Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

CERN zatwierdził eksperyment, którego współpomysłodawcą jest Polak

Rekomendowane odpowiedzi

Europejska Organizacja Badań Jądrowych CERN pod Genewą zatwierdziła kilka dni temu nowy eksperyment, który będzie badał własności najlżejszych cząstek materii, tzw. neutrin. Jest to pierwszy tego typu eksperyment przy Wielkim Zderzaczu Hadronów (LHC), który rozpocznie nową erę badań nad neutrinami. W pracach nad projektem istotną rolę odegrał dr Sebastian Trojanowski z Narodowego Centrum Badań Jądrowych (NCBJ).

Planowany eksperyment FASERν (na końcu nazwy grecka mała litera „ni”) ma być nie tylko pierwszym takim detektorem w samym LHC, ale też w całej historii podobnych doświadczeń, w których dwa strumienie cząstek lecących w przeciwległych kierunkach zderzają się ze sobą. Otwiera to nową, fascynującą erę badań nad neutrinami, które są najbardziej nieuchwytnymi spośród znanych nam obecnie cząstek elementarnych.

Neutrina produkowane w LHC to najbardziej energetyczne neutrina wytworzone kiedykolwiek przez człowieka. Można je jedynie porównać do neutrin powstałych w ekstremalnych zjawiskach takich jak zderzenia wysoko energetycznych promieni kosmicznych z atmosferą ziemską. Eksperyment FASERν przy LHC umożliwi laboratoryjne badanie tych cząstek przy energiach, dla których jak dotąd nie było to możliwe.

Detektor FASERν będzie częścią większego, niedawno zatwierdzonego eksperymentu FASER, którego jednym z czterech pomysłodawców jest dr Sebastian Trojanowski związany z NCBJ oraz Uniwersytetem w Sheffield w Wielkiej Brytanii. FASERν to wyjątkowo mały detektor w porównaniu z typowymi eksperymentami neutrinowymi – mówi dr Trojanowski, który był bezpośrednio zaangażowany w prace przygotowawcze prowadzące do zatwierdzenia nowego detektora. Będzie to prostopadłościan o długości nieco ponad metra i szerokości jedynie 25cm. Tak niewielki rozmiar można było uzyskać dzięki precyzyjnemu dobraniu lokalizacji detektora, w miejscu gdzie trafia przeważająca część bardzo silnej wiązki neutrin produkowanych w LHC w punkcie kolizji protonów w detektorze ATLAS.

Instalację nowego detektora będzie można przeprowadzić bardzo szybko, a zbieranie pierwszych danych rozpocznie się wraz z ponownym uruchomieniem LHC już w 2021 roku. FASERν może również utorować drogę do innych eksperymentów neutrinowych w przyszłych zderzaczach cząstek, zaś rezultaty tych eksperymentów będą mogły zostać użyte podczas planowania przyszłych, znacznie większych detektorów neutrin – mówi dr Jamie Boyd, jeden z liderów projektu FASER, na co dzień pracujący w ośrodku CERN pod Genewą.

Choć nowy detektor FASERν jest osobnym instrumentem badawczym w stosunku do głównego detektora FASER zatwierdzonego wcześniej w tym roku, współgranie obydwu części eksperymentu może odegrać kluczową rolę w prowadzonych badaniach nad fizyką neutrin. Dodatkowo, w gronie kilku fizyków teoretyków z NCBJ oraz laboratorium SLAC w Stanach Zjednoczonych przeprowadziliśmy już pierwsze analizy ekscytujących perspektyw na odkrycie całkiem nowych cząstek elementarnych przy współudziale obu części eksperymentu FASER. Planujemy dalsze takie badania w przyszłości – wyjaśnia dr Trojanowski.

Badania wysoko energetycznych neutrin nie tylko pomogą nam lepiej zrozumieć przebieg burzliwych zdarzeń nieustannie zachodzących na styku atmosfery ziemskiej z przestrzenią kosmiczną, lecz również rzucą więcej światła na naturę oddziaływań tych trudnych do detekcji cząstek. Teoretyczne spekulacje dotyczące istnienia neutrin sięgają lat 30. XX wieku, ale pierwsza ich eksperymentalna obserwacja nastąpiła dopiero niemal ćwierk wieku później. W późniejszym okresie opracowano teoretycznie dość szczegółowy opis oddziaływań neutrin z innymi cząstkami materii, który nadal jednak nie został dogłębnie przetestowany eksperymentalnie, szczególnie w obszarze wysokich energii charakterystycznych dla detektora FASERν. Jednym z głównych celów eksperymentu będzie sprawdzenie, czy dokładne pomiary własności neutrin w tym zakresie energii są zgodne z przewidywaniami teoretycznymi i naszym obecnym stanem wiedzy, czy też nadszedł czas na weryfikację tych poglądów.

