Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Amerykański Departament Energii (DOE), chcąc ożywić sektor energetyki jądrowej, rozpoczął Advanced Reactor Demonstrating Program. W jego ramach ma zamiar wybrać dwa nowe prototypowe reaktory atomowe oraz wspomóc ich budowę. Reaktory mają powstać w ciągu 7 lat.

W bieżącym roku podatkowym program pochłonie 230 milionów USD. Każdy z reaktorów zostanie w połowie sfinansowany przez DOE, a w połowie przez prywatnego partnera. Maksymalna kwota, jaką Departament przeznaczy na każdy z reaktorów została określona na 4 miliardy dolarów.

To może zupełnie zmienić reguły gry. Najwyższy czas, by przejść z fazy projektowania do fazy budowania reaktorów, mówi Jacopo Boungiorno, inżynier z MIT. Jednym z takich reaktorów może być zaprojektowany przez Terrestrial Energy USA reaktor chłodzony płynnymi solami.

Jednak nawet niektórzy ze zwolenników energetyki atomowej wątpią, czy program DOE spowoduje, że zaczną powstawać komercyjne reaktory atomowe. Problemem jest konkurencja cenowa ze strony energii pozyskiwanej z gazu oraz źródeł odnawialnych. Nowe reaktory nie są w stanie konkurować z energetyką odnawialną. Na pewno nie w tej chwili, mówi Rober Rosner, fizyk z University of Chicago.

Obecnie reaktory atomowe zapewniają USA 20% zapotrzebowania na energię elektryczną i produkują 50% energii ze źródeł nie emitujących węgla. Jednak sektor energetyki jądrowej od lat przeżywa w USA problemy. Obecnie w Stanach Zjednoczonych pracuje 96 reaktorów. Na początku lat 90. było ich 113. Planuje się zamknięcie wielu reaktorów i prawdopodobnie udział energetyki jądrowej w produkcji energii elektrycznej w USA będzie spadał. O problemach tych pisaliśmy niejednokrotnie. Mimo tego pojawiają się projekty reaktorów, które mają być bardziej wydajne i bezpieczne.

Administracja prezydenta Trumpa chce tchnąć nowe życie w energetykę jądrową. W kwietniu DOE ogłosił, że ma zamiar zwiększyć wydobycie uranu i stworzy narodowe rezerwy tego pierwiastka.

W ramach Advanced Reactor Demonstrating Program DOE współpracuje też z firmami, które dopiero rozwijają swoje koncepcje. Jedną z nich jest NuScale, pracujące nad małymi modułowymi reaktorami, które można by produkować w fabrykach. Departament ma zamiar stworzyć inkubator pomysłów nowatorskich projektów reaktorów.

Jak mówi Buongiorno, nowe projekty reaktorów skupiają się na urządzeniach mniejszych niż tradycyjne reaktory o mocy liczonej w gigawatach. Obecnie wykorzystywany standardowy reaktor wykorzystuje uran-235 wzbogacony do 3-5 procent. Nowe projekty, wykorzystujące w roli chłodziwa np. stopione sole, mają korzystać z paliwa wzbogaconego do 20%, co powinno uczynić je bardziej wydajnymi.

Plany DOE zostały skrytykowane jako nierealistyczne. Fizyk z kanadyjskiego University of British Columbia, M. V. Ramana mówi, że niezwykle trudno będzie wybrać najbardziej obiecujące projekty. Będą porównywać jabłka z pomarańczami, gruszkami, śliwkami, ze wszystkim, stwierdza. Jego zdaniem nierealistyczny jest też 7-letni horyzont budowy nowych reaktorów tym bardziej, że DOE chce, by reaktory uzyskały licencję Nuclear Regulatory Commission, co zwykle zajmuje kilka lat. Absurdem jest myśl, że dadzą radę to zrobić", mówi uczony.

Optymistą jest za to Buongiorno, który zauważa, że jako iż wspomniane dwa reaktory mają być budowane na terenie Idaho National Laboratory, to mogą jednocześnie być budowane i starać się o licencję NRL. Od 1949 roku w INL zbudowano 52 różne eksperymentalne reaktory.

