Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Brent Christner, profesor Uniwersytetu Stanu Luizjana, dokonał wraz z kolegami z Montany i Francji ciekawego odkrycia dotyczącego bakterii. Udowodnił bowiem, że w atmosferze unoszą się liczne bakterie zdolne do wywoływania deszczu. Mają one istotny wpływ na intensywność opadów, a dzięki temu na klimat, produkcję rolną, a być może nawet na globalne ocieplenie. Wyniki badań profesora Christnera i jego kolegów ukażą się w najbliższym numerze prestiżowego czasopisma Science.

Amerykańsko-francuski zespół udowodnił, że kluczowe dla występowania opadów deszczu i śniegu kryształki lodu tworzą się w chmurze najintensywniej, gdy wysycona jest określonymi bakteriami. Doprowadzają one do zamarzania znacznie skuteczniej od drobin pyłu i kurzu, gdyż białka na ich powierzchni umożliwiają zamarzanie wody w znacznie wyższych temperaturach. Z kolei im więcej jest w chmurze lodu, tym większe jest prawdopodobieństwo, że dojdzie do opadów deszczu bądź śniegu.

Mikroorganizmy tego typu mogłyby znaleźć szerokie zastosowanie wszędzie tam, gdzie konieczna jest zdolność do regulowania pogody. Możliwości ich zastosowania jest wiele: od rolnictwa, przez lotnictwo, aż po turystykę. Przeszkodzić w tym może jednak jeden bardzo ważny fakt. Odkryto bowiem, że wiele spośród tych bakterii to patogeny roślin. Powietrze jest dla nich doskonałym środowiskiem, w którym mogą się rozprzestrzeniać na ogromne odległości. Gdy spadną na ziemię, przedostają się do gleby i powodują przedwczesne zamarzanie korzeni. Wywołują ogromne straty w rolnictwie i przez to - w całej gospodarce.

Koncepcja "deszczowych bakterii" wcale nie jest nowa - prof. Christner zaproponował ją już ponad 25 lat temu, lecz do tej pory mało kto był do niej przekonany. Teraz jednak, gdy badacz przedstawił pierwsze dowody prawdziwości swojej tezy, pojawiła się szansa na powszechne uznanie jego hipotezy. Poparcie tej teorii przez środowisko naukowe ułatwiłoby najprawdopodobniej prowadzenie dalszych badań, co mogłoby przynieść znaczące korzyści dla ludzi.

Share this post


Link to post
Share on other sites

łał. pamiętajmy jednak że zgodnie z prawami fizyki naszego świata nawet jedno małe kichnięcie może wywołać tornado kilka kilometrów dalej

