Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

W przeszłości Ziemia była wodnym światem?

Rekomendowane odpowiedzi

Przed 3,2 miliardami lat Ziemia mogła być wodnym światem. Tak przynajmniej wynika z badań, których wyniki opublikowano w Nature Geoscience. Badania wykonane przez naukowców z University of Colorado Boulder pomogą lepiej zrozumieć, w jaki sposób i gdzie na Ziemi pojawiły się po raz pierwszy organizmy jednokomórkowe, uważa profesor Boswell Wing.

Wing i Benjamin Johnson prowadzili badania skał w miejscu znanym jako Panorama w północno-zachodniej części australijskiego Outbacku. Dzisiaj to porośnięte krzakami wzgórza poprzecinane dolinami wyschniętych rzek. To dziwne miejsce, mówi Johnson. Jednak można tam badać liczące 3,2 miliarda lat skały, które w przeszłości stanowiły dno oceanu. W regionie Panorama geolodzy mieli wyjątkową okazję zbadania składu chemicznego wody oceanicznej sprzed miliardów lat. Oczywiście samej wody tam nie ma, ale są skały, które wchodziły w interakcje z tą wodą i noszą ślady tej interakcji, dodaje uczony. To tak, jakby analizować ziarna kawy, by dowiedzieć się czegoś o wodzie, z którą miały styczność, wyjaśnia.

Naukowców szczególnie interesowały izotopy tlenu. Cięższy tlen-18 i lżejszy tlen-16.

Uczeni odkryli, że przed 3,2 miliardami lat woda morska musiała mieć inny skład niż obecnie. Było w niej minimalnie więcej tlenu-18. To niewielka różnica, ale bardzo znacząca dla naszego zrozumienia przeszłości Ziemi.

Wing wyjaśnia, że obecnie lądy pokryte są glebami bogatymi w iły, które niczym odkurzacz wyciągają z wody 18O. Naukowcy wysunęli więc hipotezę, która mówi, że najbardziej prawdopodobnym wyjaśnieniem nadmiaru tlenu-18 w dawnym oceanie jest przyjęcie, że wówczas nie było wielkich pokrytych bogatymi glebami mas lądowych, które wyciągałyby izotop z oceanu. Co, oczywiście, nie oznacza, że w ogóle nie było suchego lądu.

