Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Słabo poznane myszy lodowcowe poruszają się jak stado - z podobną prędkością i w tym samym kierunku
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Wielkie tsunami niszczą wybrzeża i transportują olbrzymie ilości szczątków roślinnych i innych na dużej odległości. Jednak z powodu erozji wybrzeży i słabego zachowywania się materiału roślinnego, trudno jest rozpoznać depozyty złożone przez tsunami w starszym zapisie geologicznym. Grupa japońskich naukowców zidentyfikowała wyjątkowo bogate nagromadzenie bursztynu w osadach morskich na dużej głębokości. Uczeni uważają, że bursztyn znalazł się tam w wyniku jednego lub więcej tsunami, które uderzyło w wybrzeże Wysp Japońskich pomiędzy 116 a 114 milionów lat temu.
Uczeni analizowali bogate w bursztyn pokłady krzemionki znajdujące się w kamieniołomie Shimonakagawa. Złoża te powstały około 115 milionów lat temu, gdy region ten stanowił dno głębokiego morza. Naukowcy zauważyli, że złoża bursztynu są zdeformowane w sposób przypominający struktury płomieniowe w deformacjach sedymentacyjnych. Struktury takie tworzą się w miękkich osadach. Jako że żywica wystawiona na działanie powietrza twardnieje w ciągu tygodni, struktury płomieniowe sugerują, że żywica z której powstał bursztyn, nie była przez dłuższy czas wystawiona na kontakt z powietrzem. Szybko trafiła na dno.
Zdaniem autorów badań, jedynym scenariuszem, który wyjaśnia tak szybkie przedostanie się dużej ilości żywicy na dno jest przyniesienie jej tam przez tsunami. Żywica została następnie przykryta warstwą mułu i zachowana do naszych czasów.
Ze szczegółami badań można zapoznać się na łamach Scientific Reports.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Głęboko pod dnem Atlantyku, 400 kilometrów od wybrzeży Gwinei-Bissau, naukowcy z Heriot-Watt University odkryli gigantyczne fale osadów. Znajdujące się kilometr pod dnem wielkie fale mułu i piasku to świadectwo oddzielania się Afryki od Ameryki Południowej. Powstały one w czasie epizodu znanego jako Equatorial Atlantic Gateway, ostatecznego oderwania się obu kontynentów od siebie i utworzenia takiego Oceanu Atlantyckiego, jakim znamy go obecnie. Dzięki odkryciu fal dowiedzieliśmy się, że Atlantyk powstał znacznie wcześniej, niż dotychczas sądzono.
Doktorzy Débora Duarte i Uisdean Nicholson wykorzystali podczas badań dane sejsmiczne i rdzenie pozyskane w 1975 roku w ramach Deep Sea Drilling Project. Znaleźli tam pięć warstw osadów, które wykorzystali do zrekonstruowania procesu pękania kontynentu Gondwany. Szczególnie interesująca była jedna z warstw, zawierająca szerokie pola osadów oraz wzgórza mułu, które powstają w wyniku oddziaływania silnych prądów na dnie, mówi doktor Nicholson.
Wyobraźcie sobie fale o długości 1 kilometra i wysokości kilkuset metrów. To wielkie pole utworzone w konkretnej lokalizacji dokładnie w momencie ostatecznego oddzielenia się Ameryki Południowej i Afryki. Pole takie powstało, gdyż gęsta słona woda wpłynęła w nowo utworzoną szczelinę. To był gigantyczny wodospad pod powierzchnią oceanu. Do takiego zjawiska doszło ze względu na dużą różnicę gęstości pomiędzy słonawymi wodami z centralnej części Atlantyku i ekstremalnie słonymi wodami z części południowej. Gdy otworzyło się przejście, gęste bardziej słone wody gwałtownie popłynęły na północ, tworząc gigantyczne fale osadów, wyjaśnia uczony.
