Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Układ Słoneczny powstał, bo przez Drogę Mleczną przeszła galaktyka karłowata?

Recommended Posts

Co jakiś czas przez Drogę Mleczną przechodzi galaktyka karłowata SagDEG (Sagittarius Dwarf Elliptical Galaxy). To drugi najbliższy satelita naszej galaktyki, a jego przejście przez dysk Drogi Mlecznej powoduje silne zaburzenia i wywołuje gwałtowne tworzenie się gwiazd. Niewykluczone, że istnienie Układu Słonecznego zawdzięczamy właśnie jednemu z takich przejść.

Tomas Ruiz-Lara i Carme Gallart z Wydziału Astrofizyki Universidad de La Laguna w Hiszpanii, Edouard J. Bernadr z Universite Cote d'Azur oraz Santi Cassisi z Wydziału Fizyki Uniwersytetu w Pizie, przeprowadzili analizy formowania się gwiazd w promieniu około 2 kpc (ok. 6600 lat świetlnych) od Słońca. Odkryli trzy bardzo dobrze wyodrębnione okresy formowania się gwiazd, do których doszło 5,7, 1,9 oraz 1,0 miliarda lat temu. Każdy z epizodów był mniej intensywny od poprzedniego.

Łączenie się galaktyk jest uznawane za jeden z głównych czynników powstawania nowych gwiazd. Obecnie obowiązujące teorie kosmologiczne mówią, że takie właśnie łączenie się masywnych galaktyk odgrywają kluczową rolę w ich powstawaniu. Tak też było z Drogą Mleczną. Jednak nie mamy żadnych dowodów, by w późniejszym okresie istnienia naszej galaktyki doszło do takiego wydarzenia.

Jednocześnie wiemy o istnieniu w galaktycznym halo strumieni łączących Drogę Mleczną z SagDEG, co wskazuje, że w ciągu ostatnich kilku miliardów lat doszło do bliskiego spotkania obu galaktyk. Naukowcy przeprowadzili więc symulację ruchu SagDEG, w której uwzględnili pozycję kątową, odległości i prędkość strumieni pływowych z SagDEG. Na tej podstawie stwierdzili, że przed 6,5, 4,5, 2,75, 1 oraz 0,1 miliarda lat temu musiało dojść do bliskiego spotkania obu galaktyk. Gdy uściślili jeszcze swoje pomiary stwierdzili, że pewne cechy charakterystyczne dysku Drogi Mlecznej da się wyjaśnić, jeśli masa SagDEG wynoxi około 2,5x1010 masy Słońca i jeśli przeszła ona blisko Drogi Mlecznej przed 2,2 oraz 1,1 miliarda lat temu. Kolejne obserwacje o obliczenia wykazały, że dysk naszej galaktyki został poważnie zaburzony 300-900 milionów lat temu, co w wysokim stopni zgadza się z proponowanymi przejściami przezeń SagDEG.

Bliskie spotkania obu galaktyk znajdują potwierdzenie nie tylko w Drodze Mlecznej. Badanie populacji gwiazd w SagDEG również wskazuje na pojawianie się tam gwiazd, których czas narodzin oraz skład chemiczny potwierdzają fakt spotkań. Ścisła korelacja pomiędzy zawartością gwiazd w SagDEG oraz w Drodze Mlecznej dodatkowo potwierdza hipotezę o związku pomiędzy okresami tworzenia się gwiazd w Drodze Mlecznej a jej interakcją z SagDEG.

Uzyskaliśmy szczegółowe informacje na temat historii formowania się gwiazd na obszarze 2kpc lokalnego wszechświata. Odkryliśmy, że mamy do czynienia z epizodami zwiększonego tempa formowania się gwiazd, do których dochodziło około 5,7, 1,9 i 1,0 miliarda lat temu. Wszystkie dowody wskazują, że przyczyną pojawiania się takich epizodów są nawracające interakcje pomiędzy Drogą Mleczną a SagDEG. Odkrycie to wskazuje, że galaktyki o niskiej masie nie tylko wpływają na dynamikę dysku Drogi Mlecznej, ale są również w stanie zapoczątkować duże epizody formowania się gwiazd, czytamy w pracy opublikowanej na łamach Nature.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Europejska Agencja Kosmiczna opublikowała najdokładniejszą mapę Drogi Mlecznej. Jej tworzenie to główny cel misji sondy Gaia, która od 9 lat pracuje w przestrzeni kosmicznej. Sonda krąży wokół punktu libracyjnego L2, tego samego, w pobliżu którego znajduje się Teleskop Webba.
