Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

W przeszłości Ziemia była wodnym światem?

Recommended Posts

Przed 3,2 miliardami lat Ziemia mogła być wodnym światem. Tak przynajmniej wynika z badań, których wyniki opublikowano w Nature Geoscience. Badania wykonane przez naukowców z University of Colorado Boulder pomogą lepiej zrozumieć, w jaki sposób i gdzie na Ziemi pojawiły się po raz pierwszy organizmy jednokomórkowe, uważa profesor Boswell Wing.

Wing i Benjamin Johnson prowadzili badania skał w miejscu znanym jako Panorama w północno-zachodniej części australijskiego Outbacku. Dzisiaj to porośnięte krzakami wzgórza poprzecinane dolinami wyschniętych rzek. To dziwne miejsce, mówi Johnson. Jednak można tam badać liczące 3,2 miliarda lat skały, które w przeszłości stanowiły dno oceanu. W regionie Panorama geolodzy mieli wyjątkową okazję zbadania składu chemicznego wody oceanicznej sprzed miliardów lat. Oczywiście samej wody tam nie ma, ale są skały, które wchodziły w interakcje z tą wodą i noszą ślady tej interakcji, dodaje uczony. To tak, jakby analizować ziarna kawy, by dowiedzieć się czegoś o wodzie, z którą miały styczność, wyjaśnia.

Naukowców szczególnie interesowały izotopy tlenu. Cięższy tlen-18 i lżejszy tlen-16.

Uczeni odkryli, że przed 3,2 miliardami lat woda morska musiała mieć inny skład niż obecnie. Było w niej minimalnie więcej tlenu-18. To niewielka różnica, ale bardzo znacząca dla naszego zrozumienia przeszłości Ziemi.

Wing wyjaśnia, że obecnie lądy pokryte są glebami bogatymi w iły, które niczym odkurzacz wyciągają z wody 18O. Naukowcy wysunęli więc hipotezę, która mówi, że najbardziej prawdopodobnym wyjaśnieniem nadmiaru tlenu-18 w dawnym oceanie jest przyjęcie, że wówczas nie było wielkich pokrytych bogatymi glebami mas lądowych, które wyciągałyby izotop z oceanu. Co, oczywiście, nie oznacza, że w ogóle nie było suchego lądu.

