Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Jedną z największych tajemnic fizyki jądrowej jest odpowiedź na pytanie, dlaczego wszechświat jest zbudowany z takich a nie innych pierwiastków. Dlaczego nie z innych? Naukowców szczególnie interesują procesy fizyczne stojące u podstaw powstania ciężkich pierwiastków, jak złoto, platyna czy uran. Obecnie uważa się, że powstają one podczas łączenia się gwiazd neutronowych oraz eksplozji gwiazd.

W Argonne National Laboratory opracowano nowe techniki badania natury i pochodzenia ciężkich pierwiastków, a uczeni z Argonne stanęli na czele międzynarodowej grupy badawczej, która prowadzi w CERN eksperymenty mające dać nam wgląd w procesy powstawania egzotycznych jąder i opracowani modeli tego, co dzieje się w gwiazdach i wydarzeń we wczesnym wszechświecie.

Nie możemy sięgnąć do wnętrza supernowych, więc musimy stworzyć na Ziemi ekstremalne warunki, jakie w nich panują i badać reakcje, jakie tam zachodzą, stwierdził fizyk Ben Kay z Argonne National Laboratory i główny autor najnowszych badań.

Uczonym biorącym udział w projekcie udało się – jako pierwszym w historii – zaobserwować strukturę jądra o mniejszej liczbie protonów niż w jądrze ołowiu i o liczbie neutronów przekraczających 126. To jedna z liczb magicznych fizyki jądrowej. Liczba magiczne dla protonów i neutronów wynoszą m.in. 8, 20, 28, 50 i 126. To wartości kanoniczne. Fizycy wiedzą, że jądra atomów o takich wartościach charakteryzują się zwiększoną stabilnością. Jądra o liczbie neutronów powyżej 126 są słabo zbadane, gdyż trudno je uzyskać. Wiedza o ich zachowaniu jest kluczowa dla zrozumienia procesu wychwytu neutronu (proces r), w wyniku którego powstaje wiele ciężkich pierwiastków.

Obecnie obowiązujące teorie przewidują, że proces r zachodzi w gwiazdach. W tych bogatych w neutrony środowiskach jądra atomowe mogą rosnąć wychwytując neutrony i tworząc cięższe pierwiastki. Proces ten jest na tyle szybki, że nowe cięższe pierwiastki tworzą się zanim jeszcze dojdzie do rozpadu.

Twórcy eksperymentu skupili się na izotopie rtęci 207Hg. Jego badanie może bowiem rzucić światło na ich bezpośrednich sąsiadów, jądra bezpośrednio zaangażowane w proces r. Naukowcy najpierw wykorzystali infrastrukturę HIE-ISOLDE w CERN. Wysokoenergetyczny strumień protonów skierowali na roztopiony ołów. W wyniku kolizji powstały setki egzotycznych radioaktywnych izotopów. Odseparowali z nich 206Hg i w akceleratorze HIE-ISOLDE wytworzyli strumień jąder o najwyższej osiągniętej tam energii. Strumień skierowali na deuter znajdujący się w ISOLDE Solenoidal Spectrometer.

Żadne inne urządzenie na świecie nie jest w stanie wytworzyć strumienia jąder rtęci o tej masie i nadać mu takiej energii. To w połączeniu z wyjątkową rozdzielczością ISS pozwolió nam na przeprowadzenie pierwszych w historii obserwacji stanów wzbudzonych 207Hg, mówi Kay.  Dzięki ISS naukowcy mogli więc obserwować, jak jądra 206Hg przechwyciły neutron stając się 207Hg.

Deuter to ciężki izotop wodoru. Zawiera proton i neutron. Gdy 206Hg przechwytuje z niego neutron, dochodzi do odrzutu protonu. Emitowane w tym procesie protony trafiają do detektora w ISS, a ich pozycja i energia zdradzają kluczowe informacje o strukturze jądra. Informacje te mają bardzo duży wpływ na proces r i uzyskane w ten sposób dane pozwalają na przeprowadzenie istotnych obliczeń.

