Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Miliard lat do końca świata

Recommended Posts

lt;!-- @page { size: 21cm 29.7cm; margin: 2cm } P { margin-bottom: 0.21cm } --> Niewielu z nas chciałoby wiedzieć, kiedy nastąpi nasz koniec, ani jak on będzie wyglądał. Jednak zahamowania te są obce astronomom – właśnie udało im się sprecyzować... harmonogram końca świata. Dotychczas wiadomo było, że życie na Ziemi wyginie po zmianie charakteru reakcji termojądrowych zachodzących w Słońcu. Nasza gwiazda zwiększy swą objętość, z czasem wchłaniając wewnętrzne planety Układu Słonecznego. Przed konsumpcją zostaną one oczywiście porządnie upieczone. Ziemia miała uniknąć całkowitej zagłady dzięki potężnemu wiatrowi słonecznemu, który powinien wypchnąć ją na wyższą orbitę. Za sprawą wysiłków astronomów z University of Sussex znamy nieco więcej szczegółów procesu, którego końcowa faza ma nastąpić za 7,6 miliarda lat. Najnowsze obliczenia wskazują niestety, że nasza planeta również stanie się częścią Słońca. Zwiększenie promienia orbity nie pozwoli uniknąć pochwycenia przez atmosferę gwiazdy. Wywołane w ten sposób tarcie doprowadzi do zmniejszenia prędkości liniowej Ziemi oraz jej powolnego opadania na Słońce. Finał tej wędrówki jest raczej jasny: nasza planeta wyparuje. Jeszcze posępniejsze prognozy dotyczą życia na Ziemi. Okazuje się, że pozostał nam już tylko miliard lat. Ponieważ organizmy są obecne od około 3,7 mld lat, nasza planeta ma za sobą niemal 80% całkowitego czasu "życia". Później Słońce stanie się wystarczająco duże, by wygotować wszystkie oceany. Podobno scenariusza tego można uniknąć. Kierujący wspomnianymi badaniami Robert Smith twierdzi, że wystarczy co parę tysięcy lat przyspieszać ruch Ziemi za pomocą asteroidy, by utrzymać bezpieczną odległość od Słońca. Zabiegi te mają wystarczyć na co najmniej 5 miliardów lat.

Share this post


Link to post
Share on other sites

prędzej ludzie sami wytłuką wszelkie życie na ziemi w tym swój gatunek niż słońce :)

 

a jeżeli jakimś cudem zmieni się mentalność ludzka i przestana wybijać wszystko co żyje to zapewne technologia pozwoli już nam żyć z dala od ziemi , więc ludzkość nie wyniginie . Ciekawe tylko co z innymi żyjątkami :P ?

Share this post


Link to post
Share on other sites

Ciekawe tylko co z innymi żyjątkami :) ?

Hmm... prom kosmiczny o nazwie "Arka" ? :P

Share this post


Link to post
Share on other sites
Ciekawe tylko co z innymi żyjątkami :) ?
Habitaty, kolonizacja i terraforming muszą skądś czerpać zasoby, także te organiczne, zatem o zwierzątka to ja bym sie nie bał.

Share this post


Link to post
Share on other sites

"Za sprawą wysiłków astronomów z University of Sussex znamy nieco więcej szczegółów procesu..."

 

ee tam, od tysiącleci wiadomo, że wszystko spłonie.

 

Te "wysiłki" astronomów to produkt socjalistycznego charakteru Zjednoczonego Królestwa - "naukowcy" dostają wypłaty z budżetu, mogą zbijać bąki czasem muszą coś wyprodukować by zaznaczyć swoje jakże aktywne istnienie, jakość się nie liczy bo i tak za to dostają pieniądze.

 

"Robert Smith twierdzi, że wystarczy co parę tysięcy lat przyspieszać ruch Ziemi za pomocą asteroidy, by utrzymać bezpieczną odległość od Słońca. Zabiegi te mają wystarczyć na co najmniej 5 miliardów lat."

 

Tak, tak należy tylko przekazać z budżetu państwa odpowiednie środki na dalsze badania...

 

No ludzie, czy to jest wiedza? Czy tak mówi naukowiec? Mam nadzieję, że poda on numer telefonu, pod którym taką asteroidę można by co jakiś czas zamówić oraz by wyznaczył obszar nieużytków w który asteroida przyśpieszająca ruch Ziemi "bezpiecznie" uderzy (oczywiście zgodnie z ruchem obrotowym Ziemi pod odpowiednim kątem itp).