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W budownictwie od dawna wykorzystuje się materiały pochodzenia biologicznego, np. drewno. Gdy się ich używa, nie są już jednak żywe. A gdyby tak stworzyć żyjący budulec, który jest w stanie się rozrastać, a przy okazji ma mniejszy ślad węglowy? Naukowcy nie poprzestali na zadawaniu pytań i zabrali się do pracy, dzięki czemu uzyskali beton i cegły z bakteriami.
      Zespół z Uniwersytetu Kolorado w Boulder podkreśla, że skoro udało się utrzymać przy życiu pewną część bakterii, żyjące, i to dosłownie, budynki nie są wcale tylko i wyłącznie pieśnią przyszłości.
      Pewnego dnia takie struktury będą mogły, na przykład, same zasklepiać pęknięcia, usuwać z powietrza niebezpieczne toksyny, a nawet świecić w wybranym czasie.
      Na razie technologia znajduje się w powijakach, ale niewykluczone, że kiedyś żyjące materiały poprawią wydajność i ekologiczność produkcji materiałów budowlanych, a także pozwolą im wyczuwać i wchodzić w interakcje ze środowiskiem - podkreśla Chelsea Heveran.
      Jak dodaje Wil Srubar, obecnie wytworzenie cementu i betonu do konstruowania dróg, mostów, drapaczy chmur itp. generuje blisko 6% rocznej światowej emisji dwutlenku węgla.
      Wg Srubara, rozwiązaniem jest "zatrudnienie" bakterii. Amerykanie eksperymentowali z sinicami z rodzaju Synechococcus. W odpowiednich warunkach pochłaniają one CO2, który wspomaga ich wzrost, i wytwarzają węglan wapnia (CaCO3).
      Naukowcy wyjaśnili, w jaki sposób uzyskali LBMs (od ang. living building material, czyli żyjący materiał), na łamach pisma Matter. Na początku szczepili piasek żelatyną, pożywkami oraz bakteriami Synechococcus sp. PCC 7002. Wybrali właśnie żelatynę, bo temperatura jej topnienia i przejścia żelu w zol wynosi ok. 37°C, co oznacza, że jest kompatybilna z temperaturami, w jakich sinice mogą przeżyć. Poza tym, schnąc, żelatynowe rusztowania wzmacniają się na drodze sieciowania fizycznego. LBM trzeba schłodzić, by mogła się wytworzyć trójwymiarowa hydrożelowa sieć, wzmocniona biogenicznym CaCO3.
      Przypomina to nieco robienie chrupiących ryżowych słodyczy, gdy pianki marshmallow usztywnia się, dodając twarde drobinki.
      Akademicy stworzyli łuki, kostki o wymiarach 50x50x50 mm, które były w stanie utrzymać ciężar dorosłej osoby, i cegły wielkości pudełka po butach. Wszystkie były na początku zielone (sinice to fotosyntetyzujące bakterie), ale stopniowo brązowiały w miarę wysychania.
      Ich plusem, poza wspomnianym wcześniej wychwytem CO2, jest zdolność do regeneracji. Kiedy przetniemy cegłę na pół i uzupełnimy składniki odżywcze, piasek, żelatynę oraz ciepłą wodę, bakterie z oryginalnej części wrosną w dodany materiał. W ten sposób z każdej połówki odrośnie cała cegła.
      Wyliczenia pokazały, że w przypadku cegieł po 30 dniach żywotność zachowało 9-14% kolonii bakteryjnych. Gdy bakterie dodawano do betonu, by uzyskać samonaprawiające się materiały, wskaźnik przeżywalności wynosił poniżej 1%.
      Wiemy, że bakterie rosną w tempie wykładniczym. To coś innego niż, na przykład, drukowanie bloku w 3D lub formowanie cegły. Gdybyśmy mogli uzyskiwać nasze materiały [budowlane] na drodze biologicznej, również bylibyśmy w stanie produkować je w skali wykładniczej.
      Kolejnym krokiem ekipy jest analiza potencjalnych zastosowań platformy materiałowej. Można by dodawać bakterie o różnych właściwościach i uzyskiwać nowe materiały z funkcjami biologicznymi, np. wyczuwające i reagujące na toksyny w powietrzu.
      Budowanie w miejscach, gdzie zasoby są mocno ograniczone, np. na pustyni czy nawet na innej planecie, np. na Marsie? Czemu nie. W surowych środowiskach LBM będą się sprawować szczególnie dobrze, ponieważ do wzrostu wykorzystują światło słoneczne i potrzebują bardzo mało materiałów egzogennych. [...] Na Marsa nie zabierzemy ze sobą worka cementu. Kiedy wreszcie się tam wyprawimy, myślę, że naprawdę postawimy na biologię.
      Badania sfinansowała DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych).

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rok 2019 był drugim najcieplejszym rokiem od czasu rozpoczęcia regularnych pomiarów w 1880 roku, a miniona dekada był najgorętszą od 140 lat. Dotychczas najcieplejszym rokiem w historii pomiarów był 2016, a ostatnich pięć lat było najgorętszymi, od kiedy ludzkość regularnie mierzy temperaturę na Ziemi.
      Jak poinformowali specjaliści z NASA, rok 2019 był o 0,98 stopnia Celsjusza cieplejszy niż średnia z lat 1951–1980. Od lat 80. XIX wieku średnie temperatury na Ziemi wzrosły o około 1,1 stopnia Celsjusza w porównaniu z epoką preindustrialną. Dla porównania, w czasach epoki lodowej temperatury były o około 5,5 stopnia Celsjusza niższe niż bezpośrednio przed rewolucją przemysłową. O ile więc w okresie 10 000 lat pomiędzy epoką lodową z rewolucją przemysłową średni temperatury na Ziemi zwiększyły się o 5,5 stopnia Celsjusza, to w ciagu ostatnich 140 lat wzrosły one o 1,1 stopień Celsjusza.
      Fakt, że zakończyła się najbardziej gorąca znana nam dekada potwierdzają niezależnie od siebie NASA, NOAA, Berkeley Earth, Met Office czy Copernicus Climate Change Service. Ranking pięciu najgorętszych lat w historii pomiarów wygląda następująco: 2016 (+0,94 stopnia Celsjusza względem okresu referencyjnego), 2019 (+0,93), 2015 (+0,90), 2017 (+0,84), 2018 (+0,77). Lata 2010–2019 były o 0,753 stopnia Celsjusza cieplejsze od średniej z okresu referencyjnego (1951-1980) i o 0,24 stopnia Celsjusza cieplejsze od dekady wcześniejszej.


