Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

By ograniczyć topnienie latem, Włosi przykrywają lodowiec Presena białą geowłókniną

Rekomendowane odpowiedzi

Na lodowcu Presena w górach Presanella w Alpach na północy Włoch rozkładane są duże płachty białej geowłókniny. Mają one pomóc w ograniczeniu jego topnienia.

Davide Panizza, szef firmy Carosello-Tonale, która się tym zajmuje, podkreśla, że jego pracownicy starają się przykryć jak największy obszar. Gdy projekt rozpoczynał się w 2008 r., zakrywano obszar o powierzchni ok. 30 tys. m2. Obecnie Włosi chcą umieścić geowłókninę na fragmencie lodowca o powierzchni aż 100 tys. m2.

Płachty są wykonane z geowłókniny, która odbija promienie słoneczne, utrzymując pod spodem temperatury poniżej wartości panujących na zewnątrz.

Na granicy Lombardii i Trydentu-Górnej Adygi specjaliści rozwijają pasy materiału, przykrywając obszar na wysokości 2700-3000 m (rozwinięta rolka mierzy 70 na 5 metrów). Materiał jest naprężany, a poszczególne pasy są ze sobą łączone. Całość obciąża się workami z piaskiem.

Na paru lodowcach w Austrii wykorzystuje się podobne systemy [...], ale zakrywana powierzchnia jest o wiele mniejsza - opowiada Panizza.

Rozwinięcie i zwinięcie brezentu zajmuje ok. 6 tygodni. Kiedy usuwamy materiał we wrześniu i widzimy, że spełnił swoją funkcję, jesteśmy dumni - podsumowuje kierownik prac Franco Del Pero.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

I co, zabójcze mikrowłókna roznoszone wiatrem po całym świecie akurat w tym przypadku nikomu nie przeszkadzają? :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Barcelony i Corku opublikowali najbardziej szczegółową mapę podmorskich kanionów Antarktyki. Zawiera ona 332 kaniony, niektóre z nich o głębokości ponad 4000 metrów. Katalog, wspólne dzieło uczonych z Universitat de Barcelona i University College Cork, zawiera informacje o pięciokrotnie większej liczbie kanionów niż poprzednie podobne zestawy danych. A w towarzyszącym mu artykule na łamach Marine Geology uczeni wykazali, że kaniony mogą mieć większe niż przypuszczano znaczenie dla cyrkulacji wód oceanicznych, zmniejszania się pokrywy morskiego lodu oraz zmian klimatu.
      Kaniony odgrywają niezwykle istotną rolę w transporcie osadów i substancji odżywczych z wybrzeży do głębokich partii oceanów, łączą płytkie i głębokie obszary oceanów, tworzą bogate siedliska dla morskiego życia. Dotychczas na całym globie zidentyfikowano około 10 000 podmorskich kanionów, jednak prawdopodobnie jest ich znacznie więcej. Pomimo ich wielkiego wpływu na ekologię, geologię czy oceanografię, struktury te są słabo znane, szczególnie leżące w obszarach poarnych.
      Kaniony w Arktyce i Antarktyce są podobne do kanionów z innych obszarów planety, ale zwykle są większe i głębsze z powodu długotrwałego oddziaływania lodu oraz olbrzymich ilości osadów transportowanych przez lodowce z szelfu kontynentalnego, mówi David Amblàs. Ponadto antarktyczne kaniony tworzą się głównie w wyniku działalności prądów zawiesinowych, gdzie gęstsza od otoczenia zawiesina gwałtownie spływa w dół pod wpływem grawitacji. Te silne prądy, zasilane w osady przez lodowce, rzeźbią w dnie wielkie kaniony.
      Zdaniem naukowców, najbardziej interesującym aspektem ich badań jest odnotowanie różnic pomiędzy kanionami powstającymi w dwóch ważnych regionach Antarktyki. W Antarktyce Wschodniej kaniony są bardziej rozbudowane, rozgałęzione, tworząc wielkie systemy o przekroju w kształcie litery U. To sugeruje, że powstały w wyniku długotrwałego oddziaływania lodowców i wielkiego wpływu procesów erozji i sedymentacji. Z kolei w Antarktyce Zachodniej kaniony są krótsze, mają bardziej strome brzegi, a ich przekrój przypomina literę V. Spostrzeżenie to jest wsparciem dla hipotezy, że lądolód Arktyki Wschodniej – największy lądolód na Ziemi – powstał wcześniej. Dotychczas hipoteza ta miała wsparcie w badaniu osadów, teraz kolejnym dowodem jest geomorfologia dna morskiego.
      Antarktyczne kaniony ułatwiają wymianę wody między szelfem kontynentalnym, a głębokimi partiami oceanu. Dzięki nim zimne gęste wody z okolic lądolodu spływają w dół i tworzą AABW (Antarctic Bottom Water), masę wody odgrywającą ważną rolę w światowej cyrkulacji oceanicznej. Ponadto kaniony kierują ciepłe wody, takie jak CDW (Circumpolar Deep Water) z Pacyfiku i Oceanu Indyjskiego w kierunku szelfu Antarktyki, podgrzewając lód i prowadząc do jego topnienia.
      Autorzy badań zauważają, że obecne modele cyrkulacji oceanicznej niedokładnie odtwarzają lokalne procesy fizyczne zachodzące między masami wody a kanionami, przez co mają ograniczoną możliwość przewidywania zmian zachodzących w oceanach i atmosferze.
      Źródło: The geomorphometry of Antarctic submarine canyons