Ramana wątpi jednak, czy amerykański przemysł energetyki jądrowej da się uratować. Wciąż pozostają takie problemy jak stosunek opinii publicznej do energetyki jądrowej czy problem ze składowaniem odpadów. Jednak największa przeszkoda to olbrzymie koszty. Budowa nowego reaktora może pochłonąć ponad 7 miliardów dolarów. Na wolnym rynku firmy nie są w stanie ponosić tak olbrzymich kosztów kapitałowych. Dlatego też Ramana uważa, że źródła odnawialne mogą ostatecznie zastąpić energetykę jądrową. To schyłkowy przemysł. Im szybciej się to przyzna, tym lepiej, dodaje uczony.

Inni specjaliści twierdzą jednak, że koszty odnawialnych źródeł energii będą rosły, źródła te nie są w stanie zapewniać energii w sposób ciągły i kontrolowany, z czasem energetyka jądrowa może stać się od nich tańsza. Jeśli do roku 2030 Stany Zjednoczone  będą miały duży wybór zaawansowanych nowoczesnych projektów, to warto będzie w nie zainwestować, gdyż będziemy potrzebowali tych reaktorów, twierdzi Rosner. Aby jednak działanie takie było możliwe, konieczne jest podtrzymanie zdolności do budowy i eksploatacji nowych reaktorów.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Do końca maja potrwa modernizacja badawczego reaktora jądrowego MARIA. Jako przewidywany termin jego uruchomienia wskazywany jest przełom czerwca i lipca. Dr Marek Pawłowski, rzecznik Narodowego Centrum Badań Jądrowych (NCBJ), wyjaśnia, że napromienianie izotopów ma zostać wznowione od 1. cyklu pracy.
      Przerwa remontowa rozpoczęła się 5 września ubiegłego roku. Była ona podyktowana starzeniem się i brakiem części zamiennych. Dr Pawłowski wspomina również o konieczności dostosowania zbiorników na odpady ciekłe do nowych wymagań prawnych. Gdy prace modernizacyjne zostaną ukończone, rozpocznie się seria testów wszystkich  układów i urządzeń. Najpierw są one sprawdzane przy niepracującym reaktorze, a następnie gdy reaktor pracuje na minimalnej mocy. Gdy testy wypadną pomyślnie, NCBJ zwróci się do prezesa Państwowej Agencji Atomistyki o zgodę na uruchomienie reaktora. Dopiero po jej uzyskaniu MARIA będzie mogła podjąć pracę na nowo.
      Reaktor MARIA działa od grudnia 1974 roku. Jest urządzeniem doświadczalno-produkcyjnym i jednym z najważniejszych źródeł niektórych izotopów promieniotwórczych dla światowej medycyny. Na przykład w ubiegłym roku, dzięki błyskawicznej zmianie harmonogramu pracy MARII, udało się zapobiec światowym niedoborom medycznego molibdenu-99. MARIA, nazwany tak od imienia Marii Skłodowskiej-Curie, wykorzystywany jest też do badań materiałowych i technologicznych, domieszkowania materiałów półprzewodnikowych, neutronowej modyfikacji materiałów oraz badań fizycznych.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dendroarcheolog Michael Bamforth z University of York zidentyfikował tajemniczy fragment drewna znaleziony podczas przygotowań do budowy elektrowni atomowej Sizewell C w Suffolk w Anglii. W 2021 roku podczas prac archeologicznych w miejscu, w którym planowane jest posadzenie drzew, eksperci z Cotswold Archeology odkryli liczne ślady ludzkiej aktywności, od neolitu po średniowiecze. Natrafiono m.in. na dwa doły z epoki żelaza, które prawdopodobnie pełniły rolę poideł dla zwierząt. Doły były zalane wodą, co stworzyło idealne warunki do zachowania się drewnianych szczątków.
      To właśnie na dnie jednego z nich znaleziono drewniany przedmiot, którego przez długi czas nie potrafiono zidentyfikować. Michael Bamforth poinformował właśnie, że jest to oś od wozu lub rydwanu, która złamała się, a następnie została wykorzystana jako wzmocnienie ścian dołu z wodą. Obok znaleziono spalone deski, które pochodziły prawdopodobnie z tego samego pojazdu.
      Datowanie radiowęglowe wykazało, że wóz został wykonany pomiędzy 400 a 100 rokiem przed naszą erą.