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przy wyższych temperaturach kobiety lepiej wypadają w zadaniach matematycznych i słownych. U mężczyzn jest dokładnie na odwrót (w ich przypadku zależność między temperaturą a osiągami jest jednak słabiej zaznaczona).
      Badanie sugeruje, że płeć jest ważnym czynnikiem nie tylko przy określaniu wpływu temperatury na komfort, ale i na produktywność czy osiągi poznawcze.
      Jest udokumentowane, że kobiety wolą w pomieszczeniach wyższe temperatury niż mężczyźni. Dotąd sądzono jednak, że to wyłącznie kwestia osobistych preferencji. Nasz zespół ustalił, że nie chodzi tylko o to, czy czujesz się dobrze, czy nie i że temperatura wpływa na osiągi w kluczowych dziedzinach: w matematyce, zadaniach słownych i we wkładanym wysiłku - opowiada prof. Tom Chang z Uniwersytetu Południowej Kalifornii.
      W eksperymencie wzięło udział 543 studentów z WZB Berlin Social Science Center. W ciągu sesji ustawiano różne zakresy temperaturowe (od ok. 16 do 33 stopni Celsjusza). Ochotnicy mieli wykonywać 3 typy zadań (zachętą do pracy była nagroda pieniężna): 1) matematyczne, polegające na dodaniu bez kalkulatora pięciu dwucyfrowych liczb, 2) słowne, przy którym z zestawu 10 liter należało utworzyć w zadanym czasie jak najwięcej słów i 3) test świadomego myślenia (ang. Cognitive Reflection Test, CRT).
      Naukowcy wykryli znaczącą zależność między temperaturą otoczenia i wynikami osiąganymi w zadaniach matematycznym i słownym. Ani u kobiet, ani u mężczyzn temperatura nie miała wpływu na wyniki testu CRT.
      Jedną z najbardziej zaskakujących rzeczy jest to, że nie uciekaliśmy się wcale do skrajnych temperatur. Nie chodzi o trzaskający mróz czy upał. Znaczące zróżnicowanie osiągów widać nawet przy temperaturach rzędu 60-75 stopni Fahrenheita [15,5-24 stopni Celsjusza], co jest w końcu stosunkowo normalnym zakresem wartości.
      Autorzy artykułu z pisma PLoS ONE podkreślają, że poprawa osiągów poznawczych kobiet w wyższych temperaturach wydaje się napędzana głównie wzrostem liczby podawanych odpowiedzi. Po części można to interpretować jako skutek wzrostu wkładanego wysiłku.
      U mężczyzn spadek osiągów poznawczych przejawiał się mniejszą liczbą zgłaszanych odpowiedzi.
      Wzrost osiągów kobiet jest większy (daje się też precyzyjniej oszacować) niż spadek osiągów u mężczyzn.
      Amerykańsko-niemiecki zespół podkreśla, że uzyskane wyniki rzucają nieco światła na nieustającą walkę o ustawienia termostatu w biurach. Wg naukowców, by zwiększyć produktywność w mieszanych płciowo zespołach, ustawienia temperatury powinny być wyższe niż przy obecnych standardach.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W przyszłym miesiącu w Narodowym Muzeum Historii Naturalnej w Waszyngtonie zostanie otwarta wystawa na temat zmian klimatu Ziemi na przestrzeni setek milionów lat. Przygotowujący ją paleobotanik Scott Wing i paleontolog Brian Huber, chcieli zaprezentować też wykres temperatur powierzchni Ziemi w ciągu ostatnich 500 milionów lat. Zadanie okazało się niezwykle trudne do wykonania, a uzyskane wyniki zaskoczyły specjalistów. Okazało się, że w przeszłości na naszej planecie panowały znacznie bardziej ekstremalne warunki, niż sądziliśmy.