Badanie neutrin jest jedną ze specjalności polskich fizyków i współpracujących kilku polskich ośrodków. Między innymi Warszawska Grupa Neutrinowa, której istotną część stanowią naukowcy z NCBJ, bierze udział w wielkim eksperymencie neutrinowym T2K w Japonii i przygotowuje kolejny eksperyment z planowanym jeszcze potężniejszym detektorem HyperKamiokande. W porównaniu z wielkimi eksperymentami neutrinowymi ulokowanymi w kopalniach jak T2K czy oceanach lub lodach Antarktydy, FASERν jest nową jakością i powinien dać naukowcom cenne oraz stosunkowo tanie narzędzie badania otaczającego nas świata.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Podczas seminarium zorganizowanego w CERN-ie naukowcy pracujący przy projekcie NA62, w ramach którego badane są rzadkie rozpady kaonów, poinformowali o jednoznacznym potwierdzeniu rejestracji ultrarzadkiego rozpadu kaonu dodatniego do dodatnio naładowanego pionu i parę neutrino-antyneutrino. Uczeni z NA62 już wcześniej obserwowali sygnały, świadczące o zachodzeniu takiego procesu, jednak teraz, po raz pierwszy, pomiary zostały dokonane z poziomem ufności 5σ, od którego możemy mówić o dokonaniu odkrycia.
      Zaobserwowane zjawisko, które zapisujemy jako K+→π+νν, to jeden z najrzadziej obserwowanych rozpadów. Model Standardowy przewiduje, że w ten sposób rozpada się mniej niż 1 na 10 miliardów kaonów dodatnich. Ta obserwacja to moment kulminacyjny projektu, który rozpoczęliśmy ponad dekadę temu. Obserwowanie zjawisk naturalnych, których prawdopodobieństwo wynosi 10-11 jest zarówno fascynujące, jak i wymagające. Wielki wysiłek, jaki włożyliśmy w badania, w końcu zaowocował obserwacją, dla której projekt NA62 powstał, mówi Giuseppe Ruggiero, rzecznik projektu badawczego.
      Po co jednak fizycy wkładają tyle wysiłku w obserwacje tak rzadko zachodzącego procesu? Otóż modele teoretyczne sugerują, że rozpad K+→π+νν jest niezwykle wrażliwy na wszelkie odchylenia od Modelu Standardowego, jest zatem jednym z najbardziej interesujących procesów dla poszukiwań zjawisk fizycznych wykraczających poza Model Standardowy.
      Uzyskany obecnie wynik jest o około 50% większy, niż zakłada to MS, ale wciąż mieści się w granicach niepewności. Dzięki zebraniu kolejnych danych naukowcy z NA62 będą w stanie w ciągu kilku lat przeprowadzić testy rozpadu pod kątem występowania tam zjawisk, których Model Standardowy nie opisuje. Poszukiwanie nowej fizyki w tym rozpadzie wymaga zgromadzenia większej ilości danych. Nasze obecne osiągnięcie to duży krok naprzód. Stanowi ono fundament dla kolejnych badań, dodaje Karim Massri z NA62.
      Grupa NA62 uzyskuje kaony kierując intensywną wiązkę protonów z Super Proton Synchrotron w CERN-ie na stacjonarny cel. W wyniku zderzenia w każdej sekundzie powstaje około miliarda cząstek, które są rejestrowane przez detektory. Dodatnie kaony stanowią około 6% z tych cząstek. NA62 dokładnie określa sposób rozpadu tych kaonów, rejestrując wszystkie powstające wówczas cząstki, z wyjątkiem neutrin. Ich obecność jest dedukowana z brakującej energii.
      Dla obecnie opisanego odkrycia kluczowe były dane zebrane w roku 2021 i 2022, które zgromadzono po udoskonaleniu detektorów. Dzięki temu NA62 może pracować z wiązkami o 30% bardziej intensywnymi. W połączeniu z nowymi technikami analitycznymi, naukowcy są w stanie prowadzić analizy o 50% szybciej, niż wcześniej, a jednocześnie tłumić sygnały, które są podobne. Nasza praca polega na zidentyfikowaniu 1 na 10 miliardów rozpadu K+ i upewnieniu się, że nie był to żaden z pozostałych 9 999 999 999, dodaje kierownik projektu, Joel Swallow.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Japoński akcelerator cząstek SuperKEKB pobił światowy rekord świetlności. Pracujący przy nim naukowcy obiecują, że to dopiero początek. W ciągu najbliższych lat chcą zwiększyć świetlność urządzenia aż 40-krotnie, co ma pozwolić zarówno na odkrycie ciemnej materii, jak i wyjście z fizyką poza Model Standardowy. Mamy nadzieję, że akcelerator pozwoli nam wykryć ciemną materię – o ile ona istnieje – i badać ją w niedostępny obecnie sposób, mówi profesor Kay Kinoshita z University of Cincinnati.