Mogły istnieć niewielkie mikrokontynenty. Uważamy jednak, że nie istniały wielkie formacje na globalną skalę, z jakimi mamy do czynienia obecnie, mówi Wing. To oczywiście rodzi pytanie, kiedy rozpoczęły się ruchy tektoniczne, które ostatecznie utworzyły Ziemię, jaką znamy obecnie. Wing i Johnson nie potrafią na nie odpowiedzieć. Już jednak planują badania młodszych formacji skalnych rozsianych od Arizony po RPA. Spróbują zidentyfikować moment, w którym na Ziemi pojawiły się pierwsze duże obszary suchego lądu.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Teleskop Webba wykrył w atmosferze planety K2-18b molekuły zawierające węgiel, w tym metan oraz dwutlenek węgla. Odkrycie to kolejna wskazówka, że K2-18b może być planetą hyceańską (hycean planet). To termin zaproponowany niedawno przez naukowców z Uniwersytetu w Cambridge na określenie hipotetycznej klasy planet. Pochodzi od połączenia słów „wodór” (hydrogen) i „ocean”. Oznacza potencjalnie nadające się do zamieszkania gorące planety pokryte oceanami, które posiadają bogatą w wodór atmosferę. Zdaniem brytyjskich uczonych mogą być bardziej powszechne niż planety typu ziemskiego.
      Jeśli przyjmiemy, że planety hyceańskie rzeczywiście istnieją i stanowią nową klasę planet, oznacza to, że ekosfera – czyli obszar wokół gwiazdy, w którym istniejące planety mogą podtrzymać życie – jest większy, niż ekosfera oparta wyłącznie na istnieniu wody w stanie ciekłym.
      K2-18b krąży w ekosferze chłodnego karła K2-18 znajdującego się w odległości 120 lat świetlnych od Ziemi w Gwiazdozbiorze Lwa. Jest ona 8,6 razy bardziej masywna od Ziemi. Rozmiary plasują ją pomiędzy wielkością Ziemi a Neptuna. W Układzie Słonecznym nie istnieje żaden „mini-Neptun”, dlatego słabo rozumiemy takie światy. Jeśli zaś K2-18b jest rzeczywiście planetą hyceańską, jeśli taki typ planet istnieje, mogą być one dobrym celem poszukiwania życia. Tradycyjnie życia poszukiwaliśmy na mniejszych skalistych planetach, jednak atmosfery większych światów hyceańskich jest łatwiej badać, mówi Nikku Madhusudhan z Uniwersytetu w Cambridge. Kierował on pracami zespołu, który zaproponował istnienie światów hyceańskich. Właśnie zresztą na podstawie badań K2-18b.
      Obecność w atmosferze tej planety dużych ilości metanu i dwutlenku węgla przy braku amoniaku wspiera hipotezę, że istnieje tam ocean przykryty bogatą w wodór atmosferę. Jakby tego było mało, wstępne dane przekazane przez Webba mogą wskazywać na obecność w atmosferze siarczku dimetylu (DMS). Na Ziemi związek ten jest wytwarzany wyłącznie przez organizmy żywe, a większość DMS obecnego w atmosferze naszej planety zostało wyemitowane przez fitoplankton. Jednak ewentualne potwierdzenie istnienia tego związku w atmosferze K2-18b wymaga dalszych badań.
      Mimo, że planeta znajduje się w ekosferze, a jej atmosfera zawiera molekuły z węglem, nie oznacza to jeszcze, że może na niej istnieć życie. Promień K2-18b jest o 2,6 razy większy od promienia Ziemi. To oznacza, że jej wnętrze prawdopodobnie stanowi lód poddany wysokiemu ciśnieniu, na jego powierzchni znajduje się ocean, a planetę otacza atmosfera cieńsza niż atmosfera Ziemi. Temperatura oceanu może być zbyt wysoka, by mogło powstać w nim życie. Być może jest na tyle wysoka, że nie ma tam wody w stanie ciekłym.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Niewidoczna z Ziemi strona Księżyca zawiera znacznie mniej wody, niż część widoczna – donoszą chińscy naukowcy. Takie zaskakujące wnioski płyną z badań próbek bazaltu zebranych przez misję Chang'e-6. Wyniki badań, opublikowane na łamach Nature, pozwolą lepiej zrozumieć ewolucję ziemskiego satelity.
      Dostarczone na Ziemię próbki zawierały mniej niż 2 mikrogramy wody w gramie. Nigdy wcześniej nie zanotowano tak mało H2O na Księżycu. Wcześniejsze badania próbek ze strony widocznej z Ziemi zawierały nawet do 200 mikrogramów wody na gram.
      Naukowcy potrafią mierzyć zawartość wody w materiale z dokładnością do 1–1,5 części na milion. Już widoczna strona Księżyca jest niezwykle sucha. A ta niewidoczna całkowicie zaskoczyła naukowców. Nawet najbardziej suche pustynie na Ziemi zawierają około 2000 części wody na milion. To ponad tysiąckrotnie więcej, niż zawiera jej niewidoczna z Ziemi część Księżyca, mówi główny autor badań, profesor Hu Sen z Instytutu Geologii i Geofizyki Chińskiej Akademii Nauk.
