Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

O sprawnym wsiadaniu

Recommended Posts

Wiedza przydatna podczas badania cząstek elementarnych może usprawnić pracę linii lotniczych. Stosowana przez wielu przewoźników kolejność wpuszczania pasażerów na pokład okazała się tak niedoskonała, że skłoniła fizyka Jasona Steffena, pracującego w ośrodku Fermilab, do przeanalizowania problemu. Uzyskane wyniki symulacji zaskoczyły nawet autora nietypowych badań. Część linii lotniczych stara się skrócić czas wchodzenia na pokład samolotu, unikając najgorszego scenariusza, czyli takiego, w którym najpierw wpuszczane są osoby zajmujące miejsca z przodu samolotu (a więc przy wejściu do maszyny). W takiej sytuacji pasażerowie podchodzą do swoich foteli i zaczynają układać bagaż podręczny w schowkach. Następni czekają w kolejce, aż osoby te usiądą na miejscach, po czym same zaczynają chować bagaż, i cykl się powtarza. Oczywistym rozwiązaniem problemu wydaje się odwrócenie kolejności. Jednak z symulacji przeprowadzonych przez Steffena wynika, że sposób ten, stosowany przez wielu przewoźników, jest praktycznie tak samo zły, jak ten najgorszy z możliwych. Po dalszych badaniach naukowiec odkrył idealną metodę, pozwalającą przyspieszyć cały proces 4 do 10 razy. Wymaga ona wpuszczania pasażerów w 10-osobowych grupach tak, aby zajmowali oni miejsca oddzielone od siebie o dwa rzędy (właśnie tyle miejsca potrzebuje osoba próbująca wtłoczyć bagaż do schowka). Choć sposób ten eliminuje kolejki wewnątrz samolotu, wymaga precyzyjnego "sortowania" pasażerów przez przewoźnika. Dodatkowym utrudnieniem jest tendencja do zbijania się w grupki osób podróżujących razem, a więc siedzących obok siebie. Zmodyfikowana metoda rozwiązuje ten problem przez podzielenie pasażerów na cztery duże grupy – każda z nich zajmuje po jednej stronie samolotu trzy kolejne miejsca w co drugim rzędzie. Schemat ten okazał się dwukrotnie szybszy od klasycznego. Co ciekawe, równie dobre wyniki dało wpuszczanie osób w sposób zupełnie przypadkowy. Dodatkową korzyścią tego podejścia jest wyeliminowanie potrzeby segregowania i pilnowania pasażerów przez pracowników linii. Wbrew pozorom, opisywane próby mają wpływ nie tylko na nastrój pasażerów. W wypadku częstych lotów krótkodystansowych oszczędność kilku czy kilkunastu minut pozwoli "wcisnąć" w harmonogram dodatkowy rejs, co dla linii lotniczych jest niebagatelną korzyścią.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Wszystkie samoloty, od początku istnienia tych maszyn, poruszają się dzięki pomocy ruchomych części, takich jak śmigła czy turbiny. Inżynierowie z MIT skonstruowali pierwszy w historii samolot, który nie zawiera żadnych ruchomych części. Jest on zasilany przez „wiatr jonowy” wytwarzany na pokładzie samolotu, który zapewnia mu wystarczający ciąg, by utrzymać maszynę w powietrzu. W przeciwieństwie do innych rozwiązań stosowanych w lotnictwie, nowy napęd jest całkowicie cichy i nie potrzebuje paliw kopalnych.
      To pierwszy zdolny do lotu samolot z napędem niezawierającym ruchomych części. Potencjalnie może to doprowadzić do powstania samolotów, które są cichsze, prostsze w konstrukcji i nie powodują emisji pochodzącej ze spalania, cieszy się profesor Steven Barrett z MIT. Uczony uważa, że w najbliższej przyszłości mogą pojawić się ciche drony korzystające z wiatru jonowego. W dalszej zaś perspektywie uczony przewiduje pojawienie się samolotów pasażerskich i transportowych o napędzie hybrydowym, łączącym wiatr jonowy z tradycyjnym silnikiem.