Share this post


Link to post
Share on other sites

Tak tak, uderzenie w Ziemię asteroidy na pewno nie wywoła zniszczenia Ziemi, wcale nic nie wymrze jakby wymarło od Słońca :]

Share this post


Link to post
Share on other sites

Za aktywność słońca odpowiada rejon wszechświata przez który przechodzi, od aktywności słońca zalezy prędkość obrotowa ziemi i życie na niej .  8)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Zwykle zastanawiamy się, ile pozasłonecznych planet zawierających życie jesteśmy w stanie zaobserwować z Ziemi. Jednak pytanie to można odwrócić. I właśnie to zrobili profesorowie Lisa Kaltenegger z Cornell University i Joshua Pepper z Lehigh University. Postanowili oni zbadać, z ilu układów planetarnych można bezpośrednio obserwować Ziemię. Innymi słowy, ile potencjalnych cywilizacji pozaziemskich, znajdujących się na podobnym etapie rozwoju, może nas badać.
      Uczeni zidentyfikowali 1004 gwiazdy ciągu głównego, czyli dość podobne do Słońca, które mogą posiadać podobne do Ziemi planety w ekosferze. Wszystkie wspomniane gwiazdy znajdują się w promieniu 300 lat świetlnych od Ziemi, zatem w odległości, z której obca cywilizacja powinna być w stanie wykryć chemiczne sygnatury życia w ziemskiej atmosferze.
      Odwróćmy nasz punkt widzenia. Przenieśmy się na inne planety i zapytajmy, z których układów planetarnych można obserwować tranzyty Ziemi na tle Słońca, mówi Kaltenegger. Uczona przypomina, że obserwowanie tranzytów to kluczowy sposób obserwowania planet pozasłoneczych i określania ich cech charakterystycznych. Już wkrótce, dzięki Teleskopowi Kosmicznemu Jamesa Webba (JWST), będziemy w stanie – badając tranzyty – określać skład chemiczny atmosfer planet spoza Układu Słonecznego. Jeśli z naszego punktu widzenia jakaś planeta przechodzi na tle swojej gwiazdy, zatem znajduje się w linii prostej pomiędzy swoją gwiazdą a Ziemią, to już teraz – badając zmianę jasności gwiazdy przesłoniętej przez planetę – próbujemy określać np. wielkość planety. Instrument taki jak JWST pozwoli badać światło gwiazdy przechodzące przez atmosferę planety i określić skład chemiczny tej planety. Będziemy więc mogli wykrywać w niej molekuły i inne elementy wskazujące na istnienie życia. To samo jednak mogą robić potencjalne cywilizacje pozaziemskie.
      Jedynie niewielki ułamek egzoplanet przechodzi na tle swojej gwiazdy z naszego punktu widzenia. Z punktu widzenia wszystkich zidentyfikowanych przez nas układów Ziemia przechodzi na tle Słońca. A to powinno przyciągnąć uwagę potencjalnych obserwatorów. Jeśli poszukujemy inteligentnego życia, które może nas znaleźć i zechcieć nawiązać kontakt, to właśnie stworzyliśmy mapę, gdzie należy szukać, dodaje Kaltenegger.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Amerykańsko-niemiecki zespół naukowcy zidentyfikował 24 planety, które mogą lepiej nadawać się do życia niż Ziemia. Są wśród nich starsze, nieco większe, nieco cieplejsze i prawdopodobnie bardziej wilgotne od Ziemi. Uczeni stwierdzają również, że życie może łatwiej rozwijać się na planetach, które wolniej niż Ziemia krążą wokół gwiazd starszych od Słońca.
      Wszystkie ze zidentyfikowanych planet znajdują się w odległości większej niż 100 lat świetlnych od Ziemi, a ich zidentyfikowanie pozwoli w przyszłości skupić się na nich w poszukiwaniu śladów życia pozaziemskiego. Planety takie mogłyby być szczegółowo badane za pomocą Teleskopu Kosmicznego Jamesa Webba, obserwatoriów LUVIOR czy PLATO.
      Przyszłe teleskopy kosmiczne pozwolą na zdobycie kolejnych danych, dzięki czemu lepiej wybierzemy kandydatów do dalszych badań. Musimy skupić się na tych planetach, które posiadają najbardziej obiecujące warunki do powstania życia. Powinniśmy jednak uważać, by nie utknąć na poszukiwaniach drugiej Ziemi, gdyż mogą istnieć planety zdolne do podtrzymania życia innego niż znamy, mówi profesor Schulze-Makuch z Washington State University i Uniwersytetu Technicznego w Berlinie.