ISS korzysta z pionierskiej koncepcji opracowanej przez Johna Schiffera z Argonne National Laboratory. Na podstawie jego pomysłu zbudowano w Argone urządzenie HELIOS. Pozwoliło ono na badanie właściwości jąder atomowych, których wcześniej nie można było badać. HELIOS stał się inspiracją do zbudowania w CERN-ie ISS. Urządzenie to pracuje od 2008 roku i uzupełnia możliwości HELIOS.

Przez ostatnich 100 lat fizycy mogli zbierać informacje o jądrach atomowych dzięki bombardowaniu ciężkich jąder lekkimi jonami. Jednak reakcja przeprowadzana w drugą stronę, gdy ciężkie jądra uderzały w lekkie cele, prowadziła do pojawiania się wielu zakłóceń, które trudno było wyeliminować. Udało się to dopiero za pomocą HELIOS.

Gdy ciężka kula uderza w lekki cel dochodzi do zmiany kinematyki i uzyskane w ten sposób spektra są skompresowane. John Schiffer zauważył, że gdy do takiej kolizji dochodzi wewnątrz magnesu, wyemitowane w jej wyniku protony wędrują po spiralnym torze w kierunku detektora. Opracował pewną matematyczną sztuczkę, która opisuje tę kinematyczna kompresję, otrzymujemy więc zdekompresowane spektrum, z którego możemy wnioskować o strukturze jądrowej, wyjaśnia Kay.

Pierwsze analizy uzyskanych danych potwierdziły prawdziwość przewidywań teoretycznych. Naukowcy planują zatem kolejne eksperymenty, podczas których chcą wykorzystać inne jądra z obszaru 207Hg.