      Obecnie powszechnie przyjęta hipoteza mówi, że Księżyc powstał w wyniku kolizji Ziemi z obiektem wielkości Marsa. Do zderzenia doszło 4,5 miliarda lat temu, a w wyniku niezwykle wysokich temperatur, będących skutkiem zderzenia, Księżyc utracił wodę i inne związki lotne. Debata o tym, jak dużo wody pozostało na Księżycu, trwa od dekad. Dotychczas jednak dysponowaliśmy wyłącznie próbkami ze strony widocznej z Ziemi.
      Chińska misja Chang'e-6 została wystrzelona w maju 2024 roku, wylądowała w Basenie Południowym – Aitken i w czerwcu wróciła z niemal 2 kilogramami materiału. To pierwsze w historii próbki pobrane z niewidocznej części Księżyca.
      Zespół profesora Hu wykorzystał 5 gramów materiału, na który składało się 578 ziaren o rozmiarach od 0,1 do 1,5 milimetra. Po przesianiu i dokładnej analizie okazało się, że 28% z nich stanowi bazalt. I to on właśnie został poddany badaniom.
      Ilość wody w skałach księżycowych to bardzo ważny test hipotezy o pochodzeniu Księżyca. Jeśli w skałach byłoby 200 części wody na milion lub więcej, byłoby to poważne wyzwanie dla obecnie obowiązującej hipotezy i naukowcy musieliby zaproponować nowy model powstania Księżyca, wyjaśnia profesor Hu. Wyniki badań jego zespołu stanowią więc potwierdzenie tego, co obecnie wiemy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na łamach Physical Review Research ukazał się artykuł, którego autorzy informują o skonstruowaniu urządzenia generującego energię elektryczną z... ruchu obrotowego Ziemi. Christopher F. Chyba (Princeton University), Kevin P. Hand (Jet Propulsion Laboratory) oraz Thomas H. Chyba (Spectral Sensor Solutions) postanowili przetestować hipotezę, zgodnie z którą energię elektryczną można generować z ruchu obrotowego Ziemi za pomocą specjalnego urządzenia wchodzącego w interakcje z ziemskim polem magnetycznym.
      W 2016 roku Christopher Chyba i Kevin Hand opublikowali na łamach Physical Review Applied artykuł, w którym rozważali możliwość użycia ruchu obrotowego Ziemi i jej pola magnetycznego do generowania energii elektrycznej. Artykuł został skrytykowany, gdyż obowiązując teorie wskazywały, że każde napięcie elektryczne wygenerowane w takiej sytuacji zostanie zniwelowane wskutek przemieszczenia się elektronów podczas tworzenia pola elektrycznego.
      Naukowcy zaczęli więc szukać sposobów na uniknięcie niwelacji napięcia. Żeby sprawdzić swoje pomysły stworzyli urządzenie złożone z cylindra z ferrytu manganowo-cynkowego, który działał jak osłona magnetyczna. Cylinder umieścili na linii północ-południe pod kątem 57 stopni. W ten sposób był on zorientowany prostopadle do ruchu obrotowego planety i ziemskiego pola magnetycznego. Na obu końca cylindra umieścili elektrody. Pomiary wykazały, że w ten sposób wygenerowali napięcie elektryczne rzędu 18 mikrowoltów, którego nie byli w stanie przypisać do żadnego innego źródła, niż ruch obrotowy Ziemi.
      Eksperyment odbywał się w ciemności, by uniknąć efektu fotoelektrycznego, uczeni wzięli pod uwagę napięcie, jakie mogło się pojawić w wyniku różnicy temperatur pomiędzy oboma końcami cylindra. Zauważyli też, że napięcie – zgodnie z przewidywaniami – nie pojawia się przy innych ustawiniach cylindra. Takie same wyniki uzyskano podczas badań w innej lokalizacji o podobnym środowisku geomagnetycznym.
      Eksperyment nie został jeszcze powtórzony przez inne zespoły badawcze, które mogłyby sprawdzić, czy zmierzone napięcie nie jest wynikiem zjawiska, którego trzej naukowcy nie wzięli pod uwagę. Autorzy badań stwierdzają, że jeśli uzyskane przez nich wyniki zostaną potwierdzone, warto będzie rozpocząć prace nad zwiększeniem uzyskiwanego napięcia do bardziej użytecznego poziomu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zwierzęta są nie tylko mieszkańcami Ziemi, ale też jej architektami, kształtującymi krajobraz, w którym żyją. Termity tworzą wysokie kopce i rozległe podziemne korytarze, hipopotamy drążą ścieżki i kanały, a bobry tworzą rozległe mokradła. Dotychczas jednak badania nad zwierzęcymi architektami krajobrazu skupiały się na konkretnych pojedynczych gatunkach. Profesor Gemma Harvey i jej zespół z Queen Mary University w Londynie opublikowali na łamach PNAS pierwszą globalną syntezę wiedzy o takich gatunków. Uczeni zidentyfikowali 603 gatunki, rodzaje i rodziny, które wpływają na procesy toczące się na powierzchni Ziemi.
