamy to zjawisko, z tym większą dokładnością sprawdzimy Model Standardowy i będziemy mieli szansę na odkrycie zjawisk, których obecnie nie znamy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Wielkim Zderzaczu Hadronów przeprowadzono pierwsze badania, których celem było sprawdzenie, czy najcięższe cząstki elementarne – kwarki t (wysokie, prawdziwe) – zachowują się zgodnie ze szczególną teorią względności Einsteina. Eksperyment, wykonany przy użyciu CMS, miał sprawdzić prawdziwość kluczowego elementu teorii względności, czyli symetrii Lorenza. Zgodnie z nią prędkość światła jest identyczna we wszystkich kierunkach.
      Istnieją pewne teorie, jak np. niektóre modele teorii strun, zgodnie z którymi przy wysokich energiach szczególna teoria względności nie działa i wyniki eksperymentu będą zależały od jego orientacji w czasoprzestrzeni. Ślady takiego złamania symetrii Lorenza powinny być tez widoczne przy niższych energiach, jakie są wykorzystywane w Wielkim Zderzaczu Hadronów.
      Dlatego też naukowcy pracujący przy CMS postanowili poszukać złamania symterii Lorenza wykorzystując w tym celu pary kwarków t. W prowadzonych przez nich eksperymentach zależność ich wyniku od orientacji w czasoprzestrzeni oznaczałaby, że tempo wytwarzania par kwarków t w zderzeniach protonów zmieniałoby się wraz z porą dnia.
      Skoro bowiem Ziemia obraca się wokół własnej osi, zmienia się położenie Wielkiego Zderzacza Hadronów, a zatem i kierunek strumieni protonów oraz orientacja miejsca, w którym dochodzi do zderzeń protonów i pojawiania się kwarków. Jeśli zatem symetria Lorenza zostaje złamana, to wraz ze zmianą pory dnia powinna zmieniać się liczba kwarków t pojawiających się w wyniku zderzeń.
      Analiza danych z CMS z drugiej kampanii badawczej LHC (lata 2015–2018), wykazała, że tempo produkcji kwarków t w urządzeniu jest stałe. Symetria Lorenza nie jest więc naruszana, a szczególna teoria względności się broni. Uzyskane wyniki posłużą jako wstęp do poszukiwań naruszenia symetrii Lorenza w danych z trzeciej kampanii naukowej (2022–2026). Będzie można je wykorzystać też do bardziej szczegółowego przyjrzenia się innym procesom zachodzącym w akceleratorze, w których biorą udział bozon Higgsa czy bozony W i Z.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      CERN pochwalił się osiągnięciem przez Wielki Zderzacz Hadronów (LHC) rekordowej świetlności. Obok energii wiązki, w przypadku LHC maksymalna energia każdej z wiązek ma wynieść 7 TeV (teraelektronowoltów), to właśnie świetlność jest najważniejszym parametrem akceleratora. Zintegrowana świetlność to najbardziej interesujący fizyka parametr urządzenia. Oznacza ona liczbę zderzeń zachodzących w urządzeniu. A im więcej zderzeń, tym więcej danych dostarcza akcelerator.
      Jednostką świetlności jest odwrócony barn (b-1) lub jego jednostki pochodne, jak femtobarny (fb-1). W trakcie pierwszej kampanii naukowej (Run 1), która prowadzona była w latach 2010–2012 średnia zintegrowana świetlność LHC wyniosła 29,2 fb-1. Przez kolejne lata akcelerator był remontowany i rozbudowywany. Druga kampania naukowa miała miejsce w latach 2015–2018. Wówczas, w ciągu czterech lat pracy, akcelerator osiągnął średnią zintegrowaną świetlnośc 159,8 fb-1.
      Obecnie trwająca kampania, zaplanowana na lata 2022–2025, rozpoczęła się zgodnie z planem. W roku 2022 efektywny czas prowadzenia zderzeń protonów wyniósł 70,5 doby, a średnia zintegrowana świetlność osiągnęła poziom 0,56 fb-1 na dzień. W roku 2023 rozpoczęły się problemy. Niezbędne naprawy urządzenia zajmowały więcej czasu niż planowano i przez cały rok zderzenia protonów prowadzono jedynie przez 47,5 dnia, jednak średnia zintegrowana świetlność wyniosła 0,71 fb-1 na dzień.
      Bieżący rok jest zaś wyjątkowy. Wydajność LHC przewyższyła oczekiwania. Do 2 września 2024 roku akcelerator zderzał protony łącznie przez 107 dni, osiągając przy tym średnią zintegrowaną jasność rzędu 0,83 fb-1 na dzień. Dzięki temu na kilka miesięcy przed końcem trzeciego roku obecnej kampanii naukowej jego średnia zintegrowana świetlność wyniosła 160,4 fb-1, jest zatem większa niż przez cztery lata poprzedniej kampanii.
      W bieżącym roku LHC ma też przeprowadzać zderzenia jonów ołowiu. Zanim jednak do tego dojdzie, będzie przez 40 dni pracował z protonami. Powinno to zwiększyć jego zintegrowaną świetlność o koleje 33 fb-1. To o 12 fb-1 więcej niż zaplanowano na bieżący rok.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...