Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Solar Orbiter - wyprawa po tajemnice Słońca z udziałem Polski

Recommended Posts

Rankiem 10 lutego br. z Przylądka Canaveral na Florydzie w przestrzeń kosmiczną wystrzelona zostanie europejska sonda Solar Orbiter. Na jej pokładzie znajduje się m.in. teleskop rentgenowski STIX, opracowany z dużym udziałem Centrum Badań Kosmicznych Polskiej Akademii Nauk.

Celem misji Solar Orbiter, realizowanej pod auspicjami Europejskiej Agencji Kosmicznej, będą badania Słońca. Dzięki obserwacjom z sondy naukowcy chcą się dowiedzieć, jak Słońce tworzy i "kontroluje" heliosferę – swoje najbliższe międzygwiazdowe otoczenie, zdominowane przez wiatr słoneczny. W znalezieniu odpowiedzi pomoże dziesięć instrumentów badawczych Solar Orbiter, w tym sześć teleskopów czułych na różne zakresy promieniowania elektromagnetycznego - od widzialnego po rentgenowskie. Właśnie w tych regionach widma uwidaczniają się zjawiska kształtujące dynamikę heliosfery: rozbłyski słoneczne, protuberancje eruptywne i koronalne wyrzuty masy.

Solar Orbiter będzie obiegał Słońce, zbliżając się do niego na odległość zaledwie 42 mln km, czyli bliżej niż Merkury (46 mln km). Podczas zbliżeń temperatura powierzchni sondy osiągnie 600 stopni Celsjusza. Żar ten stanowi poważne zagrożenie dla czułej aparatury Solar Orbiter, a uchronienie sondy przed nim było jednym z największych wyzwań dla inżynierów. Z każdym okrążeniem Słońca będzie rosło nachylenie orbity Solar Orbiter w stosunku do płaszczyzny Układu Słonecznego. W efekcie po kilku latach misji, gdy nachylenie osiągnie około 40 stopni, teleskopy sondy będą w stanie "zajrzeć" w regiony biegunów Słońca (niemożliwe do osiągnięcia z Ziemi lub jej bliskiego otoczenia).

Obserwacje rentgenowskie w ramach misji Solar Orbiter będą realizowane dzięki teleskopowi STIX (Spectrometer/Telescope for Imaging X-rays), opracowanemu z udziałem naukowców i inżynierów Centrum Badań Kosmicznych PAN (CBK PAN). Urządzenie będzie dostarczało do dziesięciu wysokorozdzielczych zdjęć Słońca na sekundę, co umożliwi precyzyjnie wskazanie kiedy i z jakiego regionu na naszej gwieździe nastąpiła emisja elektronów w przestrzeń międzyplanetarną. Prace konstrukcyjne nad instrumentem zrealizował międzynarodowy zespół, w skład którego wchodzili Szwajcarzy (kierujący pracami), Polacy (CBK PAN), Czesi, Niemcy i Francuzi.

Zadaniem polskich inżynierów było zaprojektowanie i wykonanie komputera pokładowego (ang. instrument data processing unit, IDPU) wraz z obudową mechaniczną, systemu do precyzyjnego określenia położenia Słońca (ang. aspect system), a także układów do wspomagania testów elektroniki (ang. electrical ground support equipment, EGSE). Polacy odpowiadali ponadto za modelowanie termiczne instrumentu oraz pomoc w integracji elektronicznej i testach całego przyrządu.

Zrozumienie mechanizmów fizycznych kontrolujących heliosferę jest istotne, gdyż Ziemia jest w niej permanentnie zanurzona i uzależniona od jej stanu. Niektóre zmiany w heliosferze mogą zachodzić gwałtownie, w ciągu kilku godzin. Ma to miejsce w sytuacji, gdy ze Słońca wrzucane są w przestrzeń międzyplanetarną chmury plazmy i pola magnetycznego. Gdy docierają do Ziemi, wywołują burze geomagnetyczne stanowiące zagrożenie dla infrastruktury naziemnej i kosmicznej. Powolne zmiany heliosfery zachodzą w skali lat i – jak pokazują ostatnie badania – mogą mieć istotny wpływ na ziemski klimat.