      Udostępniony właśnie 3. zestaw danych z Gai zawiera nowe oraz poprawione informacje o niemal 2 miliardach gwiazd w naszej galaktyce. Znajdziemy tam nowe informacje o składzie chemicznym gwiazd, ich temperaturze, kolorze, masie, wieku i prędkości radialnej, czyli prędkości ich zbliżania się lub oddalania od sondy. Nowy katalog zawiera też informacje o masie i ewolucji 800 tys. gwiazd podwójnych, 156 tys. asteroid w Układzie Słonecznych, dane o 10 milionach gwiazd zmiennych oraz o milionach galaktyk i kwazarów poza Drogą Mleczną.
      Jednak tym, co najbardziej zaskoczyło specjalistów jest zaobserwowanie przez Gaię trzęsień gwiazd. To niewielkie ruchy na powierzchni gwiazd, które zmieniają ich kształt. Gaia nie była projektowana do prowadzenia takich obserwacji, stąd zaskoczenie naukowców. To zresztą nie pierwsza niespodzianka.
      Gaia już wcześniej zarejestrowała pulsacje radialne gwiazd, podczas których zmieniały one swoją objętość, zachowując przy tym kształt. Teraz jednak mamy do czynienia z pulsacjami nieradiacyjnymi, które przypominają wielkie tsunami i prowadzą do zmiany kształtu gwiazd. Takie zjawiska są trudniejsze do zarejestrowania. Mimo to Gai udało się zaobserwować je w przypadku tysięcy gwiazd. Co interesujące, te silne nieradialne trzęsienia gwiazd zarejestrowano na gwiazdach, które – zgodnie z obecnie obowiązującymi teoriami – nie powinny doświadczać takich zjawisk. Gaja otwiera skarbnicę wiedzy dla astrosejsmologii masywnych gwiazd, stwierdził Conny Aerts z Uniwersytetu Katolickiego w Leuven.
      Skład gwiazd może nam wiele powiedzieć o miejscu, w którym powstały, i ich późniejszej wędrówce. Dzięki temu zaś możemy poznać historię Drogi Mlecznej. Najnowszy zestaw danych z Gai to największa mapa chemiczna Drogi Mlecznej przedstawiona w formie trójwymiarowej. Pokazuje ona zarówno bezpośrednie sąsiedztwo Układu Słonecznego jak i niewielkie galaktyki otaczające naszą.
      Podczas Wielkiego Wybuchu powstały tylko hel i wodór. Wszystkie cięższe pierwiastki – zwane przez astronomów „metalami” – powstały z czasem wewnątrz gwiazd. Gdy gwiazdy te umierały, uwalniały metale do gazu i pyłu w przestrzeni międzygwiezdnej. Z materii tej powstawały zaś kolejne gwiazdy. Tworzenie się i umieranie gwiazd prowadzi do powstania środowiska bardziej bogatego w metale. Zatem skład chemiczny gwiazd to rodzaj DNA, które zdradza wiele informacji o ich pochodzeniu.
