Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Naukowcy z Uniwersytetu Stanforda wraz z inżynierami Toshiby jako pierwsi na świecie zaprezentowali krzemowy układ scalony, który zamiast miedzianych połączeń wykorzystuje nanorurki węglowe.

Po raz pierwszy w historii przez nanorurki przesłano cyfrowe sygnały z częstotliwością 1 gigaherca. Dotychczas mieliśmy tylko nadzieję, że będzie to możliwe, ale żadnego dowodu - powiedział Philip Wong, profesor na Wydziale Inżynierii Elektrycznej Uniwersytetu Stanforda.

Prace akademików pozwolą na przedłużenie ważności Prawa Moore'a. Zakłada ono, że co dwa lata liczba tranzystorów w układzie scalonym będzie się podwajała. Ciągle udaje się spełniać ten warunek, jednak upakowanie coraz mniejszych elementów wymaga stosowania coraz cieńszych połączeń między nimi. Istniają obawy, że wkrótce powszechnie stosowana miedź przestanie wystarczać.

Gael Close i Philip Wong oraz Shinichi Yasuda, Shinobu Fujita i Bipul Paul z Toshiby stworzyli matrycę składającą się z 256 oscylatorów pierścieniowych. Dodali do nich kolejne obwody, które umożliwiły wybiórcze przeprowadzanie operacji na każdym z oscylatorów. W sumie układ scalony składał się z 11 000 tranzystorów umieszczonych na powierzchni 6,5 milimetra kwadratowego.

Podczas projektowania układu, przy każdym z oscylatorów pozostawiono jedno wolne połączenie. Kość została wykonana tradycyjnymi technikami w TSMC, a następnie Close i koledzy uzupełnili brakujące połączenia metalizowanymi nanorurkami. Co ważne, nie były one specjalnie przygotowywane, ale skorzystano z usług jednego z komercyjnych producentów. Każda z nanorurek miała 50-100 nanometrów średnicy i około 5 mikrometrów długości.

Nanorurki różniły się jakością, ale ostatecznie udało się połączyć 19 oscylatorów. Każda z nanorurek była umieszczona bezpośrednio na tranzystorze, dzięki czemu maksymalnie zmniejszono opór, co pozwoliło na przesłanie sygnału z częstotliwością 1,02 GHz.

Akademicy mówią, że nie należy się spodziewać, by układy scalone z nanorurkami trafiły w najbliższym czasie na rynek. Trzeba włożyć jeszcze sporo pracy zarówno w produkcję nanorurek o odpowiednich parametrach i projekt samego układu.

Nanorurki wykorzystane w prototypie były dość duże (były wielkości obecnie używanych połączeń miedzianych) i nie charakteryzowały się odpowiednią czystością.

Zrobiliśmy znaczący krok, ale to prototyp - mówi Close. Przemysł od dawna czekał na jego stworzenie, by móc naprawdę posuwać się naprzód - dodaje.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Toshiba wyprodukowała skaner sklepowy, który nie wymaga kodów kreskowych. Urządzenie ma wbudowaną kamerę, co umożliwia automatyczną identyfikację towarów, w tym sprawiających trudności warzyw i owoców. Ogranicza to udział kasjera i przyspiesza cały proces.
      Keiichi Hasegawa z Toshiby podkreśla, że pozbawione zazwyczaj kodów kreskowych owoce i warzywa mogą stanowić wyzwanie zwłaszcza dla pracowników okresowych.
      W przypadku skanera ORS (Object Recognition Scanner) od początku eliminowany jest szum tła. Na obrazie z kamery widać tylko produkt, tło jest ciemne, dlatego identyfikacja jest bardzo szybka nawet wtedy, gdy obiekty się poruszają. Podczas demonstracji zastosowano 3 gatunki jabłek: fuji, jonagold i matsu. Fuji i jonagold są do siebie podobne, więc jeśli ktoś się na tym nie zna, może je łatwo pomylić. ORS poradzi sobie z tym zadaniem, bazując na niewielkich różnicach barwy i wzorów. Problemu nie stanowią też puszki z piwem i kupony.
      Hasegawa podkreśla, że uczenie skanera towarów w sklepie nie byłoby praktyczne, dlatego firma pracuje nad bazą towarów, także sezonowych warzyw i owoców.
       