Budowa Solar Orbiter trwała około 10 lat i kosztowała Europejską Agencję Kosmiczną pół miliarda euro. Pierwsze (testowe) dane z teleskopu STIX powinny dotrzeć do naukowców już w miesiąc po starcie sondy. Rutynowe obserwacje naukowe rozpoczną się w listopadzie 2021 roku. Analizą zebranych danych zajmą się w Polsce badacze z Zakładu Fizyki Słońca CBK PAN we Wrocławiu oraz Instytutu Astronomicznego Uniwersytetu Wrocławskiego. Start Solar Orbiter następuje pół wieku po misji Wertikal-1 (28 listopada 1970), w czasie której zrealizowano pierwszy w historii polski eksperyment kosmiczny. Zbiegiem okoliczności misja sprzed pół wieku również dotyczyła obserwacji Słońca, i również w zakresie rentgenowskim.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Eksperci Centrum Badań Kosmicznych PAN wykorzystali dane satelitarne do wyznaczenia zasięgu pożaru w Biebrzańskim Parku Narodowym. Obserwacje pokazały, że między 20 a 22 kwietnia obszar objęty pożarem powiększył się ośmiokrotnie, osiągając niemal 4200 hektarów.
      Specjaliści Centrum Informacji Kryzysowej (CIK) w Centrum Badań Kosmicznych PAN (CBK PAN) monitorują rozwój pożaru w Biebrzańskim Parku Narodowym. Najaktualniejsza analiza uwzględnia dane przesłane przez amerykańskie satelity Landsat-7 i Landsat-8 oraz europejskiego satelitę Sentinel-3. Obserwacje z trzech ostatnich dni pokazują, że 20 kwietnia obszar pożaru zajmował 528 ha i bardzo szybko się powiększał. W ciągu kolejnej doby uległ potrojeniu (1486 ha), a 22 kwietnia obejmował powierzchnię 4175 ha.
      Wysokorozdzielcze obrazy satelitów Landsat pozwoliły dostrzec położenie i rozmiary czoła pożaru. Na zdjęciach z 21 kwietnia ma postać kilku odcinków, z których dwa największe ciągną się na długości około 1-2 km. Sekwencja czasowa obrazów uwidoczniła, że linia ognia przemieszczała się w kierunku południowo-zachodnim.
      Monitoring sytuacji pożarowej uwzględnił również dane satelitów meteorologicznych. Ich rozdzielczość nie pozwala dostrzec samego pożaru, ale doskonale ilustruje zasięg chmury dymu wywołanej pożarem. Zobrazowania z satelity Aqua z 20 kwietnia i 22 kwietnia pokazały, że w tych dniach chmura dymu miała długość około 120 km i sięgała aż do granic województwa mazowieckiego.
      Centrum Informacji Kryzysowej CBK PAN wpiera zarządzanie kryzysowe w Polsce i Unii Europejskiej, specjalizując się m.in. we wdrażaniu nowoczesnych rozwiązań opartych o obserwacje satelitarne i lotnicze (w tym drony), oraz szeroko pojętą geoinformację. Zagadnienia związane z pożarami, w tym szacowanie ryzyka pożarowego w Europie, są również przedmiotem badań naukowców Zakładu Obserwacji Ziemi CBK PAN.
      Monitoring pożaru w  Biebrzańskim Parku Narodowym realizowany jest na zlecenie Komendy Głównej Państwowej Straży Pożarnej, w ramach stałego porozumienia pomiędzy Komendantem Głównym PSP i CBK PAN.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed kilkoma godzinami z Przylądka Canaveral wystartował Solar Orbiter, europejsko-amerykańska sonda, która dostarczy pierwszych w historii zdjęć biegunów Słońca. Kilka godzin po starcie kontrolerzy misji z Europejskiego Centrum Operacji Kosmicznych w Darmstadt odebrali informację o udanym rozłożeniu paneli słonecznych.
      Pierwsze dwa dni po starcie miną sondzie na rozkładaniu instrumentów i anten, które będą komunikowały się z Ziemią i zbierały dane naukowe. Solar Orbiter znajduje się na unikatowej trajektorii, dzięki której zbada bieguny Słońca. W ramach misji pojazd 22 razy zbliży się do naszej gwiazdy.
      Ludzie zawsze wiedzieli, że Słońce jest ważne dla życia na Ziemi, obserwowali je i badali. Od dawna też wiemy, że może ono zniszczyć życie, jeśli znajdziemy się na linii potężnego rozbłysku. Pod koniec misji Solar Orbiter będziemy wiedzieli więcej niż kiedykolwiek wcześniej o siłach drzemiących w Słońcu i jego wpływie na naszą planetę, mówi Günther Hasinger, dyrektor ds. naukowych ESA.
