Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Układ Słoneczny powstał, bo przez Drogę Mleczną przeszła galaktyka karłowata?

Rekomendowane odpowiedzi

Co jakiś czas przez Drogę Mleczną przechodzi galaktyka karłowata SagDEG (Sagittarius Dwarf Elliptical Galaxy). To drugi najbliższy satelita naszej galaktyki, a jego przejście przez dysk Drogi Mlecznej powoduje silne zaburzenia i wywołuje gwałtowne tworzenie się gwiazd. Niewykluczone, że istnienie Układu Słonecznego zawdzięczamy właśnie jednemu z takich przejść.

Tomas Ruiz-Lara i Carme Gallart z Wydziału Astrofizyki Universidad de La Laguna w Hiszpanii, Edouard J. Bernadr z Universite Cote d'Azur oraz Santi Cassisi z Wydziału Fizyki Uniwersytetu w Pizie, przeprowadzili analizy formowania się gwiazd w promieniu około 2 kpc (ok. 6600 lat świetlnych) od Słońca. Odkryli trzy bardzo dobrze wyodrębnione okresy formowania się gwiazd, do których doszło 5,7, 1,9 oraz 1,0 miliarda lat temu. Każdy z epizodów był mniej intensywny od poprzedniego.

Łączenie się galaktyk jest uznawane za jeden z głównych czynników powstawania nowych gwiazd. Obecnie obowiązujące teorie kosmologiczne mówią, że takie właśnie łączenie się masywnych galaktyk odgrywają kluczową rolę w ich powstawaniu. Tak też było z Drogą Mleczną. Jednak nie mamy żadnych dowodów, by w późniejszym okresie istnienia naszej galaktyki doszło do takiego wydarzenia.

Jednocześnie wiemy o istnieniu w galaktycznym halo strumieni łączących Drogę Mleczną z SagDEG, co wskazuje, że w ciągu ostatnich kilku miliardów lat doszło do bliskiego spotkania obu galaktyk. Naukowcy przeprowadzili więc symulację ruchu SagDEG, w której uwzględnili pozycję kątową, odległości i prędkość strumieni pływowych z SagDEG. Na tej podstawie stwierdzili, że przed 6,5, 4,5, 2,75, 1 oraz 0,1 miliarda lat temu musiało dojść do bliskiego spotkania obu galaktyk. Gdy uściślili jeszcze swoje pomiary stwierdzili, że pewne cechy charakterystyczne dysku Drogi Mlecznej da się wyjaśnić, jeśli masa SagDEG wynoxi około 2,5x1010 masy Słońca i jeśli przeszła ona blisko Drogi Mlecznej przed 2,2 oraz 1,1 miliarda lat temu. Kolejne obserwacje o obliczenia wykazały, że dysk naszej galaktyki został poważnie zaburzony 300-900 milionów lat temu, co w wysokim stopni zgadza się z proponowanymi przejściami przezeń SagDEG.

Bliskie spotkania obu galaktyk znajdują potwierdzenie nie tylko w Drodze Mlecznej. Badanie populacji gwiazd w SagDEG również wskazuje na pojawianie się tam gwiazd, których czas narodzin oraz skład chemiczny potwierdzają fakt spotkań. Ścisła korelacja pomiędzy zawartością gwiazd w SagDEG oraz w Drodze Mlecznej dodatkowo potwierdza hipotezę o związku pomiędzy okresami tworzenia się gwiazd w Drodze Mlecznej a jej interakcją z SagDEG.

Uzyskaliśmy szczegółowe informacje na temat historii formowania się gwiazd na obszarze 2kpc lokalnego wszechświata. Odkryliśmy, że mamy do czynienia z epizodami zwiększonego tempa formowania się gwiazd, do których dochodziło około 5,7, 1,9 i 1,0 miliarda lat temu. Wszystkie dowody wskazują, że przyczyną pojawiania się takich epizodów są nawracające interakcje pomiędzy Drogą Mleczną a SagDEG. Odkrycie to wskazuje, że galaktyki o niskiej masie nie tylko wpływają na dynamikę dysku Drogi Mlecznej, ale są również w stanie zapoczątkować duże epizody formowania się gwiazd, czytamy w pracy opublikowanej na łamach Nature.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Od 20 lat naukowcy obserwują w pobliżu Sagittariusa A* – centralnej czarnej dziury Drogi Mlecznej – tajemniczy szybko ewoluujący obiekt X7. Specjaliści zastanawiali się, czym on jest. Czy został wyciągnięty z większej pobliskiej struktury, czy jego niezwykły kształt to skutek oddziaływania wiatrów gwiazdowych, a może ukształtował go strumień cząstek z czarnej dziury? X7 ma masę 50-krotnie większa od masy Ziemi, a pełen obieg wokół czarnej dziury zajmie mu 170 lat.
      Po analizie danych z 20 lat astronomowie z UCLA Galactic Center Group oraz Keck Observatory uważają, że X7 może być chmurą pyłu i gazu wyrzuconą podczas zderzenia dwóch gwiazd. Z czasem chmura została rozciągnięta i jest powoli rozrywana przez siły pływowe czarnej dziury. Autorzy badań sądzą, że w ciągu najbliższych dekad dojdzie do rozpadu X7, a szczątki mogą zostać wciągnięte przez Sgr A*.
      Żaden obiekt w tym regionie nie podlega tak ekstremalnej ewolucji. Rozpoczęło się od kształtu przypominającego kometę i dlatego sądzono, że obiekt został ukształtowany przez wiatry gwiazdowe lub strumień cząstek z czarnej dziury. Jednak analiza danych pokazała, że obiekt stał się bardziej rozciągnięty. Coś musiało ustawić tę chmurę na takim konkretnym kursie i z tą orientacją, mówi Anna Ciurlo, główna autorka badań.
      Na podstawie trajektorii obiektu naukowcy obliczyli, że około 2036 roku chmura znajdzie się najbliżej czarnej dziury. Wówczas prawdopodobnie zacznie być przez nią wciągana i zniknie. Przewidujemy, że siły pływowe rozerwą X7 zanim w pełni obiegnie ona czarną dziurę, mówi współautor badań, profesor Mark Morris z UCLA.
      Niektóre cechy X7 są podobne do cech innych obiektów znajdujących się w pobliżu Sagittariusa A*. Te tak zwane obiekty G wyglądają jak chmury gazu, ale zachowują się jak gwiazdy. Jednak X7 podlega znacznie szybszej, bardziej dramatycznej ewolucji niż obiekty G. Znacznie bardziej przyspiesza też w kierunku czarnej dziury. Obecnie prędkość X7 wynosi około 1130 km/s.
      Badacze przypuszczają, że obiekt powstał z gazu i pyłu wyrzuconego podczas zderzenia dwóch gwiazd. Powstała w wyniku tego zderzenia gwiazda ukryta jest za powłoką pyłu oraz gazu i może odpowiadać opisowi obiektu G. A wyrzucony gaz utworzył X7, mówi Ciurlo. Uczona dodaje, że do połączeń gwiazd dochodzi często, szczególnie w pobliżu czarnych dziur.
      Ze szczegółami badań można zapoznać się na łamach The Astrophysical Journal.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astronomowie odkryli nowy system pierścieni w Układzie Słonecznym. Otaczają one planetę karłowatą Quaoar i znajdują się znacznie dalej od jej powierzchni niż typowe systemy pierścieni, co każe jeszcze raz zastanowić się nad teoriami dotyczącymi formowania się tego typu struktur.