Mogły istnieć niewielkie mikrokontynenty. Uważamy jednak, że nie istniały wielkie formacje na globalną skalę, z jakimi mamy do czynienia obecnie, mówi Wing. To oczywiście rodzi pytanie, kiedy rozpoczęły się ruchy tektoniczne, które ostatecznie utworzyły Ziemię, jaką znamy obecnie. Wing i Johnson nie potrafią na nie odpowiedzieć. Już jednak planują badania młodszych formacji skalnych rozsianych od Arizony po RPA. Spróbują zidentyfikować moment, w którym na Ziemi pojawiły się pierwsze duże obszary suchego lądu.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Zwykle zastanawiamy się, ile pozasłonecznych planet zawierających życie jesteśmy w stanie zaobserwować z Ziemi. Jednak pytanie to można odwrócić. I właśnie to zrobili profesorowie Lisa Kaltenegger z Cornell University i Joshua Pepper z Lehigh University. Postanowili oni zbadać, z ilu układów planetarnych można bezpośrednio obserwować Ziemię. Innymi słowy, ile potencjalnych cywilizacji pozaziemskich, znajdujących się na podobnym etapie rozwoju, może nas badać.
      Uczeni zidentyfikowali 1004 gwiazdy ciągu głównego, czyli dość podobne do Słońca, które mogą posiadać podobne do Ziemi planety w ekosferze. Wszystkie wspomniane gwiazdy znajdują się w promieniu 300 lat świetlnych od Ziemi, zatem w odległości, z której obca cywilizacja powinna być w stanie wykryć chemiczne sygnatury życia w ziemskiej atmosferze.
      Odwróćmy nasz punkt widzenia. Przenieśmy się na inne planety i zapytajmy, z których układów planetarnych można obserwować tranzyty Ziemi na tle Słońca, mówi Kaltenegger. Uczona przypomina, że obserwowanie tranzytów to kluczowy sposób obserwowania planet pozasłoneczych i określania ich cech charakterystycznych. Już wkrótce, dzięki Teleskopowi Kosmicznemu Jamesa Webba (JWST), będziemy w stanie – badając tranzyty – określać skład chemiczny atmosfer planet spoza Układu Słonecznego. Jeśli z naszego punktu widzenia jakaś planeta przechodzi na tle swojej gwiazdy, zatem znajduje się w linii prostej pomiędzy swoją gwiazdą a Ziemią, to już teraz – badając zmianę jasności gwiazdy przesłoniętej przez planetę – próbujemy określać np. wielkość planety. Instrument taki jak JWST pozwoli badać światło gwiazdy przechodzące przez atmosferę planety i określić skład chemiczny tej planety. Będziemy więc mogli wykrywać w niej molekuły i inne elementy wskazujące na istnienie życia. To samo jednak mogą robić potencjalne cywilizacje pozaziemskie.
      Jedynie niewielki ułamek egzoplanet przechodzi na tle swojej gwiazdy z naszego punktu widzenia. Z punktu widzenia wszystkich zidentyfikowanych przez nas układów Ziemia przechodzi na tle Słońca. A to powinno przyciągnąć uwagę potencjalnych obserwatorów. Jeśli poszukujemy inteligentnego życia, które może nas znaleźć i zechcieć nawiązać kontakt, to właśnie stworzyliśmy mapę, gdzie należy szukać, dodaje Kaltenegger.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Amerykańsko-niemiecki zespół naukowcy zidentyfikował 24 planety, które mogą lepiej nadawać się do życia niż Ziemia. Są wśród nich starsze, nieco większe, nieco cieplejsze i prawdopodobnie bardziej wilgotne od Ziemi. Uczeni stwierdzają również, że życie może łatwiej rozwijać się na planetach, które wolniej niż Ziemia krążą wokół gwiazd starszych od Słońca.
      Wszystkie ze zidentyfikowanych planet znajdują się w odległości większej niż 100 lat świetlnych od Ziemi, a ich zidentyfikowanie pozwoli w przyszłości skupić się na nich w poszukiwaniu śladów życia pozaziemskiego. Planety takie mogłyby być szczegółowo badane za pomocą Teleskopu Kosmicznego Jamesa Webba, obserwatoriów LUVIOR czy PLATO.
      Przyszłe teleskopy kosmiczne pozwolą na zdobycie kolejnych danych, dzięki czemu lepiej wybierzemy kandydatów do dalszych badań. Musimy skupić się na tych planetach, które posiadają najbardziej obiecujące warunki do powstania życia. Powinniśmy jednak uważać, by nie utknąć na poszukiwaniach drugiej Ziemi, gdyż mogą istnieć planety zdolne do podtrzymania życia innego niż znamy, mówi profesor Schulze-Makuch z Washington State University i Uniwersytetu Technicznego w Berlinie.
      Gwiazdy takie jak Słońce żyją około 10 miliardów lat. Jako, że na Ziemi bardziej złożone formy życia powstały dopiero po 4 miliardach lat, wiele gwiazd typu słonecznego może umrzeć, zanim w ich układzie planetarnym pojawią się złożone formy życia. Dlatego też naukowcy przyglądali się nie tylko gwiazdom typu widmowego G, czyli żółtym karłom, do których należy Słońce. Przeanalizowali też znane nam egzoplanety krążące wokół pomarańczowych karłów (gwiazda typu K). Są one chłodniejsze, mniej masywne i mniej jasne, niż żółte karły, ale za to żyją od 20 do 70 miliardów lat.