      Świetlność akceleratora to liczba kolizji, która w nim zachodzi. Podczas tych zderzeń powstają nowe cząstki. Im więc więcej zderzeń, tym więcej cząstek, więcej danych i większa szansa n a zarejestrowanie czegoś nowego.
      SuperKEKB zderza pozytony i elektrony przyspieszane w 3-kilometrowym tunelu. Akcelerator został uruchomiony w 2018 roku i naukowcy ciągle pracują nad zwiększaniem jego jasności. Profesor Alan Schwartz i jego studenci z University of Cincinnati zaprojektowali i zbudowali jeden z detektorów akceleratora. To krok milowy w projektowaniu akceleratorów. SuperKEKB wykorzystuje architekturę tzw. „nano strumieni”. W technice tej strumienie cząstek są ściskane wzdłuż osi pionowej, dzięki czemu są bardzo cienkie, wyjaśnia Schwartz. To pierwszy na świecie akcelerator, który korzysta z tej techniki.
      Ze względu na rozmiary cząstek, szansa, że dojdzie do zderzenia, jest niewielka. Im bardziej ściśnięty strumień, tym większe zagęszczenie cząstek i tym większe prawdopodobieństwo zderzeń. Obecnie wysokość wiązki w punkcie zderzenia wynosi 220 nanometrów. W przyszłości ma to być zaledwie 50 nanometrów, czyli około 1/1000 grubości ludzkiego włosa.
      Profesor Kay Kinoshita poświęciła całą swoją naukową karierę zagadnieniu zwiększania świetlności akceleratorów. Uczona pracuje nad tym zagadnieniem od 1982 roku. To bardzo interesujące, gdyż jest bardzo wymagające. Wiesz, że robisz coś, czego nikt nigdy nie zrobił, mówi.
      Poprzednik SuperKEKB, akcelerator KEKB, który działał w latach 1999–2010 w KEK (Organizacja Badań nad Akceleratorami Wysokich Energii), również był światowym rekordzistą. Urządzenie pracowało ze świetlnością 2,11x1034 cm-2s-1. Dopiero w 2018 roku rekord ten został pobity przez Wielki Zderzacz Hadronów, który osiągnął świetlność 2,14x1034 cm-2s-1. Rekord LHC nie utrzymał się długo, dnia 15 czerwca 2020 roku SuperKEKB osiągnął świetlność 2,22x1034 cm-2s-1. Już tydzień później, 21 czerwca naukowcy poinformowali o nowym rekordzie. Teraz SuperKEKB pracuje ze świetlnością wynoszącą 2,40x1034 cm-2s-1.
      W ciągu najbliższych lat świetlność SuperKEKB ma wzrosnąć 40-krotnie. Docelowo ma ona wynieść 8x1035 cm-2s-1.
      Sukces SuperKEKB to sukces międzynarodowej współpracy. Nadprzewodzące magnesy, które ostatecznie skupiają strumienie cząstek zostały zbudowane we współpracy z amerykańskimi Brookhaven National Laboratory oraz Fermi National Accelerator Laboratory. Systemy monitorowania kolizji to dzieło SLAC National Accelerator Laboratory i University of Hawaii. Naukowcy ze Szwajcarii (CERN), Francji (IJCLab), Chin (IHEP) i USA (SLAC) biorą udział w pracach i badaniach, w których wykorzystywany jest akcelerator. Wykorzystujący diament system monitorowania promieniowania oraz system przerywania wiązki to dzieło włoskich Narodowego Instytutu Fizyki Jądrowej oraz Uniwersytetu w Trieście, a system monitorowania jasności powstał w Rosji.
      Wiązki elektronów i pozytonów rozpędzane w SuperKEKB zderzają się w centrum detektora Belle II, który opisywaliśmy przed 2 laty. To niezwykłe urządzenie zostało zbudowane przez grupę 1000 fizyków i inżynierów ze 119 uczelni z 26 krajów świata. I to właśnie wewnątrz Belle II naukowcy mają nadzieję znaleźć ciemną materię i rozpocząć badania jej właściwości.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      O teleskopie Hubble'a słyszeli chyba wszyscy. Nic w tym dziwnego, gdyż jest to jeden z najważniejszych instrumentów naukowych wykorzystywanych obecnie przez człowieka. Niewiele osób jednak wie, że teleskopy wcale nie muszą spoