Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Nanofotoniczne pułapki z jonami iterbu mogą stanowić szkielet kwantowego internetu przyszłości

Rekomendowane odpowiedzi

Optyczne pułapki z uwięzionymi jonami iterbu mogą w przyszłości stanowić szkielet kwantowego internetu, służący do wysyłania splątanych cząstek na duże odległości. Do takich wniosków doszedł Jonathan Kindem i jego zespół z California Institute of Technology (Caltech), który zauważył, że jony iterbu pozostają splątane z fotonami przez długi czas. Co więcej, naukowcy wykazali, że stan kwantowy jonu można odczytać za pomocą lasera i mikrofal.

W laboratoriach powoli powstają kwantowe komputery. Aby w pełni wykorzystać ich możliwości, konieczne będzie stworzenie „kwantowego internetu”, za pośrednictwem którego maszyny takie będą mogły wymieniać dane. Jednak kwantowana informacja jest ze swej natury niezwykle delikatna, co oznacza, że bardzo trudno jest wysłać ją na duże odległości.

Komputery kwantowe kodują informacje w kwantowym stanie materii, na przykład w uwięzionych atomach czy obwodach nadprzewodzących. Jednak najlepszym sposobem na przesłanie takiej informacji jest wykorzystanie fotonów. Tutaj poważne wyzwanie stanowi transfer informacji z kubitów bazujących na materiałach stałych do kubitów zakodowanych w fotonach oraz z powrotem.

Kubity bazujące na materiałach stałych wchodzą w silne interakcje ze światłem, więc informację do fotonu przekazać jest łatwo. Jednak kubity w fotonach żyją bardzo krótko, przez co trudno je wykorzystać w praktyce. Z drugiej strony uwięzione atomy czy jony są zdolne do długotrwałego przechowywania kubitów, jednak słabo reagują one ze światłem. Szczególnie interesujące są tutaj jony metali ziem rzadkich.  Mają one właściwości, które pozwalają na tworzenie wyjątkowo żywotnych kubitów, jednak naukowcy mają poważne problemy, by uwięzić je w taki sposób, by można je było kontrolować za pomocą światła i by wchodziły z nim w interakcje.

Zespół Kindema wykazał, że problemy te można rozwiązać wykorzystując jony iterbu umieszczone w odpowiedniej pułapce optycznej, która intensyfikuje ich interakcję ze światłem. Pułapka taka to periodyczna struktura o długości 10 mikrometów pokryta powtarzającym się wzorcem w nanoskali. W centrum takiej struktury umieszczony został jon. Światło wielokrotnie odbija się w takiej pułapce, przez co zwiększa się prawdopodobieństwo, że wejdzie ono w interakcję z jonem.

Testy wykazały, że splątany foton pozostawał w pułapce przez ponad 99% czasu. Dzięki temu naukowcy mogli obserwować system składający się z fotonu i jonu. Okazało się, że były one splątane przez 30 mikrosekund. To wystarczająco długo, by przesłać informację na terenie kontynentalnych Stanów Zjednoczonych.

Teraz zespół Kindema pracuje nad skalowaniem swojego systemu tak, by przeprowadzić eksperyment z rzeczywistą wymianą informacji pomiędzy odległymi kubitami. W ten sposób mogłyby powstać podwaliny pod kwantowy internet, który umożliwi nie tylko wymianę kwantowych informacji, ale pozwoli też, by komputery kwantowe wspólnie dokonywały obliczeń. To zaś pozwoliłoby na przeprowadzanie niezwykle złożonych operacji na gigantycznych zbiorach danych.

Wyniki badań zostały opublikowane na łamach Nature.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Aalto University, IQM Quantum Computers oraz VTT Technical Research Centre of Finland odkryli nowy nadprzewodzący kubit. Unimon bo o nim mowa, zwiększy dokładność obliczeń dokonywanych za pomocą komputerów kwantowych. Pierwsze bramki logiczne wykorzystujące unimony pracują z dokładnością 99,9%.
      Nieliczne współczesne komputery kwantowe wciąż nie są wystarczająco wydajne i nie dostarczają wystarczająco dokładnych danych, by można było je zaprzęgnąć do obliczeń rozwiązujących praktyczne problemy. Są najczęściej urządzeniami badawczo-rozwojowymi, służącymi pracom nad kolejnymi generacjami komputerów kwantowych. Wciąż zmagamy się z licznymi błędami powstającymi w 1- i 2-kubitowych bramkach logicznych chociażby wskutek zakłóceń z otoczenia. Błędy te są na tyle poważne, że uniemożliwiają prowadzenie praktycznych obliczeń.