      Warto jednak pamiętać, że sama planeta nie może być zbyt stara. Nie może bowiem wyczerpać swojego wewnętrznego ciepła i utracić ochronnego pola magnetycznego. Ziemia liczy sobie obecnie około 4,5 miliarda lat. Zdaniem specjalistów najlepszy dla planety okres na podtrzymanie i rozwój życia to wiek 5–8 miliardów lat.
      Ważna jest też wielkość planety. Planeta o 10% większa od Ziemi powinna mieć więcej lądów, a taka o masie około 50% większej od Ziemi powinna dłużej utrzymać wewnętrzne ciepło i charakteryzować się silniejszym polem magnetycznym, które na dłużej zatrzyma atmosferę. Autorzy badań przypominają też o wodzie mówiąc, że nieco więcej wody, szczególnie w postaci wilgoci w powietrzu i chmur, powinno pomóc życiu. Podobnie jest z temperaturą. Planety o średniej temperaturze około 5 stopni Celsjusza wyższej niż Ziemi, w połączeniu z większą wilgotnością, powinny wyewoluować większą różnorodność form życia.
      Schulze-Makuch i jego zespół uznali, że supergościnna planeta powinna krążyć wokół pomarańczowego karła, liczyć sobie 5–8 miliardów lat, być o 10% większa i nie więcej niż 50% bardziej masywna niż ZIemia, posiadać średnią temperaturę powierzchni o 5 stopni Celsjsuza wyższą niż na Ziemi, jej wilgotna atmosfera powinna zawierać 25–30 procent tlenu, a resztę powinny stanowić gazy obojętne, powinny na niej znajdować się rozproszone masy wody i lądów, z wieloma płyciznami i archipelagami. Planeta powinna posiadać duży księżyc o masie od 1 do 10 procent masy planety i znajdujący się w odległości 10–100 średnic planety, powinny na niej zachodzić procesy geologiczne takie jak tektonika płyt lub podobne oraz powinna posiadać silne pole magnetyczne.
      Jako, że kilku z tych elementów (jak np. rozkład mas lądowych, obecność księżyca czy procesów tektonicznych) nie jesteśmy obecnie w stanie badać, naukowcy skupili się na elementach, które już teraz możemy obserwować. Badali zatem typ gwiazdy, wiek planety, jej prawdopodobną wielkość i masę oraz panujące temperatury.
      Gdy naukowcy przyjrzeli się bliżej 24 wybranym przez siebie planetom okazało się, że 9 z nich krąży wokół gwiazdy typu K, 16 z nich ma od 5 do 8 miliardów lat, a na 5 panują temperatury odbiegające od temperatury optymalne nie więcej niż o 10 stopni Celsjusza. Tylko jeden z kandydatów na planetę – KOI 5715.01 – spełniał trzy kryteria planety supergościnnej. Jednak średnie temperatury na tej planecie wynoszą prawdopodobnie 11,59 stopnia Celsjusza, czyli mniej niż na Ziemi. Naukowcy nie wykluczają jednak, że panuje tam silniejszy efekt cieplarniany niż na naszej planecie, więc temperatury te mogą być wyższe, co może czynić KOI 5715.01 planetą supergościnną.
      Szczegóły badań opublikowano w piśmie Astrobiology.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od dawna słyszymy teorię, że w przeszłości Ziemia była sucha, a wodę przyniosły z czasem bombardujące ją komety i asteroidy. Tymczasem badania opublikowane właśnie na łamach Science sugerują, że woda mogła istnieć na naszej planecie od zarania jej dziejów.
      Naukowcy z Centre de Recherches Pétrographiques et Géochimiques we Francji odkryli, że grupa kamiennych meteorytów o nazwie chondryty enstatytowe, zawiera na tyle dużo wodoru, by dostarczyć na Ziemię co najmniej trzykrotnie więcej wody niż jej zawartość w ziemskich oceanach. Chondryty enstatytowe mają skład taki, jak obiekty z wewnętrznych części Układu Słonecznego, zatem taki, z jakiego powstała Ziemia.
      Nasze odkrycie pokazuje, że materiał, z jakiego powstała Ziemia mógł w znacznym stopniu dostarczyć jej wodę. Materiały zawierające wodór były obecne w wewnętrznych częściach Układu Słonecznego w czasie, gdy formowały się planety skaliste. Nawet jeśli temperatura była wówczas zbyt wysoka, by woda występowała w stanie ciekłym, mówi główny autor badań, Laurette Piani.
      Najnowsze odkrycie to spore zaskoczenie, gdyż zawsze sądzono, że materiał, z którego powstała Ziemia, był suchy. Pochodził bowiem z wewnętrznych obszarów formującego się Układu Słonecznego, gdzie temperatury nie pozwalały na kondensację wody.
      Chondryty enstatytowe pokazują, że woda nie musiała dotrzeć na naszą planetę z krańców Układu. Są rzadkie, stanowią jedynie 2% meteorytów znajdowanych na Ziemi. Jednak ich podobny do Ziemi skład izotopowy wskazuje, że jest z takiego właśnie materiału powstała planeta. Mają bowiem podobne izotopy tlenu, tytanu, wapnia, wodoru i azotu co Ziemia. Jeśli chondryty enstatynowe tworzyły Ziemię – z ich skład izotopowy na to wskazuje – to oznacza, że miały one w sobie tyle wody, by wyjaśnić jej pochodzenie na naszej planecie. To niesamowite, ekscytuje się współautor badań, Lionel Vacher.