Ze szczegółami badań zapoznamy się na łamach Physical Review Letters.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Wiele z odkrytych dotychczas czarnych dziur jest częścią układu podwójnego. Układy takie składają się z krążących wokół siebie czarnej dziury oraz innego obiektu – jak gwiazda, gwiazda neutronowa czy druga czarna dziura. Astronomowie z MIT-u i Caltechu poinformowali właśnie o zaskakującym odkryciu. Jedna z najlepiej przebadanych czarnych dziur, klasyfikowana jako część układu podwójnego, okazała się wchodzić w skład układu potrójnego.
      Dotychczas sądzono, że czarnej dziurze  V404 Cygni towarzyszy jedynie sąsiednia gwiazda. Obiega ona dziurę w ciągu 6,5 doby, to tak blisko, że V404 Cygni wciąga materiał z gwiazdy.Ku zdumieniu badaczy okazało się jednak, że wokół czarnej dziury krąży jeszcze jedna gwiazda.
      Ten drugi z towarzyszy znajduje się w znacznie większej odległości. Gwiazda obiega dziurę w ciągu 70 000 lat. Sam fakt, że czarna dziura wywiera wpływ grawitacyjny na tak odległy obiekt każe zadać pytania o jej pochodzenie. Czarne dziury tego typu powstają w wyniku eksplozji supernowej. Badacze zauważają jednak, że gdyby tak było w tym przypadku, to energia wyemitowana przez gwiazdę przed jej zapadnięciem się, eksplozją i utworzeniem czarnej dziury, wyrzuciłaby w przestrzeń kosmiczną każdy luźno powiązany z nią obiekt. Zatem tej drugiej gwiazdy, bardziej odległej od czarnej dziury, nie byłoby w jej otoczeniu.
      Dlatego też badacze uważają, że zaobserwowana przez nich czarna dziura powstała w wyniku bezpośredniego zapadnięcia się gwiazdy, w procesie, który nie doprowadził do pojawienia się supernowej. To znacznie bardziej łagodna droga tworzenia się czarnych dziur. Sądzimy, że większość czarnych dziur powstaje w wyniku gwałtownej eksplozji gwiazd, jednak to odkrycie poddaje tę drogę w wątpliwość. To bardzo interesujący układ z punktu badania ewolucji czarnych dziur. I każe zadać sobie pytanie, czy istnieje więcej układów potrójnych, mówi Kevin Burdge z MIT-u.
      Odkrycia dokonano przypadkiem. Naukowcy analizowali bazę Aladin Lite, repozytorium obserwacji astronomicznych wykonanych przez różne teleskopy naziemne i kosmiczne. Wykorzystali automatyczne narzędzie, by wyodrębnić z bazy obserwacje dotyczące tych samych fragmentów nieboskłonów. Szukali w nich śladów nieznanych czarnych dziur. Z ciekawości Burdge zaczął przyglądać się V404 Cygni. To czarna dziura znajdująca się w odległości 8000 lat od Ziemi i jedna z pierwszych potwierdzonych czarnych dziur. Od czasu potwierdzenia w 1992 roku V404 Cygni jest jedną z najlepiej przebadanych czarnych dziur, na jej temat powstało ponad 1300 prac naukowych.
      Burdge, oglądając jej zdjęcia, zauważył dwa źródła światła, zadziwiająco blisko siebie. Pierwsze ze źródeł zostało już wcześniej opisane jako niewielka gwiazda, której materiał jest wciągany przez V404 Cygni. Drugim ze źródeł nikt się dotychczas szczegółowo nie zainteresował. Burdge przystąpił do pracy. Dzięki danym z europejskiego satelity Gaia stwierdził, że to druga gwiazda, poruszająca się w tandemie z pierwszą. Prawdopodobieństwo, że to tylko przypadek, wynosi 1 do 10 milinów.
      Zatem ta druga gwiazda również jest powiązana grawitacyjnie z V404 Cygni. Jest jednak daleko od niej. Znajduje się w odległości 3500 jednostek astronomicznych, czyli 3500 razy dalej niż Ziemia od Słońca. Obserwacje tej gwiazdy zdradziły też wiek całego układu. Badacze stwierdzili, że gwiazda rozpoczyna proces zmiany w czerwonego olbrzyma, ma zatem około 4 miliardów lat.
      Jak się zatem okazuje, nawet – wydawałoby się – bardzo dobrze przebadane obiekty astronomiczne mogą skrywać niezwykłe tajemnice, których rozwikłanie znacząco zmienia i wzbogaca naszą wiedzę.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Podczas seminarium zorganizowanego w CERN-ie naukowcy pracujący przy projekcie NA62, w ramach którego badane są rzadkie rozpady kaonów, poinformowali o jednoznacznym potwierdzeniu rejestracji ultrarzadkiego rozpadu kaonu dodatniego do dodatnio naładowanego pionu i parę neutrino-antyneutrino. Uczeni z NA62 już wcześniej obserwowali sygnały, świadczące o zachodzeniu takiego procesu, jednak teraz, po raz pierwszy, pomiary zostały dokonane z poziomem ufności 5σ, od którego możemy mówić o dokonaniu odkrycia.
