Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Polscy naukowcy pomogli odkryć i zbadać niezwyklą pulsującą gwiazdę w kształcie cytryny

Rekomendowane odpowiedzi

Niedaleko Ziemi, w odległości zaledwie 1500 lat świetlnych, zaobserwowano gwiazdę pulsującą tylko z jednej strony. Istnienie takiej gwiazdy, przypominającej kształtem cytrynę, przewidziano teoretycznie już kilkadziesiąt lat temu. Dopiero teraz jednak udało się ją zaobserwować.

Po raz pierwszy o niezwykłym zachowaniu gwiazdy poinformowali amatorzy analizujący dane pochodzące z teleskopu TESS. Zauważyli w nich anomalie, a że nie wiedzieli, co oznaczają, poinformowali astronomów. Informacje dotarły profesora Geralda Handlera z Centrum Astronomicznego im. Mikołaja Kopernika (CAMK) oraz Dona Kurtza z University of Central Lancashire.

Od lat 80. wiemy, że takie gwiazdy powinny istnieć. Szukam ich od niemal 40 lat i w końcu jedną znaleźliśmy – mówi Kurtz.

Na łamach najnowszego numeru Nature Astronomy naukowcy informują, że udało im się zidentyfikować przyczynę niezwykłego zachowania gwiazdy. Okazuje się, że znajduje się ona w układzie podwójnym i grawitacja jej bliskiego towarzysza zniekształca oscylacje. Okres orbitalny układu podwójnego wynosi poniżej dwóch dni.

Znakomite dane z satelity TESS pozwoliły nam obserwować zmiany jasności wynikające zarówno z odkształcenia grawitacyjnego gwiazdy, jak i pulsacji, mówi profesor Handler. Naukowców zaskoczył jednak fakt, że amplituda pulsacji była silnie uzależniona od kąta obserwacji i orientacji gwiazdy w układzie podwójnym. Gdy gwiazdy podwójne krążą wokół siebie, widzimy różne części gwiazdy pulsującej. Czasami widzimy jej powierzchnię skierowaną w stronę towarzysza, a czasami tę zewnętrzną – wyjaśnia współautorka badań, doktorantka CAMK paulina Sawicka.