      Quaoar to duża planetoida, o połowę mniejsza od Plutona, która znajduje się za Neptunem. Została odkryta w 2002 roku. Naukowcy, wykorzystując niezwykle czułą szybką kamerę HiPERCAM zamontowaną na największym na świecie teleskopie optycznym Gran Telescopio Canarias na La Palmie zauważyli, że obiekt ten posiada pierścienie. Są one zbyt małe i ciemne, by było widać je bezpośrednio na zdjęciu. Zaobserwowano je dzięki okultacji, kiedy to światło znajdującej się w tle gwiazdy zostało kilkukrotnie na krótko przesłonięte przez niewidoczne na zdjęciu obiekty.
      Dotychczas znaliśmy zaledwie sześć systemów pierścieni w Układzie Słonecznym. Takie struktury istnieją wokół Saturna, Jowisza, Urana, Neptuna oraz dwóch planet karłowatych – Chariklo i Haumei. Wszystkie te systemy znajdują się na tyle blisko swojego ciała macierzystego, że siły pływowe uniemożliwiają akrecję materiału z pierścienia i utworzenie księżyców.
      Pierścienie wokół Quaoara są wyjątkowe. Znajdują się bowiem w odległości większej niż siedmiokrotna średnica planetoidy. To zaś dwukrotnie dalej niż tzw. granica Roche'a. Granica ta to – w układzie dwóch ciał o znacznej różnicy mas – promień, po przekroczeniu którego ciało mniej masywne może się rozpaść pod wpływem sił pływowych ciała bardziej masywnego. Na przykład główne pierścienie Saturna znajdują się w odległości 3 promieni planety od jej powierzchni. W przypadku Quaoar mamy odległość 7-krotnie większą niż promień planetoidy, a mimo to pierścienie istnieją i nie dochodzi do akrecji materiału. To wskazuje na konieczność przemyślenia teorii dotyczącej formowania się pierścieni.
      Odkrycie nieznanego systemu pierścieni było czymś niespodziewanym. A jeszcze bardziej niespodziewane było znalezienie pierścieni tak daleko od Quaoar, co rzuca wyzwanie naszemu dotychczasowemu rozumieniu formowania się pierścieni, mówi profesor Vik Dhillon z University of Sheffield.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Widzimy, że gwiazdy te ulegają precesji oraz poruszają się w górę i w dół z różną prędkością, mówi Paul McMillan z Lund Observatory. McMillan stał na czele grupy badawczej, która dzięki danym z teleskopu Gaia wyjaśniła, co jest przyczyną tajemniczych zmarszczek widocznych w zewnętrznych regionach Drogi Mlecznej.
      Szwedzcy uczeni wykorzystali dane z europejskiego teleskopu kosmicznego Gaia, który pozwolił im zbadać większy obszar Drogi Mlecznej niż to wcześniej było możliwe. Naukowcy zmierzyli, jak silne są „zmarszczki” w różnych częściach dysku naszej galaktyki, dzięki czemu udało się odtworzyć ich historię i wskazać na przyczynę tego zjawiska. Gdy galaktyka karłowata w Strzelcu (SagDEG – Sagittarius Dwarf Elliptical Galaxy) przechodziła w pobliżu Drogi Mlecznej, wywołała fale, trochę podobne do tych, jakie widzimy na powierzchni stawu, gdy wrzucimy kamień, wyjaśnia Paul McMillan.
      Przejście SagDEG miało miejsce kilkaset milionów lat temu, ale – jak widać – skutki są widoczne do dzisiaj. Obecnie galaktyka ta, znana nam dopiero od 1994 roku, znajduje się w odległości około 85 000 lat świetlnych od Ziemi. Ma średnicę około 10 000 lś. Sagittarius jest w tej chwili powoli rozrywana [przez oddziaływanie Drogi Mlecznej – red.], ale jeszcze 1-2 miliony lat temu była znacznie większa, miała około 20% masy Drogi Mlecznej, mówi McMillan.
