Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Trzęsienia ziemi utrudniają kaszalotom znalezienie pokarmu

Recommended Posts

Naukowcy badający kaszaloty spermacetowe (Physeter macrocephalus) u wybrzeży Kaikōura w Nowej Zelandii odkryli, że trzęsienia ziemi wpływają na ich zdolność znajdowania pokarmu przez co najmniej rok.

Wyniki uzyskane przez zespół prowadzony przez specjalistów z Uniwersytetu Otago zapewniają wgląd w to, jak drapieżniki szczytowe, takie jak kaszaloty, reagują i przystosowują się do naturalnych zaburzeń na dużą skalę.

Autorzy raportu z pisma Deep Sea Research Part I wyjaśniają, że trzęsienie ziemi i wstrząsy wtórne wpływają na kaszaloty na kilka sposobów. Walenie te bazują na dźwięku zarówno podczas komunikacji, jak i wykrywania ofiar czy nawigacji. Z tego względu są więc bardzo wrażliwe na dźwięki. Tymczasem trzęsienia ziemi generują pod wodą bardzo głośne dźwięki, które mogą wywoływać urazy, uszkodzenia słuchu czy zmiany w zachowaniu.

Zrozumienie, jak dzikie populacje reagują na trzęsienia, pomaga nam określić ich poziom ich odporności - wyjaśnia dr Marta Guerra.

Czternastego listopada 2016 r. trzęsienie ziemi w Kaikōura o magnitudzie 7,8 st. w skali Richtera wyzwoliło masywne osuwiska i prądy zawiesinowe, które wymyły do oceanu 850 t osadów. Kanion Kaikōura stanowi całoroczne żerowisko dla kaszalotów, które spełniają istotną rolę jako drapieżniki szczytowe.

Dr Guerra podkreśla, że nadal nie wiadomo, czemu kanion jest tak ważny dla kaszalotów. Może jednak chodzić o olbrzymią produktywność jego dna oraz o interakcję prądów ze stromą topografią.

W ramach studium naukowcy analizowali dane dot. zachowania 54 kaszalotów. Zebrano je między styczniem 2014 a styczniem 2018 r., dzięki czemu można było sprawdzić, czy pod wpływem trzęsienia ziemi nastąpiły jakieś znaczące zmiany w żerowaniu. Naprawdę nie wiedzieliśmy, czego się spodziewać, bo bardzo mało wiadomo, jak zwierzęta morskie reagują na trzęsienia ziemi.

Naukowcy wykryli oczywiste zmiany zachowania waleni w roku po trzęsieniu ziemi. Co ważne, kaszaloty spędzały ok. 25% więcej czasu na powierzchni (średni interwał powierzchniowy między nurkowaniami był o 25% dłuższy), co potencjalnie oznacza, że musiały one wkładać więcej wysiłku w poszukiwanie ofiar - nurkując głębiej albo na dłuższy czas. Istnieją dwa powody, dla których mogło się tak dziać. Po pierwsze, bentosowe społeczności bezkręgowców mogły zostać wypłukane z kanionu przez prądy zawiesinowe, co skutkowało mniejszą ich dostępnością. Po drugie, odkładanie osadów i erozja mogły wymusić na kaszalotach ponowne zapoznanie ze zmodyfikowanym habitatem. To zaś oznacza zwiększony wysiłek wkładany w nawigację i lokalizację ofiar.

Wymycie niemal 40 tys. ton biomasy z dna kanionu prawdopodobnie oznaczało, że zwierzęta, które normalnie żerowały na dnie, cierpiały na niedobór pokarmu i musiały się gdzieś przenieść - opowiada dr Guerra. To wpłynęło na ofiary kaszalotów (ryby głębokowodne i kałamarnice). Koniec końców kaszalotom trudniej było znaleźć pokarm.

Zmiany w miejscach żerowania kaszalotów były bardzo widoczne. Szczyt kanionu Kaikōura, gdzie kiedyś często spotykało się żerujące walenie, przypominał pustynię.

Choć trzęsienia ziemi zdarzają się stosunkowo często w rejonach występowania ssaków morskich, opisywane studium jako pierwsze dokumentowało wpływ na populację; było to możliwe dzięki długoterminowemu programowi monitoringu, realizowanemu od 1990 r. Na świecie dokonywano jedynie obserwacji punktowych. Po trzęsieniu ziemi w Zatoce Kalifornijskiej zauważono np., że płetwale zwyczajne przejawiają "reakcję ucieczkową". W miesiącach następujących po trzęsieniu ziemi u wybrzeży Alaski widywano zaś bardzo mało humbaków.