      Naszym celem jest zbudowanie kwantowych komputerów, które nadawałyby się do rozwiązywania rzeczywistych problemów. To odkrycie jest ważnym kamieniem milowym dla IQM oraz znaczącym osiągnięciem na drodze ku zbudowaniu lepszych komputerów kwantowych, powiedział główny autor badań, profesor Mikko Möttönen z Aalto University i VTT, który jest współzałożycielem i głównym naukowcem IQM Quantum Computers.
      Unimony charakteryzują się zwiększoną anharmonicznością, pełną odpornością na szumy wywoływane prądem stałym, zmniejszoną wrażliwością na zakłócenia magnetyczne oraz uproszczoną budową, która wykorzystuje pojedyncze złącze Josephsona w rezonatorze. Dzięki temu w jednokubitowej bramce o długości 13 nanosekund udało się uzyskać dokładność od 99,8 do 99,9 procent na trzech kubitach unimonowych. Dzięki wyższej anharmoniczności czyli nieliniowości niż w transmonach [to wcześniej opracowany rodzaj kubitów, który ma zredukowaną wrażliwość za zakłócenia ze strony ładunku elektrycznego – red.], możemy pracować z unimonami szybciej, co prowadzi do pojawiania się mniejszej liczby błędów na każdą operację, wyjaśnia doktorant Eric Hyyppä.
      Na potrzeby badań fińscy naukowcy skonstruowali układy scalone, z których każdy zawierał trzy kubity unimonowe. W układach użyto głównie niobu, z wyjątkiem złącz Josephsona, które zbudowano z aluminium. Unimony są bardzo proste, a mimo to mają liczne zalety w porównaniu z transmonami. Sam fakt, że już pierwsze uzyskane unimony działały tak dobrze, pozostawia dużo miejsca na ich optymalizację i osiągnięcie ważnych kamieni milowych. W następnym kroku badań chcemy zapewnić jeszcze lepszą ochronę przed szumem i zademonstrować bramki dwukubitowe, mówi profesor Möttönen.
      Więcej o unimonie można przeczytać na łamach Nature Communications.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dwie amerykańskie grupy badawcze stworzyły – niezależnie od siebie – pierwsze kwantowe procesory, w których rolę kubitów odgrywają atomy. To potencjalnie przełomowe wydarzenie, gdyż oparte na atomach komputery kwantowe mogą być łatwiej skalowalne niż dominujące obecnie urządzenia, w których kubitami są uwięzione jony lub nadprzewodzące obwody.
      W 2020 roku firma Heoneywell pochwaliła się, że jej komputer na uwięzionych jonach osiągnął największą wartość „kwantowej objętości”. Tego typu maszyny, mają tę zaletę, że jony w próżni jest dość łatwo odizolować od zakłóceń termicznych, a poszczególne jony w chmurze są nieodróżnialne od siebie. Problemem jest jednak fakt, że jony wchodzą w silne interakcje, a do manipulowania nimi trzeba używać pól elektrycznych, co nie jest łatwym zadaniem.
      Z drugiej zaś strony mamy kwantowe maszyny wykorzystujące obwody nadprzewodzące. Za najpotężniejszy obecnie procesor kwantowy z takimi obwodami uznaje się 127–kubitowy Eagle IBM-a. Jednak wraz ze zwiększaniem liczby kubitów, urządzenia tego typu napotykają coraz więcej problemów. Każdy z kubitów musi być w nich wytwarzany indywidualnie, co praktycznie uniemożliwia wytwarzanie identycznych kopii, a to z kolei – wraz z każdym dodanym kubitem – zmniejsza prawdopodobieństwo, że wynik obliczeń prowadzonych za pomocą takiego procesora będzie prawidłowy. Jakby jeszcze tego było mało, każdy z obwodów musi być schłodzony do niezwykle niskiej temperatury.
      Już przed sześcioma laty zespoły z USA i Francji wykazały, że możliwe jest przechowywanie kwantowej informacji w atomach, którymi manipulowano za pomocą szczypiec optycznych. Od tamtego czasu Amerykanie rozwinęli swój pomysł i stworzyli 256-bitowy komputer kwantowy bazujący na tej platformie. Jednak nikt dotychczas nie zbudował pełnego obwodu kwantowego na atomach.