      Przez najbliższe trzy miesiące Solar Orbiter będzie testował 10 swoich instrumentów naukowych, by upewnić się, że wszystko działa, jak należy. Zaś za dwa lata wejdzie na pierwszą orbitę, na której zostaną rozpoczęte właściwe badania Słońca.
      Sonda będzie pracowała w dwóch głównych trybach badawczych. Część instrumentów będzie odbierała dane z najbliższego otoczenia, zbierając informację o polach elektrycznych, magnetycznych, przepływających cząstkach czy falach. Z kolei instrumenty zdalne będą fotografowały Słońce, obrazowały jego atmosferę, ruch materii, zbierały informacje na temat gwiazdy.
      Podczas pierwszej fazy misji, lotu do Słońca, która potrwa do listopada 2021 roku, zbierane będą przede wszystkim dane z otoczenia sondy. Pozostałe instrumenty będą poddawane kalibracji, by przygotować je do pracy w pobliżu Słońca. W fazie tej Solar Orbiter trzykrotnie skorzysta z asysty grawitacyjnej. Dwa razy przeleci w pobliżu Wenus (grudzień 2020, sierpień 2021) i raz w pobliżu Ziemi (listopad 2021). Po przelocie w pobliżu naszej planety rozpocznie się podstawowa część misji.
      W 2022 roku sonda zaliczy pierwszy przelot w pobliżu Słońca, znajdzie się w odległości 1/3 j.a. od gwiazdy. Podczas kolejnych etapów misji pojazd będzie korzystał z asysty grawitacyjnej Wenus, by znaleźć się coraz bliżej i bliżej gwiazdy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Za sześć lat pracę na Księżycu ma rozpocząć koparka, projektowana przez ekspertów z Centrum Badań Kosmicznych PAN. Dostarczy pył księżycowy do urządzenia, które przetworzy go na wodę i tlen. Testy koparki rozpoczną się w lipcu w Warszawie.
      W 2025 r. Europejska Agencja Kosmiczna planuje wysłać pierwszą w historii misję testową (Lunar ISRU), której celem będzie pozyskanie lokalnych zasobów Księżyca. Kluczowym zadaniem będzie wyprodukowanie z nich wody i tlenu w urządzeniu, które znajdować się będzie na powierzchni Srebrnego Globu.
      W projekcie bierze udział zespół z Laboratorium Mechatroniki i Robotyki Satelitarnej CBK PAN w Warszawie.
      Rozwijamy nasz własny projekt małej koparki księżycowej, której zadaniem będzie pozyskanie pyłu księżycowego - opowiada PAP lider przedsięwzięcia, Gordon Wasilewski z CBK PAN. W lipcu w Warszawie odbędą się jej testy.
      CBK PAN wchodzi w skład jednego dwóch międzynarodowych konsorcjów (koordynuje je belgijska firma Space Applications Services), pracujących nad samobieżnymi maszynami, które miałyby pozyskiwać zasoby księżycowe.
      Wierzchnia, pylasta warstwa księżyca (tzw. regolit) może być ważnym elementem dla przyszłych misji załogowych na Srebrnym Globie. Pył ten składa się głównie z tlenu, krzemu, żelaza, wapnia, tytanu, glinu i magnezu.
      Dlatego regolit będzie można wykorzystać nawet do stworzenia struktur mieszkalnych - można go spiekać, tworząc bardzo twarde i wytrzymałe materiały budowlane. Ze względu na obecność w pyle krzemu - rozważa się również wykonanie z niego paneli fotowoltaicznych.
      Planowany eksperyment Europejskiej Agencji Kosmicznej w 2025 r. będzie polegał jednak na czymś innym. Nasza koparka będzie miała za zadanie przetransportowanie regolitu do reaktora termochemicznego. Ten z kolei będzie główną częścią lądownika i odpowiedzialny będzie za przetworzenie tlenków metali obecnych w regolicie i produkcję m.in. wody - ważny składnik dla przetrwania przyszłych misji załogowych na Księżycu - opisuje Wasilewski.
      Nasza koparka ma wielokrotnie pozyskać i przekazać regolit, a przy tym wszystkim zgromadzić informacje geologiczne, które pozwolą nam jeszcze dokładniej zaprojektować ten proces w większej skali - dodaje naukowiec.

      « powrót do artykułu
×
×
  • Create New...