Systemy głębokomorskie znajdują się poza zasięgiem wzroku, dlatego rzadko rozważamy konsekwencje ich zaburzania, tak przez człowieka, jak i czynniki naturalne.

Nowozelandczycy stwierdzili, że po trzęsieniu ziemi w 2016 r. zmiany w zachowaniu kaszalotów utrzymywały się około roku. Powrót do normy nastąpił latem 2017-18 r.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Od roku 1970 populacja rekinów zamieszkujących otwarte oceany zmniejszyła się o 71%. Ludzie każdego roku zabijają nawet 100 milionów tych zwierząt, przez co obecnie 75% pełnomorskich gatunków jest zagrożonych.
      To pierwszy tak pełny obraz spadku populacji rekinów, mówi ekolog morski Nuno Queiroz z Research Center in Biodiversity and Genetic Resources, który nie był zaangażowany w opisywane badania. To pokazuje, jak zgubny wpływ ma nadmiernie odławianie, dodaje.
      Problem olbrzymiego odławiania rekinów znany jest nie od dzisiaj. Dotychczas jednak prowadzono badania regionalne. Teraz mamy obraz globalny. Naukowcy przyjrzeli się 31 gatunkom rekinów i płaszczek żyjących na otwartych wodach i obliczyli, jak poszczególne populacje zmieniały się od 1970 roku.
      Niektóre spadki są zatrważające, mówi współautor badań, Nicholas Dulvy z Simon Fraser University. Jeszcze w 1980 roku zagrożone były 2 spośród badanych gatunków. Obecnie zagrożone są 24 gatunki. Byłem zaszokowany. Sytuacja uległa gwałtownemu pogorszeniu w ostatniej dekadzie, dodaje Dulvy.
      Rybacy bezwzględnie traktują zwierzęta. Żywym rekinom odcinane są płetwy, a krwawiące ciężko ranne zwierzęta wrzucane są do oceanu, gdzie giną w męczarniach, powoli duszą się, opadając na dno. Odcięte płetwy trafiają zaś na talerze miłośników zupy z płetw rekina. Do zagłady rekinów przyczyniają się też producenci i konsumenci suplementów z oleju z wątroby rekina, które mają wzmacniać odporność czy leczyć raka. Brak jednak badań klinicznych potwierdzających jego bezpieczeństwo i skuteczność.
      Dobre wieści są takie, że strategie ochrony rekinów mogą działać. Niestety, dysponujemy nielicznymi przykładami takich udanych działań. Jednym z nich jest stopniowe odtwarzanie się populacji żarłaczy białych u wybrzeży USA, gdzie ograniczono połowy tych zwierząt.
      Wprowadzenie takiej ochrony jest jednak bardzo trudne. Przemysł połowowy wywiera intensywną presję, sprzeciwiając się ograniczeniom, w imię swoich krótkoterminowych interesów, mówi współautorka badań Sonja Fordham.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ssaki o dużych mózgach zwykle występują z mniejszej liczbie w danej lokalizacji niż ssaki o mniejszych mózgach, wynika z najnowszych badań. Naukowcy z University of Reading stali na czele międzynarodowej grupy, której celem było zbadanie, dlaczego lokalne populacje takich ssaków jak myszy, małpy, kangury i lisy tak bardzo różnią się liczebnością na lokalny obszarach, nawet jeśli mamy do czynienia z podobnymi gatunkami.
      Uczeni wykorzystali metody statystyczne do przebadania różnych scenariuszy dla setek gatunków i stwierdzili, że ogólny trend dla ssaków jest taki, że im gatunek ma większy mózg, w tym mniejszym zagęszczeniu występuje. Gdy np. rozważamy dwa gatunku i podobnej diecie i masie ciała, okazuje się, że to wielkość mózgu jest wskazówką co do zagęszczenia zwierząt na danym obszarze.
      Większe mózgi kojarzą się z większą inteligencją. W tym przypadku to większe mózgi powstrzymują zwierzęta przed życiem w zbyt dużym zagęszczeniu. Może mieć to związek z faktem, że większy mózg wymaga więcej żywności i innych zasobów, a zatem potrzebuje więcej przestrzeni, by zaspokoić te potrzeby, mówi doktor Manuela Gonzalez-Suarez, która stała na czele grupy badawczej.