      Gaia dostarcza nam informacji zarówno o gwiazdach ubogich w metale, jak i takich jak Słonce, które powstały ze materiału wzbogaconego w metale przez wcześniejsze pokolenia gwiazd. Dzięki temu wiemy, że gwiazdy bliższe centrum Drogi Mlecznej i jej płaszczyźnie zawierają więcej metali niż gwiazdy bardziej odległe. Nasza galaktyka to piękna mieszanina gwiazd. Ta różnorodność jest niezwykle ważna, gdyż opowiada nam historię tworzenia się Drogi Mlecznej. Pokazuje procesy migracji wewnątrz galaktyki oraz akrecji materiału z innych galaktyk. Pokazuje też, że nasze Słońce i my wraz z nim, należymy do ciągle zmieniającego się systemu stworzonego dzięki łączeniu się gwiazd i gazu o różnym pochodzeniu, mówi Alejandra Recio-Blanco z Observatoire de la Côte d’Azur.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie pracujący przy Event Horizon Telescope (EHT, Teleskop Horyzontu Zdarzeń) pokazali pierwszy obraz Sagittariusa A*, czyli supermasywnej czarnej dziury znajdującej się w centrum Drogi Mlecznej. Co prawda nie jesteśmy w stanie dostrzec samej czarnej dziury, ale możemy zobrazować rozgrzany świecący gaz krążący wokół niej. EHT zarejestrował światło zakrzywione przez potężną grawitację Sgr A*, która jest 4 000 000 razy bardziej masywna od Słońca.
      Teleskop Horyzontu Zdarzeń to projekt naukowy, w którym uczestniczą radioteleskopy rozsiane po cały świecie. Celem projektu jest obserwacja Sgr A* i M87*, co ma pozwolić na weryfikację OTW, zrozumienie procesu akrecji oraz powstawania dżetów wokół czarnych dziur.
      Byliśmy zaskoczeni tym, jak dobrze rozmiary dysku otaczającego czarną dziurę zgadza się z Ogólną Teorią Względności Einsteina, mówi Geoffrey Bower z EHT. Te bezprecedensowe obserwacje znakomicie uzupełniają naszą wiedzę o tym, co dzieje się w centrum naszej galaktyki i dają nam wgląd w interakcje pomiędzy masywnymi czarnymi dziurami, a otoczeniem.
      Przed trzema laty EHT pokazał nam pierwszy w historii obraz czarnej dziury. Zobrazował wówczas M87*, znajdującą się w centrum galaktyki Messier 87.
      Teraz widzimy, że Sgr A* jest bardzo podobna do M87*, mimo tego, że jest od niej ponad tysiąc razy mniejsza i mniej masywna. Mamy dwa całkowicie różne typy galaktyk i dwie czarne dziury o zupełnie innych masach. Ale blisko krawędzi dziury te wyglądają zadziwiająco podobnie, stwierdza Sera Makroff z Uniwersytetu w Amsterdamie.
      Uzyskanie obrazu Sgr A* było znacznie trudniejsze niż M87*. Gaz w pobliżu obu tych czarnych dziur porusza się z taką samą prędkością bliską prędkości światła. Jednak o ile obiegnięcie M87* zajmuje gazowi dni lub tygodnie, to w przypadku SgrA* są to zaledwie minuty. A to oznacza, że jasność gazu i jej wzorzec szybko się zmieniają. Próba sfotografowania takiego obiektu przypomina próbę uzyskania ostrego zdjęcia szczeniaka próbującego schwytać własny ogon, wyjaśnia Chi-kwan Chan z University of Arizona.
      Naukowcy musieli więc opracować zaawansowane narzędzia, które brałyby pod uwagę ruch gazu wokół Sgr A*. O ile zatem M87* była łatwiejszym, bardziej stabilnym obiektem do zobrazowania, w przypadku którego niemal wszystkie zdjęcia wyglądały tak samo, to Sgr A* na każdym z ujęć wyglądała inaczej. Potrzeba było współpracy 300 specjalistów z 80 instytucji na całym świecie, by uzyskać pierwszy uśredniony obraz czarnej dziury w centrum Drogi Mlecznej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy skupieni wokół projektu COSMIC-DANCE poinformowali o odkryciu od 70 do 170 nieznanych dotychczas planet swobodnych (FFP – free-floating planet), czyli takich, które nie są powiązane z żadną gwiazdą i samotnie wędrują przez przestrzeń kosmiczną. Odkrycia dokonali w jednym z najbliższych obszarów gwiazdotwórczych, asocjacji Skorpiona-Centaura.