      Gwiazdy takie jak Słońce żyją około 10 miliardów lat. Jako, że na Ziemi bardziej złożone formy życia powstały dopiero po 4 miliardach lat, wiele gwiazd typu słonecznego może umrzeć, zanim w ich układzie planetarnym pojawią się złożone formy życia. Dlatego też naukowcy przyglądali się nie tylko gwiazdom typu widmowego G, czyli żółtym karłom, do których należy Słońce. Przeanalizowali też znane nam egzoplanety krążące wokół pomarańczowych karłów (gwiazda typu K). Są one chłodniejsze, mniej masywne i mniej jasne, niż żółte karły, ale za to żyją od 20 do 70 miliardów lat.
      Warto jednak pamiętać, że sama planeta nie może być zbyt stara. Nie może bowiem wyczerpać swojego wewnętrznego ciepła i utracić ochronnego pola magnetycznego. Ziemia liczy sobie obecnie około 4,5 miliarda lat. Zdaniem specjalistów najlepszy dla planety okres na podtrzymanie i rozwój życia to wiek 5–8 miliardów lat.
      Ważna jest też wielkość planety. Planeta o 10% większa od Ziemi powinna mieć więcej lądów, a taka o masie około 50% większej od Ziemi powinna dłużej utrzymać wewnętrzne ciepło i charakteryzować się silniejszym polem magnetycznym, które na dłużej zatrzyma atmosferę. Autorzy badań przypominają też o wodzie mówiąc, że nieco więcej wody, szczególnie w postaci wilgoci w powietrzu i chmur, powinno pomóc życiu. Podobnie jest z temperaturą. Planety o średniej temperaturze około 5 stopni Celsjusza wyższej niż Ziemi, w połączeniu z większą wilgotnością, powinny wyewoluować większą różnorodność form życia.
      Schulze-Makuch i jego zespół uznali, że supergościnna planeta powinna krążyć wokół pomarańczowego karła, liczyć sobie 5–8 miliardów lat, być o 10% większa i nie więcej niż 50% bardziej masywna niż ZIemia, posiadać średnią temperaturę powierzchni o 5 stopni Celsjsuza wyższą niż na Ziemi, jej wilgotna atmosfera powinna zawierać 25–30 procent tlenu, a resztę powinny stanowić gazy obojętne, powinny na niej znajdować się rozproszone masy wody i lądów, z wieloma płyciznami i archipelagami. Planeta powinna posiadać duży księżyc o masie od 1 do 10 procent masy planety i znajdujący się w odległości 10–100 średnic planety, powinny na niej zachodzić procesy geologiczne takie jak tektonika płyt lub podobne oraz powinna posiadać silne pole magnetyczne.
      Jako, że kilku z tych elementów (jak np. rozkład mas lądowych, obecność księżyca czy procesów tektonicznych) nie jesteśmy obecnie w stanie badać, naukowcy skupili się na elementach, które już teraz możemy obserwować. Badali zatem typ gwiazdy, wiek planety, jej prawdopodobną wielkość i masę oraz panujące temperatury.
      Gdy naukowcy przyjrzeli się bliżej 24 wybranym przez siebie planetom okazało się, że 9 z nich krąży wokół gwiazdy typu K, 16 z nich ma od 5 do 8 miliardów lat, a na 5 panują temperatury odbiegające od temperatury optymalne nie więcej niż o 10 stopni Celsjusza. Tylko jeden z kandydatów na planetę – KOI 5715.01 – spełniał trzy kryteria planety supergościnnej. Jednak średnie temperatury na tej planecie wynoszą prawdopodobnie 11,59 stopnia Celsjusza, czyli mniej niż na Ziemi. Naukowcy nie wykluczają jednak, że panuje tam silniejszy efekt cieplarniany niż na naszej planecie, więc temperatury te mogą być wyższe, co może czynić KOI 5715.01 planetą supergościnną.
      Szczegóły badań opublikowano w piśmie Astrobiology.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od dawna słyszymy teorię, że w przeszłości Ziemia była sucha, a wodę przyniosły z czasem bombardujące ją komety i asteroidy. Tymczasem badania opublikowane właśnie na łamach Science sugerują, że woda mogła istnieć na naszej planecie od zarania jej dziejów.