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W środowisku naukowym od dawna trwa debata, czy w czasie okresów największego ochłodzenia Arktyka była cała pokryta lodowcem szelfowym o grubości dochodzącym do 1 kilometra. O istnieniu takiego lodowca ma świadczyć podmorski krajobraz Arktyki i dane geochemiczne. Międzynarodowy zespół naukowy z Norwegii, Niemiec i Wielkiej Brytanii poinformował na łamach Science Advances, że zmiany bioproduktywności wody nie uprawniają do stwierdzenia, by w czasie ostatnich 750 tysięcy lat w Arktyce istniał lodowiec rozciągający się mniej więcej od Svalbardu po Islandię.
      Naukowcy zbadali próbki pobrane z dna morskiego na północny zachód od Svalbardu i na północ od Islandii. Analizowali znajdujące się tam chemiczne ślady obecności glonów sprzed tysiącleci. Niektóre z tych glonów żyją w otwartych wodach, inne pod sezonowym lodem, który znika co roku. Badania pokazały, że życie istniało tam nawet w najzimniejszych okresach. To oznacza, że w powierzchni musiało docierać światło, wody były otwarte. Takie ślady by nie istniały, gdyby cała Arktyka była pokryta kilometrową warstwą lodu, mówi główny autor badań, Jochen Knies z Arktycznego Uniwersytetu Norwegii.
      Jednym z kluczowych dowodów była obecność molekuły IP25 wytwarzanej przez glony żyjące pod sezonowym lodem. Jej ciągła obecność pokazuje, że lód regularnie pojawiał się i znikał. Naukowcy, chcąc zweryfikować swoje odkrycie, przeprowadzili symulacje komputerowe pokazujące warunki panujące w Arktyce w czasie szczytu ostatniej epoki lodowej przed 21 tysiącami lat oraz podczas jeszcze większego ochłodzenia sprzed 140 tysięcy lat, gdy znaczne części Arktyki pokrywał lodowiec szelfowy. Modele potwierdziły to, co znaleźliśmy w osadach. Nawet w najbardziej chłodnych okresach, ciepłe wody Atlantyku wciąż wpływały do Arktyki. Dzięki temu części oceanu nie zamarzły, dodaje Knies.
      Autorzy badań uważają, że przez cały badany przez nich okres jedynym momentem, gdy cały Ocean Arktyczny mógł być pokryty jednym wielkim lodowcem, nastąpił być może około 650 tysięcy lat temu. Zaobserwowali bowiem gwałtowny spadek zapisu aktywności biologicznej w osadach z tego okresu. Jednak nawet jeśli tak było, to zjawisko takie było krótkotrwałe.
      Źródło: Seasonal sea ice characterized the glacial Arctic-Atlantic gateway over the past 750,000 years, https://www.science.org/doi/10.1126/sciadv.adu7681