      Zaobserwowane zjawisko, które zapisujemy jako K+→π+νν, to jeden z najrzadziej obserwowanych rozpadów. Model Standardowy przewiduje, że w ten sposób rozpada się mniej niż 1 na 10 miliardów kaonów dodatnich. Ta obserwacja to moment kulminacyjny projektu, który rozpoczęliśmy ponad dekadę temu. Obserwowanie zjawisk naturalnych, których prawdopodobieństwo wynosi 10-11 jest zarówno fascynujące, jak i wymagające. Wielki wysiłek, jaki włożyliśmy w badania, w końcu zaowocował obserwacją, dla której projekt NA62 powstał, mówi Giuseppe Ruggiero, rzecznik projektu badawczego.
      Po co jednak fizycy wkładają tyle wysiłku w obserwacje tak rzadko zachodzącego procesu? Otóż modele teoretyczne sugerują, że rozpad K+→π+νν jest niezwykle wrażliwy na wszelkie odchylenia od Modelu Standardowego, jest zatem jednym z najbardziej interesujących procesów dla poszukiwań zjawisk fizycznych wykraczających poza Model Standardowy.
      Uzyskany obecnie wynik jest o około 50% większy, niż zakłada to MS, ale wciąż mieści się w granicach niepewności. Dzięki zebraniu kolejnych danych naukowcy z NA62 będą w stanie w ciągu kilku lat przeprowadzić testy rozpadu pod kątem występowania tam zjawisk, których Model Standardowy nie opisuje. Poszukiwanie nowej fizyki w tym rozpadzie wymaga zgromadzenia większej ilości danych. Nasze obecne osiągnięcie to duży krok naprzód. Stanowi ono fundament dla kolejnych badań, dodaje Karim Massri z NA62.
      Grupa NA62 uzyskuje kaony kierując intensywną wiązkę protonów z Super Proton Synchrotron w CERN-ie na stacjonarny cel. W wyniku zderzenia w każdej sekundzie powstaje około miliarda cząstek, które są rejestrowane przez detektory. Dodatnie kaony stanowią około 6% z tych cząstek. NA62 dokładnie określa sposób rozpadu tych kaonów, rejestrując wszystkie powstające wówczas cząstki, z wyjątkiem neutrin. Ich obecność jest dedukowana z brakującej energii.
      Dla obecnie opisanego odkrycia kluczowe były dane zebrane w roku 2021 i 2022, które zgromadzono po udoskonaleniu detektorów. Dzięki temu NA62 może pracować z wiązkami o 30% bardziej intensywnymi. W połączeniu z nowymi technikami analitycznymi, naukowcy są w stanie prowadzić analizy o 50% szybciej, niż wcześniej, a jednocześnie tłumić sygnały, które są podobne. Nasza praca polega na zidentyfikowaniu 1 na 10 miliardów rozpadu K+ i upewnieniu się, że nie był to żaden z pozostałych 9 999 999 999, dodaje kierownik projektu, Joel Swallow.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po raz pierwszy udało się bezpośrednio zaobserwować wpływ grawitacji na antymaterię. Fizycy z CERN eksperymentalnie wykazali, że grawitacja działa na antymaterię tak, jak i na materię – antyatomy opadają na źródło grawitacji. Nie jest to niczym niespodziewanym, różnica w oddziaływaniu grawitacji na materię i antymaterię miałaby bardzo poważne implikacje dla fizyki. Jednak bezpośrednia obserwacja tego zjawiska jest czymś, czego fizycy oczekiwali od dziesięcioleci. Oddziaływanie grawitacyjne jest bowiem niezwykle słabe, zatem łatwo może zostać zakłócone.
      Naukowcy z CERN pracujący przy eksperymencie ALPHA wykorzystali atomy antywodoru, które są stabilne i elektrycznie obojętne, do badania wpływu grawitacji na antymaterię. Uczeni utworzyli antywodór łącząc antyprotony – uzyskane w urządzeniach AD i ELENA pracujących w Antimatter Factory – z pozytonami (antyelektronami) z radioaktywnego sodu-22. Atomy antywodoru umieszczono następnie w pułapce magnetycznej, która chroniła je przed wejściem w kontakt z materią i anihilacją. Całość umieszczono w niedawno skonstruowanym, specjalnym urządzeniu o nazwie ALPHA-g, które pozwala na śledzenie losu atomów po wyłączeniu pułapki.
      Symulacje komputerowe wykazywały, że – w przypadku materii – około 20% atomów powinno opuścić pułapkę przez górną jej część, a około 80% – przez dolną. Naukowcy wielokrotnie przeprowadzili eksperymenty z użyciem antymaterii, uwzględniając przy tym różne ustawienia pułapki i różne możliwe oddziaływania poza oddziaływaniami grawitacyjnymi. Po uśrednieniu wyników eksperymentów okazało się, że antymateria zachowuje się tak, jak materia. Około 20% atomów antywodoru uleciało z pułapki górą, a około 80% – dołem.