Dotychczas uważano, że Equatorial Atlantic Gateway otworzył się 113–83 miliony lat temu. Jednak fale osadów pokazują, że doszło do tego około 117 milionów lat temu. To był naprawdę ważny czas w historii Ziemi, doszło do dużych zmian klimatycznych. Jeszcze 117 milionów lat temu Ziemia się ochładzała i proces ten trwał już jaki czas. Olbrzymie ilości węgla wyły pochłaniane przez zbiorniki wodne, prawdopodobnie jeziora, w dzisiejszej równikowej części Atlantyku. I wtedy, pomiędzy 117 a 110 milionów lat temu doszło do znaczącego ocieplenia się klimatu. Sądzimy, że doszło do tego, gdyż jeziora te zostały zatopione przez słoną wodę. W miarę, jak kontynenty coraz bardziej się od siebie oddalały, pochłanianie węgla było coraz mniej efektywne, co doprowadziło do ocieplenia. W końcu, w miarę jak przejście pomiędzy kontynentami stawało się szersze i głębsze, pojawił się pełny układ cyrkulacji atlantyckiej, co skutkowało długotrwałym ochłodzeniem w późnej kredzie. To pokazuje, że wydarzenie do odegrało naprawdę ważną rolę w zmianie klimatu w mezozoiku, dodaje Duarte.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Niemieccy naukowcy ożywili glony, które przez 7000 lat spoczywały zagrzebane na dnie Morza Bałtyckiego. Okrzemki przez tysiące lat nie miały dostępu do tlenu i światła. Były nieaktywne. Uczeni z Instytutu Badań Morza Bałtyckiego im. Leibniza w Warnemünde (Leibniz-Institut für Ostseeforschung Warnemünde) prowadzili badania w ramach projektu PHYTOARK, którego celem jest zrozumienie przyszłości Morza Bałtyckiego za pomocą badania jego przeszłości.
Wiele organizmów stosuje hibernację, by przetrwać niekorzystne warunki. Dzieje się tak również fitoplanktonem, który w stanie hibernacji opada na dno, jest przykrywany kolejnymi warstwami osadów i trwa w warunkach beztlenowych. Takie depozyty to kapsuły czasu, pozwalające nam poznać przeszłość ekosystemów i zamieszkujących je organizmów, ich rozwój oraz zmiany genetyczne, wyjaśnia Sarah Bolius.
Dzięki wyraźnej stratyfikacji osadów z dna Bałtyku, można poszczególnym warstwom uśpionych glonów przypisać zakres dat, w których warstwy te powstały, a badając inne składniki osadów naukowcy są w stanie określić, jakie było wówczas zasolenie wód, poziom tlenu czy ich temperatura. Łącząc te informacje możemy lepiej zrozumieć, jak i dlaczego fitoplankton na Bałtyku adaptował się do zmian środowiskowych.
Przywrócone do życia glony zostały pobrane z głębokości 240 metrów. Jedynym gatunkiem fitoplanktonu, który udało się ożywić ze wszystkich próbek, był Skeletonema marinoi. Jest on szeroko rozpowszechniony w Morzu Bałtyckim, pojawia się wiosną podczas zakwitów. Najstarsza warstwa, w której ożywiono glony pochodziła sprzed 6871±140 lat. Kierująca badaniami Sarah Bolius mówi, że najbardziej istotnym osiągnięciem jest fakt, że po 7000 lat hibernacji okrzemki nie utraciły nic ze swoich funkcji życiowych. Wszystkie procesy przebiegają w nich równie sprawnie, jak w obecnie żyjących okrzemkach. Badania genetyczne wykazały zaś, że okrzemki z każdej warstwy różnią się genetycznie między sobą.
Badane przez Niemców okrzemki są jednymi z najstarszych organizmów, jakie udało się obudzić w stanie nienaruszonym z hibernacji. Są też najstarszym organizmem obudzonym z osadów wodnych. Więcej o badaniach można przeczytać na łamach The ISME Journal.
Więcej o niepokojących zmianach na Bałtyku, jego przeszłości, teraźniejszości i przyszłości opowiedział nam w wywiadzie doktor Tomasz Kijewski z Instytutu Oceanologii PAN.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Zespół naukowców, inżynierów i marynarzy ze statku badawczego Neil Armstrong należącego do US Navy, którego operatorem jest Woods Hole Oceanographic Institution (WHOI), pobrał 11,5-metrowy rdzeń osadów z najgłębszej części Rowu Portorykańskiego. Osady zostały pozyskane z głębokości ponad 8000 metrów. To rekord po względem głębokości, z jakiej pozyskano rdzeń na Atlantyku, a może i rekord w ogóle.
Zespołowi naukowemu z WHOI, Uniwersytetu w Monachium i kilku amerykańskich uniwersytetów, przewodzili profesor Steven D'Hondt oraz doktor Robert Pockalny. Celem wyprawy badawczej, która prowadzona była w lutym i marcu bieżącego roku, było lepsze zrozumienie adaptacji mikroorganizmów do życia w morskich osadach na różnych głębokościach. Dlatego też uczeni pobierali próbki zarówno z głębokości 50 metrów, jak i około 8358 metrów. Pobieraliśmy próbki, gdyż chcemy się dowiedzieć, jak mikroorganizmy żyjące na dnie morskim radzą sobie z ciśnieniem. Naszym ostatecznym celem jest zrozumienie interakcji pomiędzy organizmami żyjącymi w ekstremalnych środowiskach a ich otoczeniem, wyjaśnia D'Hondt.