      Zrozumienie, dlaczego na różnych obszarach występuje różne zagęszczenie zwierząt jest istotne z punktu widzenia ich ochrony. Mniejsze zagęszczenie powoduje, że gatunek bardziej jest narażony na wymarcie, z drugiej strony większe lokalne zagęszczenie zwiększa ekspozycję gatunku na takie zagrożenia, jak istnienie dróg, dodaje.
      Bardzo interesująco wypada porównanie zagęszczenia, masy ciała i masy mózgu. Otóż przeciętna mysz waży 0,016 kilograma, jej mózg ma wagę 0,0045 kg, a gatunek żyje w niezwykle dużym zagęszczeniu wynoszącym 600 osobników na km2. W dużym zagęszczeniu 86 osobników na km2 żyją też wiewiórki. To zwierzęta warzące 0,325 kg, których masa mózgu wynosi 0,006 kg.
      Powszechnie występującym zwierzęciem jest też lis rudy (2,6 osobnika na km2), ssak ważący 4,3 kg o masie mózgu 0,047 kg. Z kolei makak berberyjski (11 kg masy ciała, 0,095 kg masy mózgu) występuje w liczbie 36 osobników na km2. Natomiast tygrys, który waży 185 kg i ma mózg o masie 0,276 kg występuje w liczbie 0,14 osobnika na km2. Podobnie zresztą 4-tonowy słoń z mózgiem o masie 4,5 kg, którego liczebność na obszarach występowania to 0,58 osobnika na km2.
      Ze schematu tego wyraźnie wyłamuje się człowiek. Lokalne zagęszczenie naszego gatunku bardzo się różni, dochodząc do 26 000 osobników na km2 w Monako.
      Wielkość mózgu nie jest jedynym czynnikiem decydującym o zagęszczeniu ssaków. Różne środowiska mają różne stabilność oraz różne gatunki konkurujące, więc to również ma wpływ. Konieczne są dalsze badania nad wpływem rozmiarów mózgów w różnych środowiskach, stwierdzają autorzy badań.
      Naukowcy zauważają też, że istnieją wyraźne wyjątki od reguły. Na przykład ludzie wykorzystali inteligencję do pokonania problemu ograniczonej ilości zasobów na danym terenie. Możemy importować żywność z całego świata co teoretycznie pozwala nam żyć w wielkiej liczbie w dowolnym miejscu na Ziemi. Niektóre inteligentne gatunki również mogły częściowo poradzić sobie z tymi ograniczeniami, stwierdzają badacze.
      Na potrzeby badań naukowcy wzięli pod lupę 656 nielatających ssaków lądowych. Związek wielkości mózgu z zagęszczeniem populacji jest szczególnie widoczny wśród ssaków mięsożernych oraz naczelnych, a mniej widoczny wśród gryzoni i torbaczy.
      Przykładem takich oczywistych zależności może być porównanie makaków berberyjskich z siamangiem wielkim. Oba gatunki małp mają podobną dietę i podobną masę ciała. Jednak mózg makaka waży 95 gramów, a zwierzę występuje w zagęszczeniu 36 osobników na km2. Z kolei mózg siamanga waży 123 gramy, a zagęszczenie populacji wynosi 14 osobników na km2.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ustawa, która miała chronić obywateli USA przed zanieczyszczonym powietrzem ocaliła też olbrzymią liczbę ptaków. Naukowcy z Cornell University i University of Oregon informują, że w ciągu ostatnich 40 lat Clean Air Act zmniejszyła spadek populacji ptaków w USA o 1,5 miliarda. To 20% obecnej populacji. Nasze badania dowodzą, że korzyści z ustaw regulujących środowisko naturalne są prawdopodobnie niedoszacowane, mówi profesor Ivan Rudik z Cornell.
      Badając związek pomiędzy jakością powietrza a występowaniem ptaków naukowcy przyjrzeli się miesięcznym zmianom liczebności ptaków i jakości powietrza w 3214 amerykańskich hrabstwach na przestrzeni 15 lat. Naukowcy skupiali się na praktycznym wdrażaniu przepisów NOx Budget Trading Program. To regulacje opracowane przez US Environmental Protection Agency. Ich zadaniem jest ograniczenie w miesiącach letnich emisji prekursorów ozonu z dużych źródeł przemysłowych. Ozon, który w górnych partiach atmosfery chroni życie na Ziemi przed szkodliwym promieniowaniem, w partiach dolnych jest niebezpieczny dla zdrowia i stanowi jeden z głównych składników smogu.
