Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' iterb'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 3 results

  1. Grupa ekspertów porównała trzy najlepsze na świecie zegary atomowe. Okazało się, że istnieją niespodziewane różnice w dokonywanych przez nie pomiarach czasu. Badania pozwolą na udoskonalenie przyszłych zegarów atomowych i mogą odegrać ważną rolę w ustaleniu nowego standardu sekundy, do którego to niezbędne jest wysyłanie na cały świat i porównywanie sygnałów z zegarów atomowych. Specjaliści z Boulder Atomic Clock Optical Network Collaboration połączyli zegary za pomocą światłowodów i optycznych łączy bezprzewodowych i dokonali 10-krotnie bardziej dokładnych porównań niż dotychczas. Zegary atomowe wykorzystują częstotliwość drgań atomów do niezwykle stabilnych pomiarów czasu. Obecny standard sekundy opiera się na drganiach atomów cezu pracujących z częstotliwością mikrofalową. Istnieją już jednak znacznie bardziej precyzyjne zegary atomowe wykorzystujące częstotliwość fali światła. Zegary te działają z dokładnością 1 części na 1018, są więc około 100-krotnie bardziej dokładne niż zegary cezowe. Międzynarodowa społeczność metrologów ma zamiar zrezygnować ze standardu sekundy opartego na cezie i zastąpić go standardem wykorzystującym światło. Jednak najpierw trzeba wybrać, który z optycznych zegarów – a zbudowano ich już wiele według różnych technologii – posłuży za nowy standard. Naukowcy muszą więc porównać i ocenić te zegary, muszą więc mieć możliwość porównania generowanych przez nie sygnałów. David Hume i jego koledzy z amerykańskiego Narodowego Instytutu Standardów i Technologii (NIST) oraz University of Colorado porównali sygnały trzech zegarów atomowych z Boulder. Jeden z nich wykorzystuje atomy iterbu, drugi strontu, a trzeci jony glinu i magnezu. Za pomocą światłowodu o długości 3,6 km porównano częstotliwości zegarów iterbowego (znajduje się w siedzibie NIST) oraz strontowego (jest na University of Colorado). Z kolei zegary iterbowy i magnezonowo-glinowy (oba są w NIST) połączono za pomocą 1,5 kilometrowego bezprzewodowego łącza optycznego. Specjaliści wykorzystali optyczne grzebienie częstości, które pozwoliły im porównywać sygnały w różnych częstotliwościach. Optyczne łącze bezprzewodowe okazało się bardzo odporne na zakłócenia powodowane przez turbulencje powietrza. Z wyjątkiem sytuacji, gdy pomiarów dokonywano w czasie burzy śnieżnej, były ono równie stabilne i wydajne, co łącze przewodowe. Ekspertom udało się zmierzyć stosunek częstotliwości trzech par zegarów z dokładnością 1/1018. Dotychczas podobne pomiary były dokonywane z dokładnością 1/1017. Zegary porównywano przez wiele miesięcy, a naukowcy zauważyli niespodziewane różnice pomiędzy poszczególnymi dniami. To wskazuje, że eksperci nie do końca rozumieją, co wpływa na wydajność i sposób pracy zegarów. Można je zatem udoskonalić. Możliwość lepszego porównywania zegarów atomowych przyda się nie tylko podczas ustalenia nowego standardu sekundy, ale przyniesie korzyści innym dziedzinom nauki. Zegary atomowe położone na różnej wysokości mogą być używane do pomiarów niewielkich przesunięć skorupy ziemskiej spowodowanych topnieniem lodowców czy rosnącym poziomem oceanów. Różnice pomiędzy zegarami atomowymi mogą też zostać wykorzystane do wykrycia ciemnej materii. Wyniki badań opisano na łamach Nature. « powrót do artykułu
  2. Optyczne pułapki z uwięzionymi jonami iterbu mogą w przyszłości stanowić szkielet kwantowego internetu, służący do wysyłania splątanych cząstek na duże odległości. Do takich wniosków doszedł Jonathan Kindem i jego zespół z California Institute of Technology (Caltech), który zauważył, że jony iterbu pozostają splątane z fotonami przez długi czas. Co więcej, naukowcy wykazali, że stan kwantowy jonu można odczytać za pomocą lasera i mikrofal. W laboratoriach powoli powstają kwantowe komputery. Aby w pełni wykorzystać ich możliwości, konieczne będzie stworzenie „kwantowego internetu”, za pośrednictwem którego maszyny takie będą mogły wymieniać dane. Jednak kwantowana informacja jest ze swej natury niezwykle delikatna, co oznacza, że bardzo trudno jest wysłać ją na duże odległości. Komputery kwantowe kodują informacje w kwantowym stanie materii, na przykład w uwięzionych atomach czy obwodach nadprzewodzących. Jednak najlepszym sposobem na przesłanie takiej informacji jest wykorzystanie fotonów. Tutaj poważne wyzwanie stanowi transfer informacji z kubitów bazujących na materiałach stałych do kubitów zakodowanych w fotonach oraz z powrotem. Kubity bazujące na materiałach stałych wchodzą w silne interakcje ze światłem, więc informację do fotonu przekazać jest łatwo. Jednak kubity w fotonach żyją bardzo krótko, przez co trudno je wykorzystać w praktyce. Z drugiej strony uwięzione atomy czy jony są zdolne do długotrwałego przechowywania kubitów, jednak słabo reagują one ze światłem. Szczególnie interesujące są tutaj jony metali ziem rzadkich.  