      Badania wykazały też, że znaczna część azotu obecnego w ziemskiej atmosferze może pochodzi z chondrytów enstatynowych. Mamy do dyspozycji niewiele chondrytów estatynowych, które nie zostały zmienione przez asteroidę, której były częścią, ani przez Ziemię. Bardzo ostrożnie dobraliśmy chondryty do naszych badań i zastosowaliśmy specjalne techniki analityczne, by upewnić się, że to, co znajdziemy, nie pochodzi z Ziemi, mówi uczony. Badania wody w meteorytach zostały przeprowadzone za pomocą spektrometrii mas i spektrometrii mas jonów wtórnych.
      Założono, że chondryty enstatynowe uformowały się blisko Słońca. Były więc powszechnie uznawane za suche i prawdopodobnie z tego powodu nie przeprowadzono ich dokładnych badań pod kątem obecności wodoru, mówi Piani.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fizycy z Niemiec i Ameryki Północnej poinformowali o planach wybudowania u wybrzeży Kanady największego na świecie obserwatorium neutrin. The Pacific Ocean Neutrino Experiment (P-ONE) ma rejestrować najbardziej energetyczne neutrina pochodzące z ekstremalnych zjawisk w Drodze Mlecznej.
      Obserwatoria neutrin rejestrują promieniowanie Czerenkowa, które pojawia się, gdy neutrino przechodzące przez Ziemię trafi w jądro atomu, co powoduje powstanie szybko poruszających się cząstek. Obecnie największym tego typu urządzeniem jest opisywane przez nas IceCube, które korzysta z licznych fotodetektorów zawieszonych na linach, które są opuszczone głęboko w lód na Biegunie Południowym. Całość zajmuje 1 km3. W 2013 roku to właśnie IceCube zarejestrował pierwsze neutrino pochodzące spoza naszej galaktyki. Niedawno informowaliśmy o wykryciu tajemniczych sygnałów, które mogą doprowadzić do rewolucji w Modelu Standardowym.
      Jak mówi Elisa Resconi w Uniwersytetu w Monachium, która stoi na czele P-ONE, wyniki uzyskane dotychczas przez IceCube dowodzą, że potrzebne są dodatkowe obserwatoria neutrin oraz rozbudowa samego IceCube. Stoimy w przededniu istnienia astronomii opartej o neutrino. Jeśli jednak będzie się ona opierała o jedno obserwatorium, to jej rozwój potrwa bardzo długo, być może całe dekady.
      P-ONE ma składać się z 7 grup po 10 lin z czujnikami. Całość ma mieć objętość 3 km3. Dzięki temu, że będzie większe, obserwatorium będzie w stanie wyłapać rzadsze neutrina o większej energii. Będzie najbardziej czułe w zakresie dziesiątku teraelektronowoltów, podczas gdy IceCube jest w stanie zarejestrować neutrina o energiach rzędu pojedynczych TeV. P-ONE będzie obserwowało też inną część nieboskłonu, wyłapując głównie neutrina z południowej hemisfery. Częściowo jednak zakres prac obu obserwatoriów będzie się nakładał, zatem możliwa będzie niezależna weryfikacja obserwacji.
      Nowe obserwatorium zostanie umieszczone na głębokości około 2,6 km, w Cascadia Basin około 200 kilometrów od wybrzeży Kolumbii Brytyjskiej. Jego budowniczowie chcą wykorzystać już istniejącą infrastrukturę. Znajduje się tam bowiem 800-kilometrowe okablowanie używane przez Ocean Networks Canada, które zasila i przesyła dane ze znajdujących się na dnie oceanu urządzeń badawczych.
      Pierwsze eksperymenty w tym miejscu rozpoczęto w 2018 roku, kiedy to opuszczono dwie liny z czujnikami i stwierdzono, że wybrane miejsce ma odpowiednie właściwości optyczne do wykrywania neutrin. Obecnie P-ONE planuje opuszczenie dodatkowej stalowej liny zawierającej spektrometry, lidary i wykrywacze mionów. Pod koniec 2023 roku ma zostać zainstalowana pierwsza część obserwatorium, pierścień z 7 linami o długości kilometra każda. Jeśli to się uda, naukowcy zwrócą się z wnioskiem o grant w wysokości 50–100 milionów USD na dokończenie budowy obserwatorium. Koszty osobowe pochłoną kolejne 100 milionów USD.
      Resconi ma nadzieję, że prace nad budową P-ONE zakończą się przed rokiem 2030, jednak przyznaje, że jest to plan bardzo ambitny. Główną niewiadomą jest działanie czujników w warunkach dużego ciśnienia, obecności soli i stworzeń morskich.
      To nie pierwszy pomysł, by umieścić obserwatorium neutrin w morzu. Już w 2014 roku pracę miał rozpocząć umieszczony w Morzu Śródziemnym KM3NeT. Dotychczas udało się zainstalować jedynie 2 z 230 lin. Obecnie planuje się, że rozpocznie on pracę w 2026 roku. Z kolei u wybrzeży Francji powstaje jeszcze inny wykrywacz. Z planowanych 115 lin umieszczono dotychczas jedynie 6. Uruchomienie planowane jest na rok 2024.
      Jak mówi Resconi, jedną z największych trudności w budowie obserwatoriów neutrin jest brak odpowiednio przeszkolonych fachowców. Fizycy wiele rzeczy robią samodzielnie. Na przykład zbudowane przez nich skrzynki, które służą do łączenia kabli na dnie morza, zawiodły. Uczona ma nadzieję, że dzięki doświadczeniu pracowników Ocean Networks Canada uda się uniknąć kolejnych błędów. Dzięki zespołowi 30–40 osób zajmujących się budową infrastruktury, fizycy mogą zająć się stroną naukową przedsięwzięcia.

      « powrót do artykułu
×
×
  • Create New...