      Barrett przyznaje, że do pracy nad nowatorskim napędem zainspirował go serial Star Trek, który namiętnie oglądał w dzieciństwie. Szczególnie fascynowały go pojazdy latające, które bez wysiłku poruszały się w atmosferze, nie były wyposażone w żadne śmigła, nie wydzielały spalin i nie hałasowały. Pomyślałem, że w przyszłości powstaną samoloty, które nie będą miały śmigiel i turbin. Będą jak statki w Star Treku, które świecą na niebiesko i cicho się poruszają, wspomina Barrett.
      Przed dziewięciu laty naukowiec rozpoczął prace nad systemem napędowym bez ruchomych części. Szybko zwrócił uwagę na wiatr jonowy, czyli ciąg elektroaerodynamiczny. Jego koncepcję opracowano w latach 20. ubiegłego wieku. Mówi ona, że jeśli pomiędzy dwiema elektrodami, cienką i grubą, pojawi się wystarczające napięcie, to powietrze przepływające pomiędzy elektrodami wytworzy tyle ciągu, że będzie w stanie napędzać mały samolot. Przez lata koncepcją taką zajmowali się głównie hobbyści, którym udawało się stworzyć bardzo małe samoloty, podłączone do źródła napięcia, które przez chwilę unosiły się w powietrzu. Uzyskanie dłuższego lotu większym urządzeniem uznawano za niemożliwe.
      Jednak Barrettowi się udało. Skonstruowany przez niego i jego zespół samolot waży około 2,5 kilogramów i ma skrzydła o rozpiętości 5 metrów. Pod skrzydłem, wzdłuż jego przedniej krawędzi, znajdują się cienkie struny, przypominające ułożeniem płot otaczający pastwisko. Wzdłuż tylnej krawędzi również mamy struny, ale grubsze. Te pierwsze działają jak katoda (elektroda dodatnia), a drugie jak anoda. W kadłubie pojazdu umieszczono akumulatory litowo-jonowe, które dostarczają one napięcie rzędu 40 000 woltów do katody. Naelektryzowane struny z przodu wyrywają elektrony z otaczających je molekuł powietrza, a zjonizowane w ten sposób powietrze przepływa w kierunku strun z tyłu. Każdy z przepływających jonów miliony razy zderzał się z molekułami powietrza, tworząc w ten sposób ciąg.
      Twórcy samolotu testowali go w sali o długości 60 metrów. Pojazd przemierzał całą długość sali. Przeprowadzono 10 testów i za każdym razem stwierdzono, że napęd działa. To był najprostszy możliwy projekt. Daleka jeszcze droga do stworzenia samolotu, zdolnego do wykonania użytecznej misji. Musi być on bardziej wydajny, lecieć dłużej i być zdolnym do lotu na otwartej przestrzeni, dodaje Barrett.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jeśli - tak jak podczas wyprawy na zakupy - trzeba w krótkim czasie załatwić parę spraw, to, co robi się wcześniej, ma wpływ na następne decyzje. Kolejność ma znaczenie, bo oddziałuje na obieranie strategii, która później zdaje się cały czas kształtować myślenie i zachowanie.
      Jonathan Levav (Uniwersytet Stanforda), Nicholas Reinholtz (Columbia Business School) i Claire Lin (kiedyś Columbia Business School) przyglądali się reakcjom osób podróżujących w sprawach biznesowych, które miały do wyboru 5 różnych linii lotniczych, 10 hoteli i 15 opcji wynajmu samochodu. Gdy uporządkowaliśmy decyzje, zwiększając zbiór elementów do wyboru, konsumenci mocniej "wgryzali się" w dostępne opcje niż wtedy, kiedy ten sam zestaw decyzji ułożyliśmy według spadającej liczby alternatyw.