Mają one właściwości, które pozwalają na tworzenie wyjątkowo żywotnych kubitów, jednak naukowcy mają poważne problemy, by uwięzić je w taki sposób, by można je było kontrolować za pomocą światła i by wchodziły z nim w interakcje. Zespół Kindema wykazał, że problemy te można rozwiązać wykorzystując jony iterbu umieszczone w odpowiedniej pułapce optycznej, która intensyfikuje ich interakcję ze światłem. Pułapka taka to periodyczna struktura o długości 10 mikrometów pokryta powtarzającym się wzorcem w nanoskali. W centrum takiej struktury umieszczony został jon. Światło wielokrotnie odbija się w takiej pułapce, przez co zwiększa się prawdopodobieństwo, że wejdzie ono w interakcję z jonem. Testy wykazały, że splątany foton pozostawał w pułapce przez ponad 99% czasu. Dzięki temu naukowcy mogli obserwować system składający się z fotonu i jonu. Okazało się, że były one splątane przez 30 mikrosekund. To wystarczająco długo, by przesłać informację na terenie kontynentalnych Stanów Zjednoczonych. Teraz zespół Kindema pracuje nad skalowaniem swojego systemu tak, by przeprowadzić eksperyment z rzeczywistą wymianą informacji pomiędzy odległymi kubitami. W ten sposób mogłyby powstać podwaliny pod kwantowy internet, który umożliwi nie tylko wymianę kwantowych informacji, ale pozwoli też, by komputery kwantowe wspólnie dokonywały obliczeń. To zaś pozwoliłoby na przeprowadzanie niezwykle złożonych operacji na gigantycznych zbiorach danych. Wyniki badań zostały opublikowane na łamach Nature. « powrót do artykułu
  3. Jeszcze niedawno najbardziej precyzyjnym zegarem atomowym był australijski Kriogeniczny Oscylator Szafirowy (Zegar Szafirowy). Teraz fizycy z amerykańskiego Narodowego Instytutu Standardów i Technologii (NIST) stworzyli zegar, który może spóźnić się lub przyspieszyć o 1 sekundę raz na... 14 miliardów lat. O tyle pomyliłby się, gdyby istniał od początku wszechświata. Zegar jest tak stabilny, że odchylenie pomiędzy poszczególnymi pomiarami odcinków czasu może wynieść 0,000000000000000032% na dobę. Nowy zegar jest tak precyzyjny, że może posłużyć do wykrywania ciemnej materii, mierzenia fal grawitacyjnych oraz niezwykle precyzyjnego określania kształtu pola grawitacyjnego Ziemi. Okazuje się, że jeśli mamy możliwość bardzo precyzyjnego pomiaru czasu, to zyskujemy mikroskop do badania wszechświata, mówi fizyk Andrew Ludlow, szef grupy naukowej, która skonstruowała zegar. Pierwszy w historii zegar atomowy powstał w NIST w 1949 roku. Wykorzystywano w nim częstotliwość mikrofal emitowanych przez molekułę amoniaku. Nie był on jednak na tyle precyzyjny, by użyć go do wyznaczaniu standardowego czasu. Pierwszy precyzyjny zegar atomowy, wykorzystujący drgania atomów cezu, powstał w 1955 roku w Wielkiej Brytanii. Pierwsze cezowe zegary atomowe dzieliły sekundę na ponad 9 miliardów odcinków. Urządzenie skonstruowane właśnie w NIST to zegar z siecią optyczną, który korzysta z atomów iterbu i dzieli sekundę na... 500 bilionów równych fragmentów. Cez pozwala na zbudowanie wspaniałego zegara atomowego, ale dotarliśmy do fizycznych granic tego pierwiastka. Iterb może podzielić czas na znacznie mniejsze odcinki, zwiększając tym samym precyzję pomiaru, wyjaśnia Ludlow. Zegary z siecią optyczną istnieją od około 15 lat i wciąż znajdują się we wczesnej fazie rozwoju. Naukowcy wciąż je dostrajają, zwiększając precyzję. W najnowszym zegarze największe postępy uczyniono dzięki zastosowaniu osłony cieplnej opracowanej kilka lat temu przez Ludlowa. Chroni ona atomy iterbu przed temperaturą i polem elektrycznym, które mogą zaburzać ich naturalne drgania. Chcemy być pewni, że gdy mierzymy drgania atomu, to dokonujemy pomiaru tego, co dała nam Matka Natura, co nie jest zaburzane przez wpływy zewnętrzne, dodaje Ludlow. Dzięki niezwykłej precyzji drgań zegar oparty na atomie iterbu może wykrywać zmiany w polu grawitacyjnym planety. Jak wiemy z ogólnej teorii względności, czas płynie różnie w zależności od tego, w którym miejscu pola grawitacyjnego się znajdujemy. Na szczycie góry, z dala od jądra Ziemi, płynie on nieco szybciej, niż u jej podnóża. Większość zegarów nie jest wystarczająco precyzyjna, by zmierzyć tak niewielką różnicę. A jest ona naprawdę minimalna. Jeśli umieścimy jeden wystarczająco precyzyjny zegar u podnóża góry, a drugi na jej szczycie i oba zegary będzie dzieliło 1000 metrów w pionie, to po 10 latach różnica we wskazanym czasie wyniesie 31/1000000 sekundy. Nowy zegar jest tak precyzyjny, że zarejestrowałby różnicę czasu związaną ze zmianą wysokości o... 1 centymetr. Przy tak olbrzymiej precyzji można pokusić się o użycie zegara do wykrywania ciemnej materii i fal grawitacyjnych. Mimo tego, że zegar jest niezwykle precyzyjny, jego konstruktorzy nie powiedzieli ostatniego słowa. Mamy już kilka pomysłów, jak można pewne rzeczy przebudować, by uzyskać jeszcze większą precyzję, mówi Ludlow. « powrót do artykułu
×
×
  • Create New...