      Teraz dwa niezależne zespoły zaprezentowały procesory bazujące na takich atomach. Na czele grupy z Uniwersytetu Harvarda i MTI stoi Mikhail Lukin, który w 2016 roku opracował ten oryginalny pomysł. Zespołem z University of Wisonsin-Madison, w pracach którego biorą też udział specjaliści z firm ColdQuant i Riverlane, kieruje zaś Mark Saffman. Zespół Lukina wykorzystał atomy rubidu, zespół Saffmana użył zaś cezu.
      Jeśli mamy obok siebie dwa atomy w stanie nadsubtelnym, to nie wchodzą one w interakcje. Jeśli więc chcemy je splątać, jednocześnie wzbudzamy je do stanu Rydberga. W stanie Rydberga wchodzą one w silne interakcje, a to pozwala nam je szybko splątać. Później możemy z powrotem wprowadzić je w stan nadsubtelny, gdzie można nimi manipulować za pomocą szczypiec optycznych, wyjaśnia Dolev Bluvstein z Uniwersytetu Harvarda.
      Grupa z Harvarda i MIT wykorzystała stan nadsubtelny do fizycznego oddzielenia splątanych atomów bez spowodowania dekoherencji, czyli utraty kwantowej informacji. Gdy każdy z atomów został przemieszczony na miejsce docelowe został za pomocą lasera splątany z pobliskim atomem. W ten sposób naukowcy byli w stanie przeprowadzać nielokalne operacje bez potrzeby ustanawiania specjalnego fotonicznego lub atomowego łącza do przemieszczania splątania w obwodzie.
      W ten sposób uruchomiono różne programy. Przygotowano m.in. kubit logiczny, składający się z siedmiu kubitów fizycznych, w którym można było zakodować informacje w sposób odporny na pojawienie się błędów. Naukowcy zauważają, że splątanie wielu takich logicznych kubitów może być znacznie prostsze niż podobne operacje na innych platformach. Istnieje wiele różnych sztuczek, które są stosowane by splątać kubity logiczne. Jednak gdy można swobodnie przesuwać atomy, to jest to bardzo proste. Jedyne, co trzeba zrobić to stworzyć dwa niezależne kubity logiczne, przesunąć je i przemieszać z innymi grupami, wprowadzić za pomocą lasera w stan Rydberga i utworzyć pomiędzy nimi bramkę, stwierdza Dluvstein. Te technika, jak zapewnia uczony, pozwala na przeprowadzenie korekcji błędów i splątania pomiędzy kubitami logicznymi w sposób niemożliwy do uzyskania w obwodach nadprzewodzących czy z uwięzionymi jonami.
      Grupa z Wisconsin wykorzystała inne podejście. Naukowcy nie przemieszczali fizycznie atomów, ale za pomocą lasera manipulowali stanem Rydberga i przemieszczali splątanie po macierzy atomów. Mark Saffman podaje przykład trzech kubitów ustawionych w jednej linii. Za pomocą laserów oświetlamy kubit po lewej i kubit centralny Zostają one wzbudzone do stanu Rydberga i splątane. Następnie oświetlamy atom centralny oraz ten po prawej. W ten sposób promienie laserów kontrolują operacje na bramkach, ale tym, co łączy kubity są interakcje zachodzące w stanach Rydberga.
      Grupa Saffmana wykorzystała opracowaną przez siebie technikę do stworzenia składających się z sześciu atomów stanów Greenbergera-Horne'a-Zeilingera. Wykazali też, że ich system może działać jak kwantowy symulator służący np. do szacowania energii molekuły wodoru. Dzięki temu, że nie trzeba było przesuwać atomów, zespół z Wisconsin osiągnął kilkaset razy większe tempo pracy niż zespół z Harvarda i MIT, jednak ceną była pewna utrata elastyczności. Saffman uważa, że w przyszłości można będzie połączyć oba pomysły w jeden lepszy system.