      Naukowcy z Centre de Recherches Pétrographiques et Géochimiques we Francji odkryli, że grupa kamiennych meteorytów o nazwie chondryty enstatytowe, zawiera na tyle dużo wodoru, by dostarczyć na Ziemię co najmniej trzykrotnie więcej wody niż jej zawartość w ziemskich oceanach. Chondryty enstatytowe mają skład taki, jak obiekty z wewnętrznych części Układu Słonecznego, zatem taki, z jakiego powstała Ziemia.
      Nasze odkrycie pokazuje, że materiał, z jakiego powstała Ziemia mógł w znacznym stopniu dostarczyć jej wodę. Materiały zawierające wodór były obecne w wewnętrznych częściach Układu Słonecznego w czasie, gdy formowały się planety skaliste. Nawet jeśli temperatura była wówczas zbyt wysoka, by woda występowała w stanie ciekłym, mówi główny autor badań, Laurette Piani.
      Najnowsze odkrycie to spore zaskoczenie, gdyż zawsze sądzono, że materiał, z którego powstała Ziemia, był suchy. Pochodził bowiem z wewnętrznych obszarów formującego się Układu Słonecznego, gdzie temperatury nie pozwalały na kondensację wody.
      Chondryty enstatytowe pokazują, że woda nie musiała dotrzeć na naszą planetę z krańców Układu. Są rzadkie, stanowią jedynie 2% meteorytów znajdowanych na Ziemi. Jednak ich podobny do Ziemi skład izotopowy wskazuje, że jest z takiego właśnie materiału powstała planeta. Mają bowiem podobne izotopy tlenu, tytanu, wapnia, wodoru i azotu co Ziemia. Jeśli chondryty enstatynowe tworzyły Ziemię – z ich skład izotopowy na to wskazuje – to oznacza, że miały one w sobie tyle wody, by wyjaśnić jej pochodzenie na naszej planecie. To niesamowite, ekscytuje się współautor badań, Lionel Vacher.
      Badania wykazały też, że znaczna część azotu obecnego w ziemskiej atmosferze może pochodzi z chondrytów enstatynowych. Mamy do dyspozycji niewiele chondrytów estatynowych, które nie zostały zmienione przez asteroidę, której były częścią, ani przez Ziemię. Bardzo ostrożnie dobraliśmy chondryty do naszych badań i zastosowaliśmy specjalne techniki analityczne, by upewnić się, że to, co znajdziemy, nie pochodzi z Ziemi, mówi uczony. Badania wody w meteorytach zostały przeprowadzone za pomocą spektrometrii mas i spektrometrii mas jonów wtórnych.
      Założono, że chondryty enstatynowe uformowały się blisko Słońca. Były więc powszechnie uznawane za suche i prawdopodobnie z tego powodu nie przeprowadzono ich dokładnych badań pod kątem obecności wodoru, mówi Piani.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astrofizycy z Uniwersytetu Harvarda opublikowali na łamach The Astrophysical Journal Letters teorię, zgodnie z którą Słońce było kiedyś częścią układu podwójnego. Nasza gwiazda miała krążącego wokół niej towarzysza o podobnej masie. Jeśli teoria ta zostanie potwierdzona, zwiększy to prawdopodobieństwo istnienia Obłoku Oorta w takim kształcie, jak obecnie przyjęty i będzie można uznać teorię mówiącą, że tajemnicza Dziewiąta Planeta (Planeta X) została przez Układ Słoneczny przechwycona, a nie uformowała się w nim.
      Autorzy nowej teorii – profesor Avi Loeb i jego student Amir Siraj – postulują, że obecność towarzysza Słońca w klastrze, w którym gwiazdy się uformowały, pozwala wyjaśnić istnienie Obłoku Oorta. Naukowcy mówią, że dotychczasowe teorie pozostawiały wiele niewyjaśnionych zagadnień związanych z Obłokiem Oorta. Przyjęcie, że Słońce było częścią układu podwójnego, pozwala wyjaśnić liczne wątpliwości. Tym bardziej, że nie jest to wcale nieprawdopodobne. Większość gwiazd podobnych do Słońca zaczyna życie w układach podwójnych, mówią uczeni.
      Jeśli Obłok Oorta rzeczywiście został utworzony z obiektów przechwyconych dzięki pomocy towarzysza Słońca, to będzie to niosło istotne implikacje dla naszego rozumienia uformowania się Układu Słonecznego. Układy podwójne znacznie efektywniej przechwytują różne obiekty niż pojedyncze gwiazdy. Jeśli Obłok Oorta rzeczywiście tak się utworzył, będzie to znaczyło, że Słońce miało towarzysza o podobnej masie, stwierdza Loeb.