      Setki gatunków owadów, ssaków, ryb, ptaków czy płazów w znaczący sposób kształtują swoje środowisko. Najczęściej są to przykłady bardzo nieoczywiste. Okazuje się na przykład, że łososie podczas tarła przemieszczają tyle osadów, ile przemieszcza się podczas powodzi. Zwierzęta słodkowodne odgrywają zresztą olbrzymią rolę w kształtowaniu środowiska. Mimo, że wody słodkie zajmują jedynie 2,4% powierzchni planety, to żyje w nich ponad 30% ze zidentyfikowanych gatunków zwierzęcych architektów.
      Autorzy badań ostrożnie obliczają, że energia włożona przez te gatunki w kształtowanie terenu wynosi co najmniej 76 000 GJ, czyli tyle, co energia setek tysięcy potężnych powodzi. To daje wyobrażenie, jak wielką rolę odgrywają zwierzęta. A jest to liczba z całą pewnością znacząco zaniżona, gdyż mamy poważne luki w wiedzy, szczególnie tej dotyczące obszarów tropikalnych i subtropikalnych, gdzie bioróżnorodność jest naprawdę duża, a liczba przeprowadzonych badań ograniczona.
      Dużą rolę w kształtowaniu krajobrazu odgrywają na przykład termity, których kopce w Brazylii pokrywają tysiące kilometrów kwadratowych terenu. Termity czy inni architekci krajobrazu – mrówki – są jednak bardzo rozpowszechnione. Około 1/3 ze wspomnianych w pracy gatunków to gatunki rzadkie, endemiczne lub zagrożone. Jeśli one znikną, dojdzie też do zatrzymania procesów, których są autorami. Będzie to nie tylko strata dla ludzkości, która nigdy nie pozna istoty tych procesów, ale też olbrzymie zagrożenie dla ekosystemów, dla których wiele z tego typu zjawisk odgrywa kluczową rolę.
      Nasze badania pokazują, że rola zwierząt w kształtowaniu krajobrazu Ziemi jest znacznie większa, niż sądziliśmy. Od bobrów tworzących mokradła, po mrówki budujące kopce z Ziemi, procesy te mają kluczowe znaczenie dla środowiska. Doprowadzając do utraty bioróżnorodności ryzykujemy ich utratę, mówi profesor Harvey.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Utrata lodu morskiego w Antarktyce prowadzi do większego wydzielania ciepła z oceanu do atmosfery oraz do zwiększonej liczby burz, donoszą naukowcy z British Antarctic Survey. Autorzy badań, którymi kierowali uczeni z brytyjskiego Narodowego Centrum Oceanografii (NOC), skupili się na zbadaniu skutków rekordowo małego zasięgu lodu pływającego w Antarktyce zimą 2023 roku.
      Badania warstwy atmosfery znajdującej się bezpośrednio nad powierzchnią oceanu pokazały, że po utracie lodu ocean oddaje do atmosfery dwukrotnie więcej ciepła niż wcześniej. Ma to znaczenie dla obu stron miejsca styku wód oceanicznych z atmosferą. Z jednej strony w atmosferze, szczególnie na wyższych szerokościach geograficznych Oceanu Południowego, pojawia się więcej burz – w niektórych miejscach jest ich nawet o 7 więcej w miesiącu – z drugiej zaś strony chłodniejsze wody powierzchniowe oceanu stają się gęstsze niż wcześniej. Autorzy badań ostrzegają, że może mieć to nieznane obecnie konsekwencje dla głębokich prądów oceanicznych. Gęste wody z powierzchni mogą się zanurzać i zaburzać te prądy.
      Miejsca, w których pojawiają się te nowe gęste wody powierzchniowe znajdują się dość daleko od tych miejsc szelfu w Antarktyce, gdzie tworzą są najgęstsze i najgłębsze prądy oceaniczne. Jednak ochładzanie się i spowodowane tym zanurzanie wód z regionów wcześniej pokrytych przez lód może doprowadzić do wynurzenia się ciepłych wód, które były dotychczas utrzymywane z dala od lodu i spowodować w przyszłości przyspieszone topnienie lodu. Pilnie potrzebujemy nowych analiz tego zjawiska i sprzężenia zwrotnego, by zrozumieć, jak masowa utrata lodu w 2023 roku i w roku bieżącym, wpłyną na cyrkulację wody w Oceanie Południowym. To kluczowe zagadnienie do zrozumienia mechanizmu pochłaniania ciepła i węgla przez ocean oraz roztapiania lodów Antarktyki, mówi współautor badań, doktor Andrew Meijers.
      Profesor Simon Josey z NOC dodaje, że jest jeszcze zbyt wcześnie, by przesądzać, czy rok 2023 i jego rekordowo niski poziom lodu morskiego oznacza fundamentalną zmianę w ilości antarktycznego lodu morskiego. Jednak nasze badania pokazują, że jeśli w przyszłości dojdzie do równie silnych zmian, to należy spodziewać się ekstremalnych zjawisk.
      Powinniśmy więcej uwagi przywiązywać do badań związku pomiędzy utratą lodu pływającego na Antarktyce, utratą ciepła przez oceany i zmianami pogodowymi. Skutki tych zjawisk mogą być bowiem odczuwane daleko poza Antarktyką.
      Autorzy badań obawiają się, że jeśli do tak dużej utraty lodu będzie dochodziło w kolejnych latach, zmiany będą coraz bardziej dramatyczne i może to przyspieszyć utratę lodu w Antarktyce.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...