      Na razie oba systemy korzystają z niewielkiej liczby kubitów, konieczne jest też wykazanie wiarygodności obliczeń oraz możliwości ich skalowania. Chris Monroe, współtwórca pierwszego kwantowego kubita – który oparty był na uwięzionych jonach – uważa, że obie grupy idą w dobrym kierunku, a kubity na atomach mogą osiągnąć wiarygodność 99,9% i to bez korekcji błędów. Obecnie osiągamy taki wynik na uwięzionych jonach i – mimo że technologia wykorzystania atomów jest daleko z tyłu – nie mam wątpliwości, że w końcu osiągną ten sam poziom, stwierdza.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Najnowszy numer Nature przynosi przełomowe informacje na temat praktycznego wykorzystania komputerów kwantowych. Naukowcy z Uniwersytetu Nowej Południowej Walii (UNSW) wykazali, że możliwe jest stworzenie niemal wolnego od błędów krzemowego procesora kwantowego. Dzisiejsza publikacja pokazuje, że obliczenia przeprowadzane przez nasz procesor były w ponad 99% wolne od błędów. Gdy odsetek błędów jest tak mały, możliwym staje się ich wykrywanie i korygowanie w czasie rzeczywistym. A to oznacza, że można wybudować skalowalny komputer kwantowy wykonujący wiarygodne obliczenia, wyjaśnia profesor Andrea Morello z UNSW.
      Morello stoi na czele zespołu złożonego z naukowców z Australii, USA, Japonii i Egiptu. Ich celem jest zbudowanie uniwersalnego komputera kwantowego, czyli maszyny, której możliwości obliczeniowe nie będą ograniczone do jednego rodzaju zadań. Badania, których wyniki właśnie opublikowaliśmy, to bardzo ważny krok w tym kierunku, podkreśla uczony.
      Jednak, co niezwykle ważne, artykuł Morello i jego zespołu to jeden z trzech tekstów z Nature, których autorzy informują o niezależnym od siebie osiągnięciu niskiego odsetka błędów w opartych na krzemie procesorach kwantowych.
      Z najnowszego Nature, którego redakcja zdecydowała się na zilustrowanie kwantowego przełomu na okładce, dowiadujemy się, że wiarygodność operacji obliczeniowych na jednym kubicie osiągnięta przez Morello i jego zespół wyniosła 99,95%, a operacji na dwóch kubitach – 99,37%. Niezależnie od nich zespół z holenderskiego Uniwersytetu Technologicznego w Delft, prowadzony przez Lievena Vandersypena osiągnął wiarygodność rzędu 99,87% przy operacjach na jednym kubicie i 99,65% podczas operacji dwukubitowych. W trzecim z artykułów czytamy zaś o pracach naukowców z japońskiego RIKEN, w trakcie których grupa Seigo Taruchy mogła pochwalić się wiarygodnością 99,84% przy działaniach na jednym kubicie i 99,51% przy pracy z dwoma kubitami.
      Wydajność procesorów z UNSW i Delft została certyfikowana zaawansowaną metodą gate set tomography opracowaną przez amerykańskie Sandia National Laboratories, a wyniki certyfikacji zostały udostępnione innym grupom badawczym.
      Zespół profesora Morello już wcześniej wykazał, że jest w stanie utrzymać kwantową informację w krzemie przez 35 sekund. W świecie kwantowym 35 sekund to wieczność. Dla porównania, słynne nadprzewodzące komputery kwantowe Google'a i IBM-a są w stanie utrzymać taką informację przez około 100 mikrosekund, czyli niemal milion razy krócej, zauważa Morello. Osiągnięto to jednak izolując spiny (kubity) od otoczenia, co z kolei powodowało, że wydaje się niemożliwym, by kubity te mogły wejść ze sobą w interakcje, a więc nie mogły wykonywać obliczeń.
      Teraz z artykułu w Nature dowiadujemy się, że udało się pokonać problem izolacji wykorzystując elektron okrążający dwa jądra atomu fosforu.
      Gdy masz dwa jądra połączone z tym samym elektronem, może zmusić je do wykonywania operacji kwantowych, stwierdza doktor Mateusz Mądzik, jeden z głównych autorów eksperymentów. Gdy nie operujesz na elektronie, jądra te mogą bezpiecznie przechowywać kwantowe informacje. Teraz jednak mamy możliwość, by jądra wchodziły w interakcje za pośrednictwem elektronu i w ten sposób możemy wykonywać uniwersalne operacje kwantowe, które mogą rozwiązywać każdy rodzaj problemów obliczeniowych, wyjaśnia Mądzik.
      Gdy splączemy spiny z elektronem, a następnie możemy elektron ten przesunąć w inne miejsce i splątać go z kolejnymi kubitami, tworzymy w ten sposób duże macierze kubitów zdolnych do przeprowadzania solidnych użytecznych obliczeń, dodaje doktor Serwan Asaad.
      Jak podkreśla profesor David Jamieson z University of Melbourne, atomy fosforu zostały wprowadzone do krzemowego procesora za pomocą tej samej metody, jaka jest obecnie używana w przemyśle półprzewodnikowym. To pokazuje, że nasz kwantowy przełom jest kompatybilny z obecnie używanymi technologiami.