      Oznacza to, że klient szukający hotelu dokładniej przeanalizuje możliwości, gdy najpierw zapozna się z ofertą przewoźników lotniczych niż firm oferujących samochody. Zaczynając od "małego", człowiek będzie chciał wybrać jak najlepiej. Nastawienie "wybrać najlepsze" przetrwa do momentu podejmowania kolejnych decyzji. Dla odmiany konsumenci startujący od większego zestawu opcji adaptują strategię pt. "wystarczająco dobry".
    • By KopalniaWiedzy.pl
      Prowadzone przez trzy lata badania wskazują, że w obecnie obowiązujących modelach klimatycznych trzeba będzie zmienić dane dotyczące emisji metanu z wód Oceanu Arktycznego. Okazuje się bowiem, że uwalniają one „znaczące ilości" tego gazu.
      Badania prowadzono za pomocą specjalnie wyposażonego samolotu, który odbył serię lotów pomiędzy biegunami. Jego zadaniem było mierzenie koncentracji gazów cieplarnianych oraz sadzy na różnych wysokościach, w różnych miejscach i o różnych porach roku.
      Program miał pozwolić na stworzenie przekrojowego modelu atmosfery. Znaleźliśmy coś, czego wcześniej nie podejrzewaliśmy - mówi profesor Steven Wofsy z Uniwersytetu Harvarda.
      Do pomiarów koncentracji gazów w pobliżu powierzchni Ziemi tradycyjnie wykorzystywano stacje naziemne ulokowane np. w górach. W ostatnich czasach do pracy zaprzęgnięto też satelity, które potrafią mierzyć koncentrację dwutlenku węgla. Jednak wykorzystanie samolotu daje znacznie lepszy obraz i pozwala badać to, co dzieje się na wysokościach od 150 do ponad 14 000 metrów. To tak, jakby porównywać zdjęcie rentgenowskie z lat 60. ubiegłego wieku ze współczesną tomografią komputerową - mówi Wofsy.
      Zdaniem naukowca pełne opracowanie zdobytych danych zajmie wiele lat, ale już teraz naukowcy dowiedzieli się wielu zaskakujących rzeczy. Między innymi tego, że z wód Oceanu Arktycznego uwalniane są duże ilości metanu. Nie wiadomo, skąd ten metan pochodzi, jednak wstępne dane pokazują, że jest go na tyle dużo, iż może mieć to znaczenie w skali całej planety.
      Drugi z głównych uczestników badań, Britton Stephens, zwraca uwagę na zebrane podczas projektu HIPPO dane dotyczące cyklu tlenu i dwutlenku węgla. Połowa emitowanego przez nas dwutlenku węgla jest pochłaniana przez rośliny lądowe oraz oceany. Jeśli zatem chcemy przewidywać zmiany klimatyczne, to największą niewiadomą jest tutaj to, co zrobią ludzie. Drugą największą niewiadomą jest, jak zachowają się rośliny i oceany - mówi Stephens.
    • By KopalniaWiedzy.pl
      Większość z nas, słysząc o wpływie lotnictwa na klimat, pomyśli zapewne o emisji węgla, tym bardziej, że samoloty spalają olbrzymie ilości paliwa. Tymczasem, jak dowiadujemy się z nowo powstałego pisma Nature Climate Change, chmury tworzone obecnie przez samoloty, mają większy wpływ na klimat niż cała historyczna emisja produktów spalania paliwa lotniczego.
      Autorzy artykułu informują, że wydzielanie węgla przez silniki to tylko jeden z wielu sposobów, w jaki samoloty wpływają na klimat. Istotny jest też fakt, że emisja ma miejsce wysoko nad Ziemią, że wydzielane są też tlenki azotu, jednak najbardziej znaczący jest udział samolotów w tworzeniu się chmur.