      Z badań wynika, że zanieczyszczenie ozonem jest najbardziej szkodliwe dla małych ptaków migrujących należących do rzędu wróblowych. Stanowią one 86% wszystkich ptaków lądowych Ameryki Północnej. Ozon nie tylko bezpośrednio uszkadza układ oddechowy tych ptaków, ale również negatywnie wpływa na kondycję roślin oraz zmniejsza liczbę owadów, którymi ptaki się żywią, wyjaśnia współautorka badań, profesor Amanda Rodewald dyrektor Center for Avian Population Studies w Cornell Lab of Ornithology. Ptaki, które nie mają dostępu do wysokiej jakości habitatu czy pożywienia z mniejszym prawdopodobieństwem są w stanie przeżyć i mieć zdrowe potomstwo. Dobrą wiadomością jest fakt, że działania, które miały chronić ludzi, chronią też ptaki.
      W ubiegłym roku w ramach innych badań specjaliści z Cornell Lab of Ornithology stwierdizli, że od 1970 roku populacja ptaków Ameryki Północnej zmniejszyła się o około 3 miliardy. Teraz dowiadujemy się, że gdyby nie regulacje wprowadzone w ramach Clean Air Act ekosystem byłby uboższy o kolejnych 1,5 miliarda ptaków.
      To pierwsze dowody na tak dużą skalę wskazujące, że ozon jest związany ze spadkiem liczebności ptaków w USA i że regulacje, których celem jest ratowanie ludzkiego życia mają też olbrzymi pozytywny wpływ na życie ptaków, dodaje profesor Catherine King. To kolejne badania pokazujące, że istnieje wyraźny związek pomiędzy stanem środowiska naturalnego, a stanem ludzkiego zdrowia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Mrówki Solenopsis richteri posługują się piaskiem jak narzędziem, by pozyskać ciekły pokarm (roztwór cukru), nie tonąc w nim. Autorzy artykułu z pisma Functional Ecology podkreślają, że to pokazuje, że dostosowują strategię korzystania z narzędzi do ryzyka związanego z żerowaniem.
      S. richteri pochodzą z Ameryki Południowej. Po introdukcji do południowych USA są tu uznawane za gatunek inwazyjny.
      Gdy mrówkom zapewniono niewielkie pojemniczki z roztworem cukru, dzięki hydrofobowemu egzoszkieletowi były w stanie unosić się na powierzchni i żerować. Gdy jednak naukowcy zmniejszyli napięcie powierzchniowe, S. richteri zaczęły przenosić piasek, by spuścić ciecz z naczynia.
      Odkryliśmy, że mrówki budują strukturę z piasku, która skutecznie wyciąga ciecz z pojemnika, tak aby później można ją było zebrać - opowiada dr Aiming Zhou z Huazhong Agricultural University. Ta niesamowita umiejętność nie tylko zmniejszała ryzyko utonięcia, ale i zapewniała większą powierzchnię do zbierania roztworu.
      Okazało się, że struktury z piasku były tak skuteczne, że w ciągu 5 minut mogły wyciągać z pojemniczków niemal połowę cieczy.
      Naukowcy zmieniali napięcie powierzchniowe za pomocą surfaktantu. Gdy jego stężenie wynosiło ponad 0,05%, co przekładało się na znaczące ryzyko utonięcia, mrówki budowały struktury z piasku. Nie tworzyły ich, żerując na czystym roztworze cukru. Podczas eksperymentów owadom dostarczano piasek o różnej wielkości ziaren; w ten sposób można było określić ich preferencje budowlane w takiej sytuacji.
      Wiemy, że niektóre gatunki mrówek są w stanie posługiwać się narzędziami, szczególnie przy zbieraniu ciekłego pokarmu. Byliśmy jednak zaskoczeni niesamowitymi umiejętnościami S. richteri w tym zakresie - dodaje dr Jian Chen, entomolog z amerykańskiego Departamentu Rolnictwa.