      Fragment zachowanej osi to niezwykle rzadkie znalezisko. Znamy bardzo nieliczne przykłady podobnych zabytków z Wysp Brytyjskich. Jednym z najbardziej znanych jest oś ze stanowiska Flag Fen, osady epoki brązu. W słynnych brytyjskich pochówkach w rydwanie drewniane części pojazdów nie zachowały się. Tym bardziej mamy tu do czynienia z wyjątkowym zabytkiem, który może pomóc w lepszym zrozumieniu techniki używanej na Wyspach Brytyjskich przed ich podbojem przez Rzym.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zaledwie kilka tygodni po tym, jak National Ignition Facility doniosło o przełomowym uzyskaniu w reakcji termojądrowej większej ilości energii niż wprowadzono jej do paliwa, największy projekt energii fuzyjnej – ITER – informuje o możliwym wieloletnim opóźnieniu. International Thermonuclear Experimental Reactor (ITER) to międzynarodowy projekt, w ramach którego na południu Francji powstaje największy z dotychczas zbudowanych reaktorów termojądrowych. Ma to być reaktor eksperymentalny, który dostarczy około 10-krotnie więcej energii niż zaabsorbowana przez paliwo. Dla przypomnienia, NIF dostarczył jej 1,5 raza więcej.
      Budowa ITER rozpoczęła się w 2013 roku, a w roku 2020 rozpoczęto montaż jego reaktora, tokamaka. Pierwsza plazma miała w nim powstać w 2025 roku. Jednak Pietro Barabaschi, który od września jest dyrektorem projektu, poinformował dziennikarzy, że projekt będzie opóźniony. Zdaniem Barabaschiego, rozpoczęcie pracy reaktora w 2025 roku i tak było nierealne, a teraz pojawiły się dwa poważne problemy. Pierwszy z nich, to niewłaściwe rozmiary połączeń elementów, które należy zespawać, by uzyskać komorę reaktora. Problem drugi to ślady korozji na osłonie termicznej. Usunięcie tych problemów "nie potrwa tygodnie, ale miesiące, a nawet lata", stwierdził menedżer. Do końca bieżącego roku poznamy nowy termin zakończenia budowy reaktora. Barabaschi pozostaje jednak optymistą i ma nadzieję, że opóźnienia uda się nadrobić i w roku 2035 reaktor będzie – jak się obecnie planuje – pracował z pełną mocą.
      Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy. Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Jest ona niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
      Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. W końcu, nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      KGHM i amerykańska firma NuScale podpisały umowę na budowę małych reaktorów modułowych (SMR), które miałyby zasilać polskiego producenta miedzi. Pierwszy taki reaktor atomowy ma rozpocząć w Polsce pracę w 2029 roku. Reaktor VOYGR dostarczy prąd, którego wyprodukowanie z węgla wiązałoby się z wyemitowaniem 8 milionów ton CO2 rocznie.
      Zgodnie z podpisaną umową, w pierwszym etapie współpracy zostaną zidentyfikowane i ocenione miejsca, w których reaktor może powstać oraz określone zostaną poszczególne etapy jego budowy i koszty planowania.
      NuScale jest pierwszą firmą, której projekt małego reaktora modułowego został dopuszczony do użycia przez U.S. Nuclear Regulatory Commission (NCR). Firma przez lata rozwijała swój projekt dzięki pomocy Departamentu Energii, który sfinansował prace kwotą niemal 300 milionów dolarów. Dzięki temu powstał projekt reaktora o mocy 50 MW, który w 2020 roku został zatwierdzony przez NCR. Urządzenia NuScale można łączyć w grupy do 12 sztuk, dzięki czemu uzyskamy elektrownię o mocy 600 MW, wystarczającej do zasilenia niewielkiego miasta.
      Firmy takie jak NuScale mają być nadzieją dla podupadającej energetyki atomowej. Co prawda USA pozostają największym na świecie producentem energii elektrycznej z elektrowni atomowych, jednak nowe reaktory powstałe po 1990 można policzyć na palcach jednej ręki. Olbrzymie koszty i długi czas budowy tradycyjnych dużych elektrowni atomowych spowodowały, że atom zaczął w USA przegrywać z gazem łupkowym, a taniejąca energetyka odnawialna stanowi dodatkową konkurencję.