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Autonomiczny pojazd podwodny „Ran” z Uniwersytetu w Göteborgu zbadał spód Lodowca Szelfowego Dotsona w Zachodniej Antarktyce. „Ran”, wysłany przez międzynarodowy zespół naukowy, wpłynął na odległości 17 kilometrów do zagłębienia znajdującej się pod lodowcem. W sumie w ciągu 27-dniowej misji pojazd przepłynął ponad 1000 kilometrów, skanując spód lodowca za pomocą zaawansowanego sonaru. Zdobyta w ten sposób wiedza przyda się między innymi podczas badań nad przyszłością lodowców i zmian poziomu oceanów.
      Dotychczas wykorzystywaliśmy dane satelitarne oraz rdzenie lodowe do obserwacji zmian lodowca w czasie. Dzięki temu, że nasz pojazd wpłynął do zagłębienia, mogliśmy tworzyć mapę spodu lodowca w wysokiej rozdzielczości. To trochę tak, jakby uzyskać obraz niewidocznej z Ziemi strony Księżyca, mówi profesor Anna Wåhlin, oceanograf z Uniwersytetu w Göteborgu.
      Części płynących z badań wniosków można było się spodziewać. Potwierdzono więc, że lodowiec topi się bardziej tam, gdzie oddziałują nań silne prądy morskie. Dzięki pojazdowi możliwe było, po raz pierwszy w historii, dokonanie pomiarów prądów pod lodowcem szelfowym oraz wykazanie, dlaczego zachodnia część lodowca Dostona znika szybciej. „Ran” dostarczył też dowodów na bardzo szybkie topnienie w pionowych pęknięciach obecnych w całym lodowcu.
      Zauważono też jednak nieznane zjawiska, które wymagają wyjaśnienia. Powierzchnia dna lodowca nie płaska, ale ma doliny i szczyty, krajobraz przypomina wydmy. Naukowcy wysunęli hipotezę, że jest to spowodowane przez zmiany przepływ wody pod wpływem ruchu obrotowego Ziemi.
      Dostarczona przez „Ran” mapa stanowi olbrzymi postęp w naszym rozumieniu antarktycznych lodowców szelfowych. Mieliśmy pewne dane wskazujące, że to bardzo złożone środowisko, ale „Ran” dostarczył nam większej liczby bardziej kompletnych danych. Dane z dna lodowca Dotsona pozwolą nam na lepszą interpretację i kalibrację danych z satelitów, stwierdza Karen Alley.
      A profesor Wåhlin dodaje, że dzięki nowym badaniom stało się jasne, iż niektóre przewidywania dotyczące procesów topnienia spodu lodowców nie są właściwe. Obecne modele nie pozwalają na wyjaśnienie skomplikowanych zjawisk, jaki tam zachodzą.
      Kampania badawcza, której wyniki zostały opisane właśnie na łamach Science Advances, odbyła się w 2022 roku. W styczniu bieżącego roku naukowcy wrócili z „Ranem”, by udokumentować zmiany w lodowcu. Udało im się zebrać dane tylko z pierwszego zanurzenia. Wysłany pod lodowiec po raz drugi „Ran” zniknął bez śladu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Archeolodzy z Glacier Archeology Program, programu archeologii lodowcowej Departamentu Dziedzictwa Kulturowego rady okręgu Innlandet oraz Muzeum Historycznego w Oslo, odkryli na stokach góry Lauvhøe brzechwę strzały sprzed ok. 4 tys. lat (z epoki kamienia). Lauvhøe wchodzi w skład norweskiego pasma górskiego Jotunheimen. W ostatnich latach topniejący lód odsłonił nowe obszary do badania.
      Ponieważ oba końce były złamane, datowanie nastręczało kłopotów. Początkowo sugerowano, że strzała może pochodzić z epoki żelaza. Sytuacja zmieniła się jednak, gdy delikatnie oczyszczono ją z nanosu i odsłonięto miejsce mocowania grotu. Jego wymiary i kształt sugerowały, że grot był krzemienny (najprawdopodobniej został wykonany z techniką bifacjalną, która polega na obustronnej obróbce surowca).