       
    • przez KopalniaWiedzy.pl
      IBM pokaże dzisiaj prototypowy optyczny układ scalony „Holey Optochip“. To pierwszy równoległy optyczny nadajnik-odbiornik pracujący z prędkością terabita na sekundę. Urządzenie działa zatem ośmiokrotnie szybciej niż inne tego typu kości. Układ pozwala na tak szybki transfer danych, że mógłby obsłużyć jednocześnie 100 000 typowych użytkowników internetu. Za jego pomocą można by w ciągu około godziny przesłać zawartość Biblioteki Kongresu USA, największej biblioteki świata.
      Holey Optochip powstał dzięki wywierceniu 48 otworów w standardowym układzie CMOS. Dało to dostęp do 24 optycznych nadajników i 24 optycznych odbiorników. Przy tworzeniu kości zwrócono też uwagę na pobór mocy. Jest on jednym z najbardziej energooszczędnych układów pod względem ilości energii potrzebnej do przesłania jednego bita informacji. Holey Optochip potrzebuje do pracy zaledwie 5 watów.
      Cały układ mierzy zaledwie 5,2x5,8 mm. Odbiornikami sygnału są fotodiody, a nadajnikami standardowe lasery półprzewodnikowe VCSEL pracujące emitujące światło o długości fali 850 nm.
    • przez KopalniaWiedzy.pl
      Inżynierowie z Brown University zaprojektowali urządzenie, które pozwala mierzyć poziom glukozy w ślinie, a nie krwi. W artykule opublikowanym na łamach Nano Letter Amerykanie ujawnili, że w biochipie wykorzystano interferometry plazmoniczne.
      Zaprezentowane rozwiązanie powstało "na styku" dwóch dziedzin: nanotechnologii i plazmoniki, czyli nauki o własnościach i zastosowaniach powierzchniowych fal plazmonowo-polarytonowych. Na biochipie wielkości paznokcia specjaliści z Brown University wytrawili tysiące interferometrów plazmonicznych. Potem mierzyli stężenie glukozy w roztworze przepływającym po urządzeniu. Okazało się, że odpowiednio zaprojektowany biochip wykrywa stężenia glukozy występujące w ludzkiej ślinie. Zazwyczaj poziom cukru w ślinie jest ok. 100-krotnie niższy niż we krwi.
      W ten sposób zweryfikowaliśmy koncepcję, że [bazujące na interakcjach elektronów i fotonów] interferometry plazmoniczne można wykorzystać do wykrywania niewielkich stężeń cząsteczek - podkreśla prof. Domenico Pacifici, dodając, że równie dobrze jak glukoza, mogą to być inne substancje, np. zanieczyszczenia środowiskowe czy wąglik. W dodatku da się je wykrywać wszystkie naraz na tym samym chipie.
      Konstruując czujnik, naukowcy zrobili nacięcie o szerokości ok. 100 nanometrów. Potem z obu jego stron wycięli rowki o grubości 200 nanometrów. Wycięcie wychwytuje zbliżające się fotony, a rowki je rozpraszają, przez co dochodzi do interakcji z wolnymi elektronami, odbijającymi się od metalowej powierzchni chipa. Interakcje wolne elektrony-fotony prowadzą do powstania plazmonów powierzchniowych - tworzy się fala o długości mniejszej od fotonu w wolnej przestrzeni (free space). Dwie fale przemieszczają się wzdłuż powierzchni chipa, aż napotkają fotony w nacięciu. Zachodzi interferencja, a obecność mierzonej substancji (tutaj glukozy) na czujniku prowadzi do zmiany względnej różnicy faz, co z kolei powoduje mierzone w czasie rzeczywistym zmiany w intensywności światła transmitowanego przez środkowe wycięcie. Środkowe nacięcie działa jak mikser [...] dla fal plazmonów powierzchniowych i światła.