      Nie znamy natury planet swobodnych, nie wiemy, dlaczego nie są powiązane grawitacyjnie z żadną gwiazdą. Być może powstają podobnie jak gwiazdy, w wyniku kolapsu grawitacyjnego niewielkich chmur gazu. A być może formują się podobnie jak inne planety w dysku protoplanetarnym krążącym wokół gwiazd, i potem w wyniku oddziaływania jakichś sił – na przykład sąsiednich planet – zostają wyrzucone ze swojego układu planetarnego. Żeby rozwiązać tajemnicę planet swobodnych potrzebujemy dużej homogenicznej próbki takich planet.
      Specjaliści z COSMIC-DANCE postanowili poszukać FFP na obszarze nieboskłonu obejmującym asocjację Skorpiona-Centaura. Asocjacje gwiazd to otwarte gromady, w których gwiazdy nie są ze sobą grawitacyjnie powiązane.
      Znalezienie planet swobodnych w gromadach gwiazd jest bardzo trudne. Potrzebna są bardzo czułe instrumenty. Gwiazdy są dość jasne i łatwe do zauważenia. Planety zaś są tysiące razy ciemniejsze, a dodatkową trudnością jest odróżnienie planeto od gwiazd i galaktyk w tle, mówi Núria Miret Roig, która wraz z zespołem zajmowała się poszukiwaniami planet. Naukowcy połączyli dwie techniki. Przeanalizowali publicznie dostępne bazy fotografii astronomicznych oraz bazy danych, w których zamieszczono informacje o ruchu, kolorze i jasności dziesiątków milionów źródeł światła. Dane takie zostały zebrane za pomocą najlepszych dostępnych teleskopów pracujących w podczerwieni i świetle widzialnym.
      Dzięki wykorzystaniu ponad 80 000 obrazów i około 100 terabajtów danych zbieranych przez 20 lat członkom COSMIC-DANCE udało się zidentyfikować do 170 możliwych planet swobodnych. Okazało się, że wszystkie one znajdują się w asocjacji Skorpiona-Centaura.
      To, jak dotąd, największa grupa planet swobodnych zaobserwowanych bezpośrednio w pojedynczej asocjacji. Niemal podwoiliśmy liczbę znanych FFP. Ich liczba zdecydowanie przekracza liczbę planet swobodnych jaką powinniśmy zaobserwować, gdyby planety takie powstawały w wyniku kolapsu małych chmur molekularnych. To zaś wskazuje, że musi istnieć inny mechanizm ich powstawania. Na podstawie dostępnej nam wiedzy o dynamice układów planetarnych stwierdzamy, że ważnym mechanizmem powstawania planet swobodnych jest ich wyrzucanie z orbit ich gwiazd, stwierdzają naukowcy.
      Jeśli zagęszczenie planet swobodnych w innych regionach gwiazdotwórczych jest podobne jak w asocjacji Skorpiona-Centaura, to w całej Drodze Mlecznej mogą istnieć miliardy planet wielkości Jowisza, które nie są powiązane z gwiazdami. Jeszcze więcej może być FFP wielkości Ziemi, gdyż w układach planetarnych występują one częściej.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od dziesięcioleci astronomowie sądzą, że sąsiadujące z Drogą Mleczną galaktyki karłowate są jej satelitami, czyli zostały przechwycone przez naszą galaktykę i towarzyszą jej od miliardów lat. Teraz, dzięki danym z misji Gaia, zmierzono ruch tych galaktyk z niespotykaną wcześniej dokładnością, a uzyskane wyniki zaskoczyły ekspertów.
      François Hammer z Observatoire de Paris oraz grupa uczonych z innych krajów europejskich i Chin wyliczyli trasy 40 galaktyk karłowatych w pobliżu Drogi Mlecznej. Okazało się, że poruszają się one znacznie szybciej niż wielkie gwiazdy oraz gromady gwiazd krążące wokół naszej galaktyki. Prędkość tych galaktyk jest tak duża, że nie mogą znajdować się na orbitach wokół Drogi Mlecznej, gdyż gdyby tak było, interakcja z naszą galaktyką zmniejszyłaby ich energię orbitalną oraz moment pędu.