      To pierwsze znalezisko z epoki kamienia na tym stanowisku. W 2017 r. i wcześniej nie natrafiono tam na artefakty starsze niż z epoki żelaza.
      W mediach społecznościowych Glacier Archeology Program występuje jako Secrets of the Ice. Na profilu na Facebooku poinformowano, że choć dwaj archeolodzy — Axel i Andreas — mieli mieć w ostatni weekend sierpnia wolne, zamiast tego wspięli się na Lauvhøe. W 2017 r. przeprowadziliśmy zakrojoną na szeroką skalę prospekcję terenową. Znaleziono wtedy trochę strzał z epoki żelaza. Panowie mieli przeczucie, że od tego czasu topniejący lód odsłonił kolejne artefakty. Mieli rację – czytamy w poście.
      Dr Lars Holger Pilø, współdyrektor programu, wyjaśnia, że strzałę pozostawili myśliwi polujący na renifery. W letnich miesiącach zwierzęta przemieszczały się w pobliże lodu i śniegu, by uciec przed dokuczającymi im owadami. Ludzie znali ten zwyczaj i go wykorzystywali. Czasem, gdy strzała nie trafiła w cel, gubiła się w śniegu. To strata dla myśliwego, ale strzał w dziesiątkę dla archeologii! - stwierdza naukowiec.
      Prace mają być kontynuowane. Już teraz widać, że będą owocne. Na przełęczy Lendbreen odkryto, na przykład, żelazne wędzidło i skórzane elementy ogłowia. Mogą one pochodzić z epoki wikingów, na którą przypada szczytowy ruch przez to przejście. Ostatnio poinformowano też o znalezionej na Lendbreen średniowiecznej podkowie i końskich odchodach.
      Skala zawartości materiału archeologicznego w lodowcach i płatach lodu Innlandet stała się widoczna podczas dużego topnienia jesienią 2006 r. Od tej pory naukowcy stale ratowali odsłaniane obiekty.
      Glacier Archaeology Program rozpoczął się w 2011 r. Jego autorzy podkreślają, że pozwolił systematycznie pracować ze znaleziskami z lodu. Zespół wspomina o odkrytych narzędziach do polowania, wyposażeniu transportowym, tkaninach czy ubraniach, a także o materiale zoologicznym — odchodach, kościach i porożu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wenus z Willendorfu, jedno z najważniejszych dzieł sztuki europejskiej, jest wyjątkowe nie tylko z powodu swojego wyglądu, ale również użytego materiału. Rzeźbę wykonano z oolitu, skały osadowej, która nie występuje w pobliżu Willendorfu. Antropolog Gerhard Weber, geolodzy Alexander Lukender i Mathias Harzhauser oraz specjalistka prehistorii Walpurga Anti-Wieser z Muzeum Historii Naturalnej w Wiedniu określili, skąd pochodził materiał, z którego powstała Wenus.
      Inne figury Wenus są zwykle wykonane z ciosów mamuta lub kości zwierzęcych, czasami z różnego typu skał. Oolit został wykorzystany tylko w przypadku Wenus z Willendorfu. Ten niezwykły zabytek, znaleziony w 1908 roku w Willendorfie, był dotychczas badany jedynie z zewnątrz. Austriaccy naukowcy postanowili zaś zbadać jego wnętrze i wykorzystali w tym celu technikę mikrotomografii komputerowej. Pozwoliło im to przyjrzeć się figurce i jej wnętrzu w rozdzielczości do 11,5 mikrometra.
      Już pierwsze skanowanie wykazało, że Wenus nie jest wewnątrz jednorodna, co dało nadzieję, na określenie jej pochodzenia.