      Wszystkie obecnie używane komputery wykorzystują systemy korekcji błędów i redundancji danych. Jednak prawa mechaniki kwantowej narzucają ścisłe ograniczenia na sposób korekcji błędów w maszynach kwantowych. Konieczne jest osiągnięcie odsetka błędów poniżej 1%. Dopiero wtedy można zastosować kwantowe protokoły korekcji błędów. Teraz, gdy udało się ten cel osiągnąć, możemy zacząć projektować skalowalne krzemowe procesory kwantowe, zdolne do przeprowadzania użytecznych wiarygodnych obliczeń, wyjaśnia Morello.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      IBM zaprezentował 127-kubitowy procesor kwantowy Eagle. Dzięki niemu, jak zapewnia koncern, klienci firmy będą mogli wykorzystać niedostępne dotychczas zasoby obliczeniowe, co ma się stać krokiem milowym w kierunku wykorzystania obliczeń kwantowych w codziennej praktyce. Eagle ma bowiem wkrótce zostać udostępniony wybranym partnerom IBM-a.
      Postrzegamy Eagle'a jako krok na drodze technologicznej rewolucji w historii maszyn obliczeniowych. W miarę, jak procesory kwantowe są rozbudowywane, każdy dodatkowy kubit dwukrotnie zwiększa ilość pamięci, jaką potrzebują komputery klasyczne, by symulować taki procesor. Spodziewamy się, że komputery kwantowe przyniosą realne korzyści, gdyż rosnąca złożoność procesów obliczeniowych, jakie są w stanie wykonać, przekroczy możliwości komputerów klasycznych, czytamy w informacji prasowej IBM-a.
      Inżynierowie Błękitnego Giganta nie mieli łatwego zadania. Prace praktyczne i teoretyczne nad maszynami kwantowymi, opartymi na zasadach mechaniki kwantowej, są prowadzone od dziesięcioleci i od dawna wiemy, że komputery takie są w stanie przeprowadzać obliczenia niedostępne maszynom klasycznym. Jednak ich zbudowanie jest niezwykle trudne. Nawet najmniejszy wpływ czynników zewnętrznych może spowodować dekoherencję kubitów, czyli doprowadzić do stanu, w którym zawarta w nich informacja zostanie utracona.
      Eagle zawiera niemal 2-krotnie więcej kubitów niż jego poprzednik, 65-kubitowy Hummingbird. Jednak jego powstanie wymagało czegoś więcej, niż tylko dodania kubitów. Inżynierowe IBM-a musieli opracować nowe i udoskonalić istniejące techniki, które – jak zapewniają – staną się podstawą do stworzenia ponad 1000-kubitowego układu Condor.
      Kolejnym niezwykle ważnym elementem nowego procesora jest wykorzystanie techniki multiplekosowania odczytu, znaną już z procesora Hummingbird R2. We wcześniejszych układach kwantowych każdy kubit wymagał zastosowania osobnego zestawu elektroniki zajmującej się odczytem i przesyłaniem danych. Taka architektura może sprawdzić się przy kilkudziesięciu kubitach, jednak jest zbyt nieporęczna i niepraktyczna przy ponad 100 kubitach, nie wspominając już o 1121-kubitowym Condorze, który ma powstać za 2 lata. Multipleksowanie odczytu polega na łączeniu sygnałów odczytowych z wielu kubitów w jeden, dzięki czemu można znakomicie zmniejszyć ilość okablowania i komponentów elektronicznych, co z kolei pozwala na lepsze skalowanie całości.
      Najbardziej interesującymi informacjami, których jeszcze nie znamy, są wyniki testów Quantum Volume (QV) i Circuit Layer Operations Per Second (CLOPS). Quantum Volume to stworzony przez IBM-a system pomiaru wydajności kwantowego komputera jako całości. Bierze pod uwagę nie tylko same kubity, ale również interakcje pomiędzy nimi, działania poszczególnych elementów komputera, w tym błędy obliczeniowe, błędy pomiarowe czy wydajność kompilatora. Im większa wartość QV, tym bardziej złożone problemy może rozwiązać komputer kwantowy. Z kolei zaproponowany niedawno przez IBM-a CLOPS to benchmark określający, na ilu obwodach kwantowych procesor jest w stanie wykonać operacje w ciągu sekundy. Maszyna Eagle nie została jeszcze poddana testom wydajnościowym i jakościowym.