Gwiazda HD74423 to obiekt typu gwiazdowego A o masie około 70% większej od masy Słońca. Jest też młodsza, chociaż trudno określić jej wiek. Szczegółowe badania ujawniły kolejne zadziwiające cechy HD74423. Zwykle takie gwiazdy są bogate w metale. Jednak tutaj metali mamy mało, co jest cechą charakterystyczną bardzo starych gwiazd. W tym przypadku mamy jednak do czynienia z czymś innym. Otóż HD74423 to gwiazda typu Lambda Boötis, które mają niezwykle mało metalu w warstwach powierzchniowych. Prawdopodobnie tracą to na rzecz otaczającego je dysku materii.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Nowej Zelandii i USA zidentyfikowali pierwszy znany układ podwójny, który zakończy istnienie jako kilonowa. Kilonowa to niezwykle rzadkie zjawisko astronomiczne, w wyniku którego powstają bardzo duże ilości ciężkich pierwiastków. Specjaliści uważają, że wśród 100 miliardów gwiazd w Drodze Mlecznej istnieje jedynie 10 układów, w przypadku których dojdzie do eksplozji kilonowej.
      Pierwszą kilonową odkryto w 2013 roku, gdy zauważono, że to właśnie tego typu wydarzenie było źródłem rozbłysku gamma. Teraz znaleźliśmy pierwszy układ, który zamieni się w kilonową, a jego poznanie pozwoli lepiej zrozumieć, w jaki sposób wszechświat wzbogaca się w ciężkie pierwiastki, w tym w złoto i platynę.
      Niedawno odkryty układ CPD-29 2176 został szczegółowo zbadany przez naukowców z Embry-Riddle Aeronautical University, University of Auckland, NASA i innych instytucji. Uczeni informują, że układ składa się z dwóch gwiazd krążących wokół siebie po bardzo ciasnych orbitach. Jedna z nich to gwiazda neutronowa, która powstała w wyniku eksplozji supernowej, ale w wyniku której doszło do wyrzucenia znacznie mniejszej ilości materiału niż w typowej eksplozji. Mówimy tutaj o ultra-stripped supernova. Powstają one w układach podwójnych, gdy gwiazda utraci materię na rzecz swojego towarzysza, a następnie ma miejsce eksplozja. Jest ona na tyle delikatna, że nie dochodzi do zniszczenia gwiazdy, która zamienia się w gwiazdę neutronową, ani do wyrzucenia jej towarzysza, który sam może wyewoluować w gwiazdę neutronową.
      Drugim elementem układu jest gwiazda typu Be. Gwiazda ta traci materiał na rzecz gwiazdy neutronowej i naukowcy sądzą, że sama w przyszłości stanie się supernową. Naukowcy i w jej przypadku spodziewają się łagodnej eksplozji, którą układ podwójny przetrwa. będziemy więc mieli do czynienia z układem podwójny dwóch gwiazd neutronowych na bardzo ciasnych orbitach. Będą one generowały fale grawitacyjne, aż w końcu dojdzie do ich połączenia się w eksplozji kilonowej.
      Tym, co skłoniło naukowców do przeprowadzenia badań była niezwykła orbita CPD-29 2176. Zauważyliśmy, że jest ona niemal kołowa w porównaniu z innymi układami tego typu, więc zaczęliśmy badań jego ewolucję. Zauważyliśmy, że tylko bogata historia interakcji w tym układzie pozwala wyjaśnić to, jak wygląda obecnie i przewidzieć, jak będzie wyglądał w przyszłości, stwierdzili naukowcy.
      Układ CPD-29 2176 znajduje się w odległości zaledwie 11 400 lat świetlnych od Ziemi i jest dość jasny. To pozwoliło na zebranie wystarczającej liczby danych, by opisać jego ewolucję. Dzięki temu naukowcy mogli dowiedzieć się, jak wyglądają układy, w których dochodzi do kilonowej. Bardzo ważnym elementem całego systemu jest kołowa orbita oraz fakt, że gwiazda Be bardzo szybko się obraca, co jest pozostałością po czasach, gdy pochłaniała materię z towarzyszącej jej gwiazdy.
      Autorzy badań przypuszczają, że za kilka milionów lat gwiazda Be eksploduje jako ultra-stripped supernowa, zmieni się w gwiazdę neutronową, a w przyszłości dojdzie do połączenia obu gwiazd neutronowych i eksplozji kilonowej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół astronomów poinformował o odkryciu jednych z najgorętszych gwiazd we wszechświecie. Temperatura powierzchni każdej z 8 gwiazd wynosi ponad 100 000 stopni Celsjusza. Są więc one znacznie gorętsze niż Słońce.
      Autorzy badań przeanalizowali dane pochodzące z Southern African Large Telescope (SALT). Ten największy na Półkuli Południowej teleskop optyczny posiada heksagonalne zwierciadło o wymiarach 10x11 metrów. Naukowcy przeprowadzili przegląd danych pod kątem bogatych w hel karłów i odkryli niezwykle gorące białe karły oraz gwiazdy, które się wkrótce nimi staną. Temperatura powierzchni najbardziej gorącego z nich wynosi aż 180 000 stopni Celsjusza. Dla porównania, temperatura powierzchni Słońca to „zaledwie” 5500 stopni Celsjusza.