      Dość łatwo jest śledzić okresy zlodowaceń czy okresy wysokich temperatur, gdy palmy rosły w pobliżu biegunów. Jednak poza tym niewiele jest pewnych rzeczy. Szczególnie jeśli chodzi o paleozoik, erę która rozpoczęła się 542 miliony lat temu. Pierścienie drzew pozwalają na śledzenie temperatur na przestrzeni tysięcy lat, w rdzeniach lodowców zapisane są dane z około miliona lat. Dlatego prace nad odtworzeniem dawnego klimatu są niezwykle trudne.
      Specjaliści zajmujący się paleoklimatem wykorzystują różne metody pomiarowe, różne metody korekty błędów, korzystają z różnych materiałów. Jedni odtwarzają klimat sprzed milionów lat na podstawie skamieniałych liści, inni na podstawie wzrostu skamieniałych koralowców. Często uzyskują sprzeczne wyniki. Nie rozmawiamy ze sobą zbyt dużo, przyznaje paleoklimatolog Dana Royer z Wesleyan University. Huber i Wing postanowili to zmienić i powołali do życia luźną grupę naukową o nazwie Phantastic, której celem jest zebranie i zweryfikowanie różnych danych. Pomysł jej powołania spodobał się wielu naukowcom, przyznaje Dan Lunt z Uniwersytetu w Bristolu, który specjalizuje się w modelowaniu paleoklimatu. Dodatkową zachętą dla naukowców było przypuszczenie, że jeśli uda się dobrze określić klimat, jaki panował w przeszłości oraz nałożyć na to stężenie CO2 w atmosferze, będzie można udoskonalić współczesne modele klimatyczne i lepiej określić, jak dwutlenek węgla wpływa na klimat.
      Do szacunku dawnych temperatur można wykorzystywać izotopy tlenu uwięzione w skamieniałych muszlach na dnie oceanów. Jako, że molekuły wody zawierające lżejsze izotopy szybciej parują i zostają uwięzione w lodzie, stosunek ciężkich i lekkich izotopów w skamielinach wskazuje na globalną ilość lodu, z czego można zgrubnie wyliczać temperatury.
      Jednak tutaj pojawia się kolejny problem. W niewielu miejscach na świecie mamy do czynienia z dnem oceanicznym starszym niż 100 milionów lat. Ciągły ruch płyt tektonicznych bez przerwy „odnawia” dno oceanów. Geochemik Ethan Grossman z Texas A&M University bada morskie skamieniałości znajdowane na lądach. To głównie szczątki ramienionogów, z których najstarsze pochodzą sprzed 540 milionów lat. Większość z nich żyła w płytkich morzach, które formowały się wewnątrz dawnych superkontynentów. Żeby jednak używać ich do oceny temperatur, trzeba przyjąć założenie, że stosunek izotopów tlenu w morzach przed milionami lat był taki, jak we współczesnych oceanach.
      Problem ten znany jest specjalistom od dziesięcioleci. Jednak grupa Phantastic postanowiła podejść do niego w nowatorskich sposób. Wykorzystali nową technikę mierzącą zawartość dwóch lub więcej połączonych razem rzadkich izotopów. Za pomocą bardzo czułych spektrometrów mas analizowali skamieniałości pod kątem obecności w nich molekuł zawierających ciężki izotop tlenu powiązany z ciężkim izotopem węgla. Takie molekuły częściej występują w niskich temperaturach. Problem w tym, że jeśli skamieniałość była wystawiona na działanie wysokiej temperatury lub ciśnienia, to uzyskane wyniki będą mylące. Na szczęście naukowcy odkryli sposób na odróżnienie tych zmienionych skamieniałości. Udaliśmy się do miejsca, w którym mogliśmy przeprowadzić badania, stwierdzili naukowcy.