      W ubiegłym roku Honeywell ogłosił, że jego System Model H1, korzystający z zaledwie 10 kubitów, osiągnął w teście QV wartość 128. Nieco wcześniej zaś 27-kubitowy system IBM-a mógł się pochwalić QV 64. Widzimy zatem, że sama liczba kubitów nie mówi jeszcze niczego o wydajności samej maszyny.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Poszukiwanie zjawisk fizycznych wykraczających poza Model Standardowy często wymaga dostępu do potężnych narzędzi, jak Wielki Zderzacz Hadronów, podziemnych wykrywaczy neutrin, ciemnej materii i egzotycznych cząstek. Urządzenia takie są niezwykle kosztowne w budowie i utrzymaniu, ich konstruowanie trwa przez wiele lat i jest ich niewiele, przez co ustawiają się do nich długie kolejki naukowców. Teraz dzięki naukowcom z Holandii może się to zmienić. Opracowali oni bowiem technikę więzienia i badania ciężkich molekuł w warunkach laboratoryjnych.
      Ciężkie molekuły są świetnym obiektem do badań nad elektrycznym momentem dipolowym elektronu. Jednak dotychczas stosowane metody nie pozwalały na ich uwięzienie w warunkach niewielkiego laboratorium.
      Standardowe techniki poszukiwania elektrycznego momentu dipolowego elektronu (eEDM) wykorzystują wysoce precyzyjną spektroskopię. Jednak by ją zastosować konieczne jest najpierw spowolnienie molekuł i schwytanie ich w pułapkę laserową lub elektryczną. Problem w tym, że do odkrycia zjawisk wykraczających poza Model Standardowy konieczne może okazać się przechwycenie molekuł zbyt ciężkich, by mogły uwięzić je lasery. Z kolei pułapki elektryczne pozwalają na przechwycenie ciężkich jonów, ale nie obojętnych elektrycznie molekuł.
      Naukowcy z Uniwersytetu w Groningen, Vrije Universiteit Amsterdam oraz instytutu Nikhef rozpoczęli swoją pracę od stworzenie molekuł fluorku strontu (SrF), które powstały w wyniku reakcji chemicznych zachodzących w kriogenicznym gazie w temperaturze około 20 kelwinów. Dzięki niskiej temperaturze molekuły te mają początkową prędkość 190 m/s, podczas gdy w temperaturze pokojowej wynosi ona ok. 500 m/s. Następnie molekuły wprowadzane są do 4,5-metrowej długości spowalniacza Stark, gdzie zmienne pola elektryczne najpierw je spowalniają, a następnie zatrzymują. Molekuły SrF pozostają uwięzione przez 50 milisekund. W tym czasie można je analizować za pomocą specjalnego systemu indukowanego laserem. Pomiary takie pozwalają badać właściwości elektronów, w tym elektryczny moment dipolowy, dzięki czemu możliwe jest poszukiwanie oznak asymetrii.
      Model Standardowy przewiduje istnienie eEDM, jednak ma on niezwykle małą wartość. Dlatego też dotychczas właściwości tej nie zaobserwowano. Obserwacja i zbadanie eEDM mogłyby wskazać na istnienie fizyki wykraczającej poza Model Standardowy.
      Molekuły SrF, którymi zajmowali się Holendrzy, mają masę około 3-krotnie większą niż inne molekuły badane dotychczas podobnymi metodami. Naszym kolejnym celem jest uwięzienie jeszcze cięższych molekuł, jak np. fluorku baru (BaF), który ma macę 1,5 raza większą od SrF. Taka molekuła byłaby jeszcze lepszym celem do pomiarów eEDM, mówi Steven Hoekstra, fizyk z Uniwersytetu w Groningen. Im bowiem cięższa molekuła, tym dokładniejszych pomiarów można dokonać.
      Jednak możliwość uwięzienia ciężkich molekuł przyda się nie tylko do badania elektrycznego momentu dipolowego elektronu. Można dzięki temu przeprowadzać też zderzenia ciężkich molekuł przy niskich energiach, symulując warunki w przestrzeni kosmicznej. To zaś przyda się podczas badań interakcji na poziomie kwantowym. Hoekstra mówi, że wraz ze swoimi kolegami będą też pracowali nad zwiększeniem czułości pomiarów poprzez zwiększenie intensywności strumienia molekuł. Spróbujemy też uwięzić bardziej złożone molekuły, jak BaOH czy BaOCH3. Dodatkowo wykorzystamy naszą technikę do badania asymetrii w molekułach chiralnych, zapowiada.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...