      W 2020 roku spodziewano się, że w roku 2022 NuScale złoży wniosek o dopuszczenie do użycia minireaktorów o mocy 60 MW. Tymczasem NCR prowadzi analizy dotyczące 77-megawatowego reaktora NuScale NPM-20, który może być łączony większe bloki po 12 (o łącznej mocy 924 MW), sześć (462 MW) i cztery (308 MW). Urząd spodziewa się, że jeszcze w bieżącym roku NuScale złoży formalny wniosek o zatwierdzenie NPM-20.
      Zaletą reaktorów NuScale ma być ich niższa cena oraz modułowość, dzięki czemu można je produkować w częściach w fabryce i dostarczać do złożenia na miejscu budowy. Jednak część ekspertów uważa, że korzyści wynikające z architektury SMR są przesadzone. Błędy popełnione na linii produkcyjnej będą bowiem dotyczyły wszystkich reaktorów i gdy się je zauważy, nie będzie łatwo ich naprawić w już dostarczonych i uruchomionych urządzeniach, a problem będzie dotyczył wielu z nich.
      NuScale nie jest jedyną firmą, która zapowiada tworzenie niewielkich reaktorów atomowych. Ambicje takie ma konsorcjum GE-Hitachi Nuclear Energy, a znana głównie z produkcji samochodów firma Rolls Royce zapowiedziała, że do roku 2029 wybuduje pierwsze niewielkie reaktory atomowe.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      NASA i Idaho National Laboratory (INL) ogłosiły, że szukają pomysłów nad zapewnieniem dostępu do energii atomowej na Księżycu. Uruchomienie na Księżycu stabilnego systemu dostarczania energii jest kluczowym elementem w załogowej eksploracji kosmosu. To cel, który znajduje się w naszym zasięgu, mówi Sebastian Corbisiero, odpowiedzialny za prowadzenie projektu.
      NASA, która chce wykorzystać Księżyc w roli etapu załogowej podróży na Marsa, uważa, że niezależna od dostępu do promieni słonecznych elektrownia atomowa zapewni dostateczną ilość energii, niezależnie od warunków środowiskowych na Księżycu czy Marsie. Amerykański Departament Energii i NASA od pewnego czasu mówią o koncepcji fission surface power. To reaktor atomowy o mocy liczonej w kilowatach. Dzięki rozszczepieniu jąder uranu miałby on zapewniać co najmniej 10 kilowatów mocy.
      W porównaniu z ziemskimi reaktorami nie wydaje się to dużo, jednak jest to wystarczająca ilość energii na potrzeby misji kosmicznych. Tym bardziej, że system taki miałby być skalowalny, zapewniając stałą ilość energii np. niewielkim bazom kosmicznym czy miejscom produkcyjnym.
      Myślę, że taki system odegra olbrzymią rolę na Księżycu i Marsie, a podczas jego opracowywania powstaną rozwiązania, które przydadzą się również na Ziemi, mówi Jim Reuter z Dyrektoriatu Technologii Misji Kosmicznych NASA. Reaktor miałby powstać na Ziemi, skąd zostanie przetransportowany na Księżyc.
      Warunki graniczne, jakie określiły NASA i INL, mówią o tym, że system powinien składać się z rdzenia wypełnionego uranem, systemem konwersji energii w użyteczną formę, systemami chłodzenia oraz dystrybucji energii. Całość ma w systemie ciągłym zapewniać 40 KW mocy i pracować na Księżycu przez 10 lat. Ponadto reaktor powinien pracować bez nadzoru człowieka, być w stanie samodzielnie włączać się i wyłączać, musi mieć możliwość pracy z pokładu księżycowego lądownika, ale jednocześnie musi znajdować się namobilnej platformie, którą można będzie ustawić w dowolnym miejscu. Dodatkowe wymagania dotyczą jego wagi i wymiarów. W czasie wystrzelenia z Ziemi reaktor powinien zmieścić się w obudowie o średnicy 4 i długości 6 metrów. Nie może ważyć więcej niż 6000 kilogramów.
      Wstępne propozycje dotyczące konstrukcji takiego systemu powinny być zgłoszone do 19 lutego przyszłego roku.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...