      Akademicy nauczyli się, że mogą manipulować przesunięciem fazy, zmieniając odległości między wycięciem a rowkami po bokach. W ten sposób można wykalibrować interferometr wykrywający bardzo niskie stężenia glukozy rzędu 0,36 mg na decylitr.
    • przez KopalniaWiedzy.pl
      Według niepotwierdzonych informacji Microsoft zlecił IBM-owi i Globalfoundries produkcję układów scalonych dla następcy Xboksa 360. Podobno koncern z Redmond zamówił wykonanie około dziesięciu tysięcy 300-milimetrowych plastrów krzemowych z układami o nazwie kodowej Oban. Kości mają trafić do twórców oprogramowania, którzy będą pisali gry na konsolę.
      Podobno Oban zawiera procesor PowerPC i rdzeń graficzny Radeon HD bazujący na architekturze GCN (graphics core next).
      Wcześniejsze pogłoski mówiły, że Xbox Next będzie korzystał z układu system-on-chip opartego na architekturze ARM zawierającego wiele dedykowanych rdzeni odpowiedzialnych za grafikę, sztuczną inteligencję, dźwięk, szyfrowanie i inne funkcje. Przyszła konsola Microsoft ma podobno wykorzystywać system operacyjny zbudowany wokół jądra Windows 9. Ma być ona też mniejsza i tańsza w produkcji niż Xbox 360.
      Żadna z wymienionych firm nie chciała skomentować tych doniesień.
    • przez KopalniaWiedzy.pl
      Współpraca naukowców z University of New South Wales, Melbourne University i Purdu University zaowocowała stworzeniem najmniejszego połączenia elektrycznego umieszczonego na krzemie. Ma ono grubość 1 atomu i szerokość 4 atomów. Mimo tak niewielkich rozmiarów transport elektronów odbywa się równie wydajnie co za pomocą tradycyjnego połączenia miedzianego.
      Osiągnięcie to ma olbrzymie znacznie na wielu polach rozwoju elektroniki i inżynierii. Pozwoli w przyszłości na dalsze zmniejszanie rozmiaru układów scalonych. Ponadto daje nadzieję na wykorzystanie w komputerach kwantowych techniki precyzyjnego wzbogacania krzemu pojedynczymi atomami.
      Prace australijsko-amerykańskiego zespołu wykazały też, że prawo Ohma ma zastosowanie w skali atomowej. To niesamowite, że Prawo Ohma, prawo tak podstawowe, zostaje zachowane przy budowaniu połączeń elektrycznych z pojedynczych cegiełek natury - stwierdził Bent Weber, jeden z twórców miniaturowych kabli. Badacze podkreślają, że połączenia były tworzone atom po atomie, co znacząco różni się od technik stosowanych we współczesnej elektronice. Obecnie usuwa się nadmiarowy materiał, a to technika trudna, kosztowna i nieprecyzyjna. Gdy schodzi się do wielkości poniżej 20 atomów, mamy do czynienia z takimi różnicami w liczbie atomów, że dalsze skalowanie jest trudne. Ale podczas tego eksperymentu stworzono urządzenie dzięki umieszczaniu pojedynczych atomów fosforu na krzemie i okazało się, że gęsto ułożony przewód o szerokości zaledwie 4 atomów działa tak, jak przewody metalowe - powiedział profesor Gerhard Klimeck z Purdue.
      Jak poinformowała profesor Michelle Simmons z University of New South Wales, która kierowała badaniami, głównym celem badań jest rozwój przyszłych komputerów kwantowych, w których pojedyncze atomy są wykorzystywane do przeprowadzania obliczeń.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...