      Poszukiwaniami połączonych ciężkich izotopów zajęła się geobiolog Kristin Bergmann z MIT we współpracy z geochemikiem Gregorym Henkesem z Uniwersytetu Stanu Nowy Jork i innymi uczonymi. W czasie swoich badań dokonali odkrycia, które trudno określić inaczej, niż „szokujące”. Okazało się, że przed 450 milionami lat średnia temperatura wód oceanicznych wynosiła... 35–40 stopni Celsjusza. To o ponad 20 stopni więcej, niż obecnie. I w takich, wydawałoby się niekorzystnych, warunkach, życie w oceanach rozkwitało, a nawet różnicowało się. Dla biologów to coś, z czym nie potrafią sobie poradzić. Dla współczesnych organizmów są to ekstremalne temperatury, mówi Grossman.
      Pozostało jeszcze przełożyć uzyskane lokalne wyniki na dane dla całego globu. Jeden z członków grupy Phantastic wpadł na prosty pomysł: wystarczy sprawdzić, jak wyglądała wówczas pokrywa lodowa na Ziemi, by dowiedzieć się, pomiędzy temperaturami wód na równiku i w pobliżu biegunów istniała aż tak wielka różnica.
      Inni członkowie Phantastic wykorzystują zdobyte dane do lepszego skalibrowania modeli klimatycznych opisujących dawny klimat i testują modele przeprowadzając setki symulacji by sprawdzić, która z nich najlepiej zgadza się z danymi uzyskanymi z innych źródeł.
      Niestety, Wingowi i Hubnerowi skończył się czas i muszą otwierać wystawę. Dlatego zaprezentują na niej wykres temperatur w wersji beta. To połączenie różnego rodzaju obserwacji, różnego rodzaju modeli, różnego rodzaju procedur badawczych i różnych założeń, przyznaje Wing. Jednak grupa Phantastic nie kończy pracy, a wersja beta zostanie zastąpiona gotową wersją wykresu gdy tylko będzie możliwe jej stworzenie. Jednak, jak podkreślają uczeni, nawet wersja beta powinna otworzyć ludziom oczy. To pokazuje, jak łatwo Ziemia może wejść w okres wysokich temperatur. Bo już takie okresy się zdarzały, mówi Grossman.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Florian Sevellec, naukowiec z francuskiego Narodowego Centrum Badań Naukowych (CNRS) zatrudniony na University of Southampton twierdzi, że lata 2018–2022 będą cieplejsze niż się to obecnie przewiduje. Wyniki jego badań opublikowano na łamach Nature Communications.
      Nowa metoda opracowana przez naukowców z CNRS, University of Southampton i Królewskiego Holenderskiego Instytutu Meteorologicznego nie wykorzystuje tradycyjnych technik symulowania pogody. Zamiast tego zastosowano w niej metody statystyczne, za pomocą których przebadano symulacje pogody z XX i XXI wieku, by znaleźć odpowiednie analogie dla obecnego klimatu i na tej podstawie spróbować przewidzieć klimat przyszły. Po testach uznano, że nowa metoda jest co najmniej tak wiarygodna jak dotychczas wykorzystywane modele.
      Przewiduje ona, że w latach 2018–2022 będziemy mieli do czynienia z niezwykle wysokimi temperaturami, wyższymi niż przewiduje się uwzględniając samo antropogeniczne globalne ocieplenie. Wyższe temperatury będą miały związek w dużej mierze z mniejszym prawdopodobieństwem występowania fal zimna. Z drugiej strony, szczególnie na powierzchni oceanów, mogą częściej pojawiać się fale gorąco, co może doprowadzić do większej liczby tropikalnych sztormów.
      Nowy algorytm jest bardzo wydajny. Po procesie nauczania, który trwa kilka minut, wyniki symulacji można uzyskać na laptopie w ciągu setnych części sekundy. Tradycyjne metody symulacji wymagają około tygodnia obliczeń na superkomputerze.
      Obecnie metoda pozwala na obliczenie tylko ogólnej średniej. Jej twórcy pracują nad możliwością wykorzystania jej do przewidywań na skalę mniejszą niż globalną oraz do symulowania opadów i susz, a nie tylko temperatur.

      « powrót do artykułu
×
×
  • Create New...