      Jedna ze zidentyfikowanych gwiazd znajduje się w centrum odkrytej właśnie mgławicy o średnicy 1 roku świetlnego. Dwie inne to gwiazdy zmienne. Wszystkie z gorących gwiazd znajdują sie na zaawansowanych etapach życia i zbliżają do końca etapu białch karłów. Ze względu na niezwykle wysoką temperaturę gwiazdy te są ponadstukrotnie jaśniejsze od Słońca, co jest niezwykłą cechą jak na białe karły.
      Białe karły to niewielkie gwiazdy, rozmiarów Ziemi, ale o olbrzymiej masie, porównywalnej z masą Słońca. To najbardziej gęste z gwiazd wciaż zawierających normalną materię. Z kolei gwiazdy, które mają stać się białymi karłami są od nich kilkukrotnie większe, szybko się kurczą i w ciągu kilku tysięcy lat zmienią się w białe karły.
      Gwiazdy o temperaturze powierzchni 100 000 stopni Celsjusza lub więcej są niezwykle rzadkie. Byliśmy bardzo zdziwieni, gdyż znaleźliśmy ich aż tak wiele. Nasze odkrycie pomoże w zrozumieniu ostatnich etapów ewolucji gwiazd, mówi Simon Jeffery z Armagh Observatory and Planetarium, który stał na czele grupy badawczej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Planety mogą wymuszać na swoich gwiazdach macierzystych, by zachowywały się tak, jakby były młodsze niż są w rzeczywistości. Badania licznych układów przeprowadzone przy użyciu Chandra X-ray Observatory dostarczyły najsilniejszych jak dotąd dowodów, na to, że niektóre planety spowalniają proces starzenia się gwiazd.
      Już wcześniej zauważono pierwsze oznaki „odmładzania” gwiazd przez gorące jowisze, czyli gazowe olbrzymy, które znajdują się na orbitach podobnych do orbity Merkurego lub nawet bliżej. Jednak dopiero teraz udało się zjawisko to dobrze i systematycznie udokumentować.
      W medycynie, żeby stwierdzić, czy obserwowane zjawisko jest prawdziwe, czy też jest to odchylenie od normy, trzeba zaangażować do badań wielu pacjentów. Podobnie jest w astronomii, a te badania dają nam pewność, że gorące jowisze naprawdę powodują, że ich gwiazdy zachowują się tak, jakby były młodsze, mówi kierująca badaniami Nikoleta Ilic z Instytutu Astrofizyki im. Leibniza w Poczdamie.
      Gorące jowisze wpływają na swoje gwiazdy prawdopodobnie za pomocą sił pływowych, powodując, że gwiazdy szybciej obracają się wokół własnej osi niż gdyby nie posiadały tego typu plany. Szybciej obracająca się gwiazda jest bardziej aktywna i wytwarza więcej promieniowania rentgenowskiego, co jest cechą młodszych gwiazd.
      Z upływem czasu wszystkie gwiazdy spowalniają swój obrót i dochodzi na nich do mniejszej liczby rozbłysków. Jednak określenie wieku gwiazd nie jest łatwe, więc trudno jest stwierdzić, czy gwiazda, wokół której krąży gorący jowisz zachowuje się jakby była młodsza, czy rzeczywiście jest młodsza.
      Uczeni rozwiązali ten problem przyglądając się układom podwójnym, gdzie dwie odległe gwiazdy krążą wokół siebie, ale tylko jedna z nich posiada na orbicie gorącego jowisza. Astronomowie wiedzą, że gwiazdy w układach podwójnych są w tym samym wieku. Odległość pomiędzy takimi gwiazdami jest zbyt duża, by wpływały na swoje tempo obrotu lub by gorący jowisz wpływał na gwiazdę, wokół której nie krąży. Zatem gwiazda nie posiadająca gorącego jowisza może posłużyć do kontrolowania rzeczywistego wieku obu gwiazd układu.
      Naukowcy wykorzystali ilość promieniowania rentgenowskiego jako wskaźnik wieku gwiazd. Znaleźli około 30 układów podwójnych, w których jednej z gwiazd towarzyszył gorący jowisz. Okazało się, że gwiazdy z krążącym gorącym jowiszem zwykle emitowały więcej promieni X, zatem były bardziej aktywne, niż gwiazdy bez gazowego olbrzyma.
      Wcześniejsze badania pozwoliły na zdobycie pewnych wskazówek, ale teraz mamy w końcu statystycznie istotne dowody, że niektóre planety wpływają na swoje gwiazdy powodując, że zachowują się one tak, jakby były młodsze, stwierdza współautorka badań Marzieh Hosseini.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed dwoma laty Europejskie Obserwatorium Południowe (ESO) poinformowało o odkryciu najbliższej Ziemi czarnej dziury. Jednak najnowsze badania przeprowadzone m.in. na Uniwersytecie Katolickim w Leuven (KU Leuven) pokazały, że w układzie HR 6819 nie ma czarnej dziury. Składa się on za to z dwóch gwiazd, z których jedna pochłania drugą.