Pobranie rdzenia z tak dużej głębokości było możliwe dzięki specjalnemu systemowi opracowanemu już w 2007 roku przez Jima Brodę dla statku badawczego Knorr. Po tym, jak Knorr zakończył służbę, jego system został zaadaptowany do krótszego Neila Armstronga.
Po zakończeniu obecnych badań system do pozyskiwania rdzeni z tak dużej głębokości zostanie przekazany OSU Marine Sediment Sampling Group. To zespół finansowany przez Narodową Fundację Nauki, który pomaga amerykańskiej społeczności akademickiej w pobieraniu próbek osadów morskich. Dzięki temu system będzie dostępny dla całej amerykańskiej floty statków badawczych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W 2010 roku japońska ekspedycja naukowa wybrała się do Wiru Południowopacyficznego (South Pacyfic Gyre). Pod nim znajduje się jedna z najbardziej pozbawionych życia pustyń na Ziemi. W pobliżu centrum SPG znajduje się oceaniczny biegun niedostępności. A często najbliżej znajdującymi się ludźmi są... astronauci z Międzynarodowej Stacji Kosmicznej. Tutejsze wody są tak pozbawione życie, że 1 metr osadów tworzy się tutaj przez milion lat.
Centrum SPG jest niemal nieruchome, jednak wokół niego krążą prądy oceaniczne, przez które do centrum dociera niewiele składników odżywczych. Niewiele więc tutaj organizmów żywych.
Japońscy naukowcy pobrali z dna, znajdującego się 6000 metrów pod powierzchnią, rdzeń o długości 100 metrów. Mieli więc w nim osady, które gromadziły się przez 100 milionów lat.
Niedawno poinformowali o wynikach badań rdzenia. Tak, jak się spodziewali, znaleźli w osadach bakterie, było ich jednak niewiele, od 100 do 3000 na centymetr sześcienny osadów. Później jednak nastąpiło coś, czego się nie spodziewali. Po podaniu pożywienia bakterie ożyły.
Ożyły i zaczęły robić to, co zwykle robią bakterie, mnożyć się. Dwukrotnie zwiększały swoją liczbę co mniej więcej 5 dni. Powoli, gdyż np. bakterie E.coli dwukrotnie zwiększają w laboratorium swoją liczbę co około 20 minut). Jednak wystarczyło to, by po 68 dniach bakterii było 10 000 razy więcej niż pierwotnie.
Weźmy przy tym pod uwagę, że mówimy o bakteriach sprzed 100 milionów lat. O mikroorganizmach, które żyły, gdy planeta była opanowana przez dinozaury. Minęły cztery ery geologiczne, a one – chronione przed promieniowaniem kosmicznym i innymi wpływami środowiska przez kilometry wody – czekały w uśpieniu.
Jeśli teraz uświadomimy sobie, że 70% powierzchni planety jest pokryte osadami morskimi, możemy przypuszczać, że znajduje się w nich wiele nieznanych nam, uśpionych mikroorganizmów sprzed milionów lat.
Kolejną niespodzianką był fakt, że znalezione przez Japończyków bakterie korzystają z tlenu. Osady, z których je wyodrębniono, są pełne tlenu. Problemem w SPG nie jest zatem dostępność tlenu, a pożywienia.
To jednak nie koniec zaskoczeń. Okazało się, że wydobyte z osadów bakterie nie tworzą przetrwalników (endosporów). Bakterie przetrwały w inny sposób. Jeszcze większą niespodzianką było znalezienie w jednej z próbek dobrze funkcjonującej populacji cyjanobakterii z rodzaju Chroococcidiopsis. To bakterie potrzebujące światłą, więc zagadką jest, jak przetrwały 13 milionów lat w morskich osadach na głębokości 6000 metrów. Z drugiej strony wiemy, że jest niektórzy przedstawiciele tego rodzaju są wyjątkowo odporni. Tak odporny, że niektórzy mówią o wykorzystaniu ich do terraformowania Marsa.
Biorąc uwagę niewielkie przestrzenie z powietrzem wewnątrz osadów, brak endosporów i szybkie ożywienie, naukowcy przypuszczają, że bakterie pozostały żywe przez 100 milionów lat, jednak znacząco spowolniły swój cykl życiowy. To zaś może oznaczać, że... są nieśmiertelne.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.