      Obserwując lecący samolot, widzimy ciągnący się za nim ślad, smugę kondensacyjną. To nic innego jak chmura typu cirroculumus zbudowana z kryształków lodu. Z czasem kształt takich smug się zmienia tak, że są nie do odróżnienia od naturalnie powstałych cirrocumulusów.
      Chmury tworzące się nisko nad Ziemią, ochładzają planetę, zatrzymując promienie Słońca. Jednak te, które powstają wysoko, właśnie tam, gdzie latają samoloty, przyczyniają się do ogrzania Ziemi, gdyż utrudniają ucieczkę ciepła oddawanego przez planetę.
      Naukowcy, postanowili sprawdzić, w jaki sposób sztucznie powstające cirrocumulusy wpływają na klimat. Zidentyfikowali „gorące miejsca", w których panuje szczególnie duży ruch lotniczy, czyli USA, Europę i korytarz nad północnym Atlantykiem łączący Stary Kontynent z Ameryką Północną oraz Wschodnią Azję i północny Pacyfik. Ponadto miejscem dużej kumulacji sztucznych chmur jest centralna Europa, gdyż napływa tutaj powietrze z północnoatlantyckiego korytarza. Dane z takich miejsc nałożono na model klimatyczny ECHAM4. Z wyliczeń wynika, że średnio w skali globalnej cirrusy tworzone przez samoloty przyczyniają się do zwiększenia energii otrzymywanej przez powierzchnę planety o około 40 miliwatów na metr kwadratowy. Wziąwszy pod uwagę fakt, że sztuczne cirrusy ograniczają powstawanie naturalnych chmur, wpływ ten oszacowano na około 30 miliwatów na m2. Dla porównania w czasie cyklu słonecznego ilość energii docierającej do Ziemi zmienia się w granicach 1 wata na metr kwadratowy.
      Niezależnie jednak od faktu, że formowanie się chmur jest najpoważniejszym przykładem wpływu lotnictwa na klimat, pocieszające jest, że chmury istnieją zaledwie kilka dni, nie niosą zatem ze sobą długotrwałych skutków.
    • By KopalniaWiedzy.pl
      DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych) ogłosiła, że w przyszłym roku rozpoczną się testy pojazdu Vulture II - prototypowego bezzałogowego samolotu napędzanego energią słoneczną. Tym, co będzie różniło Vulture od innych tego typu projektów to olbrzymie rozmiary oraz możliwość nieprzerwanego lotu przez... 5 lat.
      Vulture II jest budowany przez Boeinga, a w jego powstanie jest zaangażowana firma QinetiQ, twórca Zephyra.
      Vulture II - jego poprzednik, Vulture I, był tylko projektem konstruktorskim i nigdy nie wzbił się w powietrze - będzie korzystał z silników elektrycznych, do których energię dostarczą panele słoneczne zamontowane na skrzydłach o rozpiętości około 120 metrów. W nocy pojazd będzie zasilany z baterii ładowanych w ciągu dnia.
      Vulture ma latać w stratosferze i świadczyć takie same usługi, jak satelity czy sterowane przez pilotów samoloty. Bezzałogowy pojazd na energię słoneczną będzie znacznie tańszym rozwiązaniem niż oba wymienione.
      Vulture już podczas pierwszego lotu testowego pobije rekord świata. Obecnie należy on do Zephyra, który przez 2 tygodnie latał nad Arizoną. Vulture wzbije się w powietrze na 30 dni.
      Vulture ma być gotowy do regularnych lotów pod koniec 2014 roku. Pozostaje jednak pytanie, czy pojazd będzie naprawdę zdolny do pięcioletniego pozostawania w powietrzu nad dowolnym punktem globu, czy też pięć lat to maksimum jego możliwości przy założeniu idealnych warunków, a zatem Vulture będzie zdolny do tak długiej pracy jedynie w okolicach równika.
       
      http://www.youtube.com/watch?v=i6nw8nxZD5M
×
×
  • Create New...