      Autorzy pierwotnych badań nad HR 6819 twierdzili, że odległy od nas o 1000 lat świetlnych układ składa się z czarnej dziury, gwiazdy obiegającaj ją zaledwie w ciągu 40 dni oraz jeszcze jednej gwiazdy, na znacznie szerszej orbicie wokół tych dwóch obiektów.
      Jednak zespół badawczy z KU Leuven, na którego czele stała doktorantka Julia Bodensteiner zaproponował właśnie inną interpretację danych. Zdaniem belgijskich naukowców HR 6819 składa się wyłącznie z dwóch gwiazd, obiegających się wciągu 40 dni. Jedna z tych gwiazd została odarta przez swojego towarzysza ze znacznej ilości materii.
      Osiągnęliśmy limit możliwych do zdobycia danych. Musieliśmy więc przyjąć inną strategię obserwacyjną, by zdecydować, który scenariusz jest bardziej możliwy, mówi Abigail Frost z KU Leuven. Zespoły z ESO i KU Leuven połączyły więc siły.
      Naukowcy zdecydowali się wykorzystać Very Large Telescope Interferometer (VLTI). VLTI to jedyne urządzenie, które mogło dostarczyć nam decydujących informacji, pozwalających na rozstrzygnięcie, jak naprawdę wygląda HR 6819, dodaje Dietrich Baade, współautor wcześniejszych badań. Scenariusze, które rozważaliśmy, były jasno opisane i można było je od siebie łatwo odróżnić za pomocą odpowiednich instrumentów, stwierdzają naukowcy.
      Oba zespoły zgadzały się co do tego, że HR 6819 składa się z dwóch źródeł światła. Trzeba było określić, czy są to czarna dziura z orbitującą wokół gwiazdą oraz odległa gwiazda czy też dwie gwiazdy na ciasnej orbicie, z których jedna została pozbawiona znacznej części materii.
      Do rozstrzygnięcia sporu zaangażowano dwa instrumenty wchodzące w skład VLTI: GRAVITY oraz MUSE. "MUSE potwierdził, że nie ma jasnego źródła światła na szerokiej orbicie, a dzięki wysokiej rozdzielczości GRAVITY byliśmy w stanie zauważyć dwa źródła światła, któe dzieli zaledwie 1/3 odległości pomiędzy Ziemią z Słońcem", stwierdzili uczeni.
      Stwierdzono zatem, że HR 6819 to układ podwójny, w którym niedawno jedna z gwiazd wyssała atmosferę gwiazdy jej towarzyszącej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcom z University of Massachusetts w Amherst udało się rozwiązać jedną z podstawowych zagadek astronomii, na którą odpowiedzi szukano od lat. Dzięki ich pracy, opublikowanej na łamach Nature, wiemy, dlaczego niektóre z najstarszych i najbardziej masywnych galaktyk bardzo szybko przestały być aktywne i nie pojawiają się w nich już nowe gwiazdy.
      Najbardziej masywne galaktyki we wszechświecie powstały niezwykle szybko, krótko po Wielkim Wybuchu sprzed niemal 14 miliardów lat. Jednak z jakiegoś powodu przestały działać. Już nie powstają w nich nowe gwiazdy, mówi profesor Kate Whitaker. To właśnie formowanie się nowych gwiazd jest jednym z procesów umożliwiających wzrost galaktyk. Od dawna wiemy, że wczesne masywne galaktyki stały się nieaktywne, ale dotychczas nie wiedzieliśmy dlaczego.
      Zespół Whitaker połączył dane z teleskopu Hubble'a i ALMA. Pierwszy z nich obserwuje wszechświat w zakresie od ultrafioletu do bliskiej podczerwieni – w tym część zakresu widzialnego dla ludzkiego oka – drugi zaś pracuje w spektrum pomiędzy 0,32 do 3,6 mm, którego nasze oczy nie widzą.
      Naukowcy poszukiwali za pomocą ALMA niewielkich ilości zimnego gazu, który stanowi główne źródło energii dla procesu tworzenia się nowych gwiazd. We wczesnym wszechświecie, a więc i w tych galaktykach, było bardzo dużo tego gazu. Skoro galaktyki te przestały szybko tworzyć nowe gwiazdy, to powinno im sporo takiego gazu pozostać", spekulowali uczeni. Jednak okazało się, że w badanych galaktykach pozostały jedynie śladowej ilości zimnego gazu znajdujące się w okolicach ich centrów. To zaś oznacza, że w ciągu kilku pierwszych miliardów lat galaktyki te albo zużyły cały gaz, albo go wyrzuciły. Niewykluczone też, że istnieje jakiś mechanizm, który blokuje uzupełnianie gazu przez galaktyki.
      W następnym etapie badań naukowcy chcą sprawdzić, jak bardzo zagęszczony jest ten pozostały w starych galaktykach gaz i dlaczego znajduje się wyłącznie w pobliżu ich centrum.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...