      Potrzebowaliśmy 30 lat by nauczyć się, jak stworzyć antyatomy, jak utrzymać je w pułapce, jak je kontrolować i jak je uwalniać z pułapki, by oddziaływała na nie grawitacja. Następnym etapem naszych badań będą jak najbardziej precyzyjne pomiary przyspieszenia opadających antyatomów. Chcemy sprawdzić, czy rzeczywiście atomy i antyatomy opadają w taki sam sposób, mówi Jeffrey Hangst, rzecznik prasowy eksperymentu ALPHA.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Henna Kokkonen, świeżo upieczona magister Uniwersytetu w Jyväskylä w Finlandii, odkryła nieznany dotychczas izotop astatu, najrzadszego pierwiastka występującego w skorupie ziemskiej. W ramach swojej pracy magisterskiej Henna analizowała dane z eksperymentu podczas którego bombardowano atomy srebra wiązką strontu-84. Młoda uczona zauważyła w nich nieznane dotychczas jądro atomowe, astat-190. Składa się ono z 85 protonów oraz 105 neutronów i jest najlżejszym znanym izotopem astatu.
      Co więcej, zarejestrowała też sygnały, które mogą świadczyć o pojawieniu się innego nieznanego izotopu, astatu-188.
      Astat to najrzadszy naturalnie występujący pierwiastek w skorupie ziemskiej. Szybko ulega połowicznemu rozpadowi, dlatego na Ziemi jest go w danym momencie nie więcej niż 0,07 grama. Badania nad nowymi jądrami atomowymi są istotne dla zrozumienia budowy jądra atomu oraz ograniczeń, jakim podlega znana nam materia, mówi Kokkonen.
      Astat powstaje w skorupie ziemskiej wyłącznie w wyniku rozpadu cięższych pierwiastków. Spośród 41 (wraz z tym zauważonymi przez Kekkonen) izotopów astatu, tylko 4 występują naturalnie: astat-215, astat-216, astat-218 i astat-219. Czas ich połowicznego rozpadu wynosi od 0,1 ms do 56 s.
      Najbardziej stabilnym izotopem tego pierwiastka jest astat-210, o nieco ponad 8-godzinnym czasie połowicznego rozpadu. Dotychczas nigdy nie uzyskano czystej próbki astatu. Nie znamy wielu jego właściwości, a wiele z tych, które znamy, jest dedukowanych z pozycji pierwiastka w tabeli okresowej. Jeden ze sztucznie uzyskiwanych izotopów, astat-211 jest badany pod kątem wykorzystania w radioterapii nowotworów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Chińscy astronomowie znaleźli najcięższy pierwiastek kiedykolwiek zauważony na egzoplanecie. Wei Wang i jego koledzy z Narodowego Obserwatorium Astronomicznego Chin poinformowali o zaobserwowaniu samaru w atmosferze planety MASCARA-4b. Pierwiastki o tak dużej masie są dość rzadkie i trudne do zaobserwowania, jednak mogą nam wiele powiedzieć o tworzeniu się i ewolucji planet.
      MASCARA-4b znajduje się w odległości około 550 lat świetlnych od Ziemi. To gorący jowisz, gazowy olbrzym, o średnicy 1,5 raza większej od średnicy Jowisza. Masa planety jest ponad 3 razy większa od masy Jowisza, a temperatura na jej powierzchni wynosi około 1900 stopni Celsjusza. Planeta obiega swoją gwiazdę macierzystą w ciągu niecałych 3 ziemskich dni. Gwiazda, MASCARA-4, ma średnicę niemal 2-krotnie większą od Słońca, a jej temperatura sięga 7730 stopni Celsjusza.
      Chińczycy badali MASCARĘ-4b za pomocą Very Large Telescope w Chile, analizując spektrum światła jej gwiazdy przefiltrowanego przez atmosferę planety. W ten sposób znaleźli wiele masywnych pierwiastków jak na przykład bar. Dotychczas dzierżył on miano najcięższego pierwiastka znalezionego na egzoplanecie. Zaobserwowano jednak też samar, który zawiera o sześć protonów więcej niż bar, a jego liczba atomowa to 62.
      Wang zauważa, że każda gwiazda i planeta powinny posiadać te pierwiastki. Jednak zagadką pozostaje, dlaczego można je zauważyć. Ze względu na swoją masę pierwiastki te powinny znajdować się niżej, w regionach o wyższym ciśnieniu i nie powinniśmy być w stanie tak łatwo ich obserwować.
      Znalezienie samaru może wskazywać po pierwsze na to, że bardzo gorące jowisze mogą zawierać mniej lekkich pierwiastków niż atmosfery innych egzoplanet, po drugie zaś, że zawierają one bardzo mało pary wodnej i tlenu, z którymi samar reaguje.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...