      Dr Zhu podkreśla, że konieczne są dalsze badania. Nasze eksperymenty były prowadzone w laboratorium i dotyczyły wyłącznie S. richteri. Kolejnym krokiem powinno być ustalenie, jak bardzo zachowanie to jest rozpowszechnione u innych gatunków mrówek.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zwykle węże połykają swoje ofiary w całości. Wąż Oligodon fasciolatus wyewoluował jednak inną makabryczną strategię. Podczas badań w Tajlandii naukowcy udokumentowali 3 sytuacje, gdy O. fasciolatus rozpruwały żywcem ropuchy Duttaphrynus melanostictus i wyrywały im narządy wewnętrzne. Wyniki badań zespołu Henrika Bringsøe ukazały się w piśmie Herpetozoa.
      O. fasciolatus rozrywały brzuch ofiary zębami, a potem wkładały do środka całą głowę. Ropuchy usiłowały się wyrwać i uniknąć wypatroszenia, ale za każdym razem ich próby okazywały się daremne.
      Wg naukowców, strategia O. fasciolatus może być związana z tym, że ropuchy D. melanostictus uwalniają z gruczołów zausznych silną toksynę. Niewykluczone więc, że węże zaczęły stosować brutalną strategię żerowania, by uniknąć otrucia.
      Jeden z opisanych przypadków miał miejsce w 2016 r., reszta w br. W 2016 r. w momencie pojawienia się obserwatorów ropucha była już martwa, ale teren wokół pokrywała krew, co oznacza, że ropucha zginęła po walce. Wąż dostał się do środka przez ranę pod lewą przednią kończyną. Wsadził do środka głowę i systematycznie usuwał narządy wewnętrzne. Pocięte na mniejsze kawałki połykał. W kwietniu 2020 r. rozegrała się bitwa, która trwała niemal 3 godziny. Nim pojawili się naukowcy, O. fasciolatus zdążył już wsadzić głowę do wnętrza ropuchy. Mimo urazu D. melanostictus przesuwała się w kierunku bajorka. Zatrzymała się dopiero na brzegu. W pewnym momencie wąż wysunął łeb; prawdopodobnie chciał zaczerpnąć powietrza. Ropucha spryskała go toksyczną wydzieliną; jej część wylądowała na głowie drapieżnika. Poza tym pewna ilość cieczy spłynęła z ropuchy, skapując na głowę i do oczu węża. D. melanostictus zdołała wtedy odskoczyć. Wąż ocierał głowę o podłoże, m.in. o opadłe liście, próbując pozbyć się toksyny. Uciekł pod stertę drewna. Po 10 min wypełzł i ponownie udał się w pościg za ropuchą. Ropucha przemieściła się 2,5 m w kierunku bajorka, ale wąż chwycił ją za tylną kończynę. Gdy toksyczna wydzielina pojawiła się w okolicy grzbietowej ropuchy, jej część ponownie dostała się do oczu napastnika, który znów wycofał się i zaczął się czyścić. W tym czasie ropucha wskoczyła do wody. Wypłynęła na brzeg i przez pół godziny próbowała się chować pod kłodą. W tym czasie O. fasciolatus również przebywał pod pobliską kłodą, ciągle próbując się oczyścić. Później zaatakował ostatni raz. Przez utworzoną wcześniej ranę wyrwał zapadnięte płuco, tkankę mięśniową i prawdopodobnie tkankę tłuszczową D. melanostictus. Choć ofiara się nie ruszała, nadal oddychała. Metoda ekstrahowania i połykania narządów była taka sama, jak zaobserwowana w 2016 r. W czerwcu 2020 r. wąż obrał na cel środek brzucha. Myśliwy naciął skórę, by zyskać dostęp do organów wewnętrznych. Następnie porzucił zdobycz, aby pojawić się ponownie po ok. 5 godz. i zakończyć żerowanie na narządach martwej ropuchy.
      W czwartym opisanym przez zespół przypadku dorosły wąż zaatakował mniejszy okaz ropuchy. Tym razem D. melanostictus została jednak połknięta w całości. Dlaczego? Tego na razie nie wiadomo. Jedna z hipotez jest taka, że mniejsze ropuchy są mniej toksyczne od dorosłych egzemplarzy. Z drugiej strony badacze dopuszczają wyjaśnienie, że węże są oporne na toksynę ropuchy, a przyczyną zachowania zaobserwowanego w pozostałych 3 przypadkach są gabaryty dorosłych ropuch (nie da się ich połknąć w całości).
      Obecnie nie możemy odpowiedzieć na te pytania, ale kontynuujemy obserwacje i raportowanie na temat tych fascynujących węży. Mamy nadzieję, że odkryjemy kolejne interesujące aspekty ich biologii - podsumowuje Bringsøe.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...