      W przeszłości Droga Mleczna wchłonęła wiele galaktyk karłowatych. Przed rokiem astronomowie odtworzyli jej drzewo genealogiczne, odkrywając nieznaną wcześniej – prawdopodobnie najważniejszą w jej dziejach – kolizję z Krakenem. Natomiast 8–10 miliardów lat temu taki los spotkał galaktykę Gaia-Enceladus. Do dzisiaj jesteśmy w stanie określić, które z gwiazd wchodziły w jej skład, gdyż mają one odmienne orbity i energie. Z kolei 4–5 miliardów lat temu Droga Mleczna przechwyciła galaktykę karłowatą Sagittarius i właśnie rozrywa ją na strzępy. Energia gwiazd tej galaktyki jest większa niż gwiazd Gaia-Enceladus, co wskazuje, że krócej znajdują się one pod wpływem Drogi Mlecznej. Tymczasem energia większości galaktyk karłowatych w pobliżu Drogi Mlecznej jest wciąż duża, a to oznacza, że znalazły się w naszym sąsiedztwie zaledwie w ciągu ostatnich kilku miliardów lat.
      Warto tutaj przypomnieć o przypadku Wielkiego Obłoku Magellana. To duża galaktyka karłowata, która jest tak blisko Drogi Mlecznej, że widać ją w postaci smugi na nocnym niebie półkuli południowej. Jeszcze przed dwiema dekadami sądzono, że Wielki Obłok jest galaktyką satelitarną. Jednak gdy zmierzono jej prędkość okazało się, że przemieszcza się zbyt szybko, by być grawitacyjnie związaną z naszą galaktyką. Okazało się, że obie galaktyki spotkały się po raz pierwszy. Teraz dowiadujemy się, że tak jest w przypadku większości galaktyk karłowatych.
      Rodzi się więc pytanie, czy wspomniane galaktyki karłowate nas miną czy też zostaną przechwycone i wejdą na orbitę Drogi Mlecznej? Część z nich zostanie przechwycona i stanie się satelitami, uważa Hammer. Jednak stwierdzenie, które to będą jest trudne, gdyż zależy to od masy Drogi Mlecznej, a tej naukowcy nie potrafią obecnie dokładnie określić. Tym bardziej, że na bieżąco wchłania ona materiał z sąsiednich galaktyk.
      Gdy galaktyka karłowata znajdzie się na orbicie Drogi Mlecznej, zwykle oznacza to dla niej wyrok śmierci. Nasza galaktyka jest duża, więc generuje gigantyczne siły pływowe oddziałujące na otoczenie. Są one tak wielkie, że potrafią rozerwać galaktykę karłowatą już przy pierwszym okrążeniu na orbicie. Oprzeć się tej niszczycielskiej sile mogą tylko te galaktyki karłowate, które w znaczącym stopniu składają się z ciemnej materii. Z tego też powodu, dopóki sądzono, że większość galaktyk karłowatych jest satelitami Drogi Mlecznej krążących wokół niej od wielu miliardów lat, uważano, że muszą one zawierać dużo ciemnej materii, skoro nie zostały jeszcze zniszczone. Teraz, gdy dowiedzieliśmy się, że nie są satelitami, okazuje się, że nie muszą zawierać ciemnej materii. Naukowcy będą więc chcieli zbadać, czy galaktyki te znajdują się w stanie równowagi, czy też właśnie są niszczone przez Drogę Mleczną.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Symulacje komputerowe przeprowadzone przez astronomów z University of Oklahoma wskazują, gdzie poszukiwać dowodów na istnienie hipotetycznej Dziewiątej Planety. Pośrednie dowody na jej istnienie przedstawili przed 5 laty profesorowie Konstantin Batygin i Mike Brown z Caltechu (California Insitute of Technology). Od tamtej pory pojawiły się nowe dane i hipotezy na jej temat, a śladów Planety X – bo tak również bywa nazywana – szukano też w średniowiecznych manuskryptach. Pojawiła się nawet hipoteza, że w Układzie Słonecznym krąży pierwotna czarna dziura, a nie Dziewiąta Planeta.