      Przyjęcie teorii o układzie podwójnym ma też znaczenie dla wyjaśnienia pojawienia się życia na Ziemi. Obiekty z zewnętrznych części Obłoku Oorta mogły odgrywać istotną rolę historii Ziemi. Mogły dostarczyć tutaj wodę i spowodować zagładę dinozaurów. Zrozumienie ich pochodzenia jest bardzo ważne, przypomina Siraj.
      Obaj naukowcy podkreślają, że ich teoria ma też znacznie dla wyjaśnienia zagadki Planety X. Dotyczy to nie tylko Obłoku Oorta ale również ekstremalnie dalekich obiektów transneptunowych, takich jak Dziewiąta Planeta. Nie wiadomo, skąd one pochodzą, jednak nasz model przewiduje, że jest więcej obiektów o orbitach takich jak Dziewiąta, stwierdza Loeb.
      Obecnie nie posiadamy instrumentów, które pozwoliłyby zaobserwować Obłok Oorta czy Dziewiątą Planetę. Jednak już w przyszłym roku ma zacząć działać Vera C. Rubin Observatory (VRO). Będzie ono w stanie zweryfikować istnienie Dziewiątej Planety. Jeśli VRO potwierdzi, że Dziewiąta Planeta istnieje i została przechwycona oraz zaobserwuje podobnie przechwycone planety karłowate, wtedy model binarny zyska przewagę nad obecnymi teoriami o początkach Słońca, mówi Siraj.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Słońce wydaje się znacznie mniej aktywne niż inne podobne mu gwiazdy. Do takich zaskakujących wniosków doszedł międzynarodowy zespół astronomów, który przeanalizował dane z Teleskopu Kosmicznego Keplera. Odkrycie, dokonane przez grupę kierowaną przez Timo Reinholda z Instytutu Badań Układu Słonecznego im. Maxa Plancka, pozwoli na lepsze zrozumienie ewolucji naszej gwiazdy.
      Ludzkość od wieków obserwuje Słońce i od dawna wiemy, że znaczących zmianach liczby plam na nim występujących. Wiemy też, że im więcej plam, tym większa aktywność gwiazdy i tym silniejsze gwałtowne wydarzenia, jak wyrzuty masy. Specjaliści spodziewali się, że inne gwiazdy podobne do Słońca zachowują się w podobny sposób na tym samym etapie życia.
      Nie jesteśmy w stanie obserwować plam na innych gwiazdach, jednak przemieszczanie się plam na powierzchni gwiazd powoduje zmiany ich jasności. Dzięki temu możemy obserwować aktywność magnetyczną odległych gwiazd. Zespół Reinholda postanowił wykorzystać te dane do porównania aktywności Słońca z innymi podobnymi mu gwiazdami.
      Teleskop Kosmiczny Keplera badał i rejestrował zmiany w jasności 150 000 gwiazd. W tym samym czasie sonda Gaia obserwowała gwiazdy i określała ich pozycję oraz ruch we wszechświecie. Teraz uczeni przeanalizowali te dane i na ich podstawie zidentyfikowali 369 gwiazd o temperaturze, masie, wieku, składzie chemicznymi i prędkości obrotowej podobnych do Słońca. Okazało się, że – wbrew oczekiwaniom – większość tych gwiazd jest znacznie bardziej aktywnych od Słońca. Średnia wartość zmian ich jasności była aż 5-krotnie większa niż zmiany jasności naszej gwiazdy.
      Naukowcy proponują dwa możliwe wyjaśnienia tak wielkiej różnicy. Jedno z nich zakłada, że zmiany jasności niektórych gwiazd podobnych do Słońca są tak niewielkie, iż Kepler ich nie zauważył, co sztucznie zwiększyło średnią dla całej grupy. Drugie wyjaśnienie brzmi, że mamy tu do czynienia z prawdziwymi średnimi zmianami jasności, a to sugeruje, że w przeszłości Słońce również przechodziło okres tak dużej aktywności. To drugie przypuszczenie jest zgodne z wcześniejszymi badaniami, które wskazywały, że gwiazdy z ciągu głównego, gdy zbliżają się do połowy okresu swojego istnienia, znacznie zmniejszają swoją aktywność utrzymując wcześniejszą prędkość obrotową.
      Zespół Reinholda ma zamiar wyjaśnić te kwestie, wykorzystując w tym celu przyszłe pomiary, jakie będą dokonywane przez instrumenty TESS i PLATO.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...