      Dotychczasowe badania SagDEG wykazały, że w przeszłości wchodziła ona w skład Wielkiego Obłoku Magellana. W wyniku oddziaływania Drogi Mlecznej część gwiazd została wydarta i utworzyła galaktykę karłowatą. Wiemy, że SagDEG już co najmniej 5-krotnie musiało dojść do bliskiego spotkania obu naszych galaktyk. Nie można wykluczyć, że jednemu z takich przejść zawdzięczamy powstanie Układu Słonecznego.
      Dzięki temu odkryciu możemy badać Drogę Mleczną podobnie, jak geolodzy na podstawie układu warstw, wyciągają wnioski o historii Ziemi. Taka kosmiczna sejsmologia wiele nam mówi o ewolucji naszej galaktyki, cieszy się McMillan.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Niedawne badania podważyły przekonanie, jakoby ziemskie kontynenty uformowały się wyłącznie w wyniku procesów zachodzących wewnątrz naszej planety. Teraz dowiadujemy się o odkryciu „rytmu produkcji” skorupy ziemskiej. Badania minerałów ujawniły, że co mniej więcej 200 milionów lat dochodzi do wzmożenia zmian zachodzących w skorupie ziemskiej, a okres ten jest zbieżny z przejściem Układu Słonecznego przez ramiona Drogi Mlecznej.
      Przed kilkoma tygodniami informowaliśmy, że zdaniem naukowców z australijskiego Curtin University ziemskie kontynentu uformowały się w wyniku gigantycznych uderzeń meteorytów. Teraz dowiadujemy się, że do zwiększonego bombardowania dochodzi co około 200 milionów lat. "Układ Słoneczny przemieszcza się pomiędzy spiralnymi ramionami Drogi Mlecznej co około 200 milionów lat. Badając wiek i sygnatury izotopowe minerałów z Kratonu Pilbara w Zachodniej Australii i Kratonu Północnoatlantyckiego na Grenlandii zauważyliśmy podobny rytm tworzenia się skorupy ziemskiej, który zbiega się z okresem, w jakim Układ Słoneczny przechodzi przez obszary o największym zagęszczeniu gwiazd", mówi profesor Chris Kirkland z Curtin University.
      Układ Słoneczny krąży wokół centrum Drogi Mlecznej. Okres obiegu wynosi około 230 milionów lat i nazywany jest rokiem galaktycznym. Łatwo więc wyliczyć, że gdy ostatni raz Słońce znajdowało się w tym samym miejscu galaktyki co obecnie, po Ziemi chodziły pierwsze dinozaury.
      Raz na jakiś czas – mniej więcej do 200 milionów lat – Układ Słoneczny trafia na bardziej gęste obszary galaktyki. Wtedy oddziaływanie grawitacyjne znajdujących się w pobliżu gwiazd może destabilizować Obłok Oorta i kierować znajdujące się tam planetoidy w stronę Słońca. A część z nich trafi w Ziemię.
      Obłok Oorta to hipotetyczna – bo jej istnienia wciąż nie udowodniono – pozostałość po formowaniu się Układu Słonecznego. Ma on składać się m.in. z pyłu i planetoid. Astronomowie sądzą, że wewnętrzne krawędzie Obłoku znajdują się w odległości od 2 do 5 tysięcy jednostek astronomicznych od Słońca, a krawędzie zewnętrzne położone są w odległości od 10 do 100 tysięcy j.a. Przypomnijmy, że 1 j.a. to średnia odległość pomiędzy Słońcem a Ziemią, a najdalej wysłany przez człowieka pojazd, sonda Voyager 1, znajduje się w odległości zaledwie 157,5 j.a. od Ziemi.
      Zwiększenie częstotliwości uderzeń komet w Ziemię mogło prowadzić do spotęgowania procesów topnienia powierzchni planety i zapoczątkować formowanie się kontynentów, mówi Kirkland. Powiązanie tworzenia się kontynentów, na których obecnie żyjemy, z podróżą Układu Słonecznego przez Drogę Mleczną rzuca całkowicie nowe światło na historię tworzenia się planety i jej miejsce w przestrzeni kosmicznej, dodaje.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...