      Batygin i Brown wysunęli postulat o istnieniu Dziewiątej na podstawie badania niezwykłych orbit 6 najbardziej odległych obiektów Paas Kuipera. W ostatnich latach różne zespoły naukowe znajdowały kolejne obiekty transneptunowe (TNO) – czyli znajdujące się poza orbitą Neptuna – których nietypowe orbity można by wyjaśnić oddziaływaniem na nie Dziewiątej Planety. Batygin i Brown postulują, że Planeta X ma masę 10-krotnie większą od Ziemi, ma znajdować się bardzo daleko za Neptunem, a jej obieg wokół Słońca ma trwać 10-20 tysięcy lat. Zaobserwowanie takiego obiektu jest niezwykle trudne. Pamiętajmy, że planety nie świecą własnym światłem. Dlatego też od lat naukowcy próbują najpierw ustalić, w którym miejscu nieboskłonu należy poszukiwać Dziewiątej.
      Kalee Anderson i Nathan Kaib przedstawili na łamach arXiv swoją pracę, w ramach której modelowali ewolucję Układu Słonecznego. W modelu uwzględnili zarówno istnienie czterech olbrzymich planet (Jowisz, Saturn, Uran, Neptun), jak i milionów „cząstek” reprezentujących Pas Kuipera. Symulowali cztery miliardy lat ewolucji Układu Słonecznego. W części symulacji uwzględniali istnienie ośmiu znanych planet, a w części dodawali do tego systemu dziewiątą planetą z różnymi orbitami. W każdej z symulacji miliony „cząstek” odczuwały oddziaływanie planet, gdy Neptun migrował przez dysk. W końcu w wyniku tego procesu dysk został rozproszony i utworzył symulowany Pas Kupera, który możemy porównać z rzeczywiście obserwowanym Pasem, mówi Anderson.
      W modelach, w których uwzględniono istnienie Planety X, odległe obiekty Pasa Kuipera miały tendencję do gromadzenia się na orbitach o dość płytkim nachyleniu (inklinacji) w stosunku do płaszczyzny Układu Słonecznego. Obiekty takie znajdowały się w bardzo dużej odległości od Słońca, nigdy bliżej niż 40–50 jednostek astronomicznych. Jednak, co najważniejsze, w symulacjach uwzględniających tylko 8 znanych planet, nigdy nie dochodziło do nagromadzenia TNO na takich orbitach. To zaś wskazuje, że jeśli znajdziemy odległe TNO na orbitach o niewielkim nachyleniu względem płaszczyzny Układu Słonecznego, będzie to kolejna wskazówka, że Dziewiąta istnieje.
      To bardzo dobre badania, które pokazują, jak obserwacyjnie zweryfikować konsekwencje obecności wielkiej nieznanej planety, mówi Kat Volk z University of Arizona, która pracuje przy projekcie Outer Solar System Origins Survey (OSSOS).
      Uczona stwierdza, że już obecnie możemy poszukiwać TNO o orbitach opisanych przez Andersona i Kaiba, jednak nie jest to łatwe, gdyż obiekty takie są bardzo słabo widoczne. Przy dostępnej w tej chwili technologii musimy znaleźć równowagę pomiędzy tym, jak daleko wgłąb Układu Słonecznego możemy zajrzeć, a tym, jak szeroki obszar nieboskłonu jesteśmy w stanie objąć obserwacjami. Jednak w najbliższych latach nasze możliwości obserwacyjne radykalnie się powiększą dzięki budowanemu w Chile Vera C. Rubin Observatory, który rozpocznie pracę z 2023 roku.
      To będzie rewolucja, gdyż teleskop będzie w stanie wykryć TNO równie odległe co wyspecjalizowane projekty jak OSSOS, a jednocześnie będzie mógł obserwować wielkie obszary nieboskłonu. Sądzę, że teleskop ten pokaże nam wiele TNO, których istnienie postulują Anderson i Kaib.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...