      Weber we współpracy z Lukenderem i Harzhauserem, którzy już wcześniej mieli do czynienia z oolitami, zebrali próbki oolitów z całej Europy i dokonali porównania. Oolity to skały tworzące się w strefach przybrzeżnych płytkich mórz. Badania tomograficzne pokazały, że tworzące skałę osady odkładały się w różny sposób. Różna była ich gęstość i rozmiary ziarna. Ponadto odkryto też pozostałości muszli oraz sześć dużych bardzo gęstych ziaren limonitu. Ich obecność wyjaśnia tajemnicę półkolistych wnęk tej samej wielkości, widocznych na powierzchni Wenus. To prawdopodobnie pozostałości po ziarnach limonitu, które pękły podczas rzeźbienia.
      Okazało się również, że Wenus jest porowata, gdyś tworzące oolit kuliste ziarna skalne – ooidy – uległy rozpuszczeniu. To prawdopodobnie dlatego prehistoryczny artysta wybrał tę skałę – łatwiej było z nią pracować. Wewnątrz rzeźby zauważono zaś 2,5-milimetrowy kawałek muszli z jury. To wykluczyło wiele obszarów występowania oolitów, jak np. Kotlinę Wiedeńską, gdzie oolity powstawały dopiero w miocenie.
      Naukowcy zmierzyli następnie wielkość tysięcy ooidów. Rozmiary żadnego z nich nie pasowały do ooidów występujących w oolitach w promieniu 200 kilometrów od Willendorfu. Analizy statystyczne wykazały, że oolit użyty do wyrzeźbienia Wenus pochodzi najprawdopodobniej z północnych Włoch, z okolic Jeziora Garda. To zaś oznacza, że rzeźba lub materiał, z którego powstała, odbył podróż przez Alpy.
      Przedstawiciele kultury graweckiej szukali przyjaznych miejsc do zamieszkania. Gdy w miejscu, gdzie mieszkali coś się zmieniło na niekorzyść – czy to warunki klimatyczne, czy zmniejszyła się liczba zwierząt, na które polowali – przenosili się dalej. Prawdopodobnie szli dolinami rzek, mówi Gerhard Weber. Taka podróż mogła trwać całe pokolenia.
      Nie wiemy, jaką podróż odbyła Wenus. Jedną z możliwych tras jest droga na wschód dookoła Alp i wejście w Kotlinę Panońską. Oczywiście najkrótsza droga wiedzie przez same Alpy, jednak nie wiemy, czy ponad 30 000 lat temu ich przekroczenie było możliwe, gdyż w tym mniej więcej czasie zaczął pogarszać się klimat. Jeśli w tym czasie był tam ciągły lodowiec, jest mało prawdopodobne, by droga ludzi wiodła tamtędy. Nie można jednak tego wykluczyć, gdyż 730-kilometrowa trasa dolinami rzek Adige, Inn i Dunaj tylko na 35-kilometrowym odcinku przy Jeziorze Reschen biegnie powyżej 1000 m.n.p.m.
      Północne Włochy to najbardziej prawdopodobne ze statystycznego punktu widzenia miejsce pochodzenia Wenus lub materiału, z którego ją wytworzono. Istnieje jednak jeszcze jedna możliwość. Wenus może też pochodzić ze wschodniej Ukrainy, z okolic miasta Izium w obwodzie charkowskim. Tamtejszy oolit jest drugim najbardziej prawdopodobnym miejscem pochodzenia materiału, chociaż nie pasuje aż tak dobrze, jak oolit z Włoch. Jednak naukowcy zwracają uwagę, że na pobliskich terenach południowej Rosji znajdowane są bardzo podobne – chociaż młodsze – figurki. Co więcej, badania genetyczne wskazują na istniejące w tamtym czasie związki pomiędzy ludnością zamieszkującą centralną i wschodnią Europę.
      Szczegóły badań nad Wenus zostały opublikowane na łamach Nature w artykule The microstructure and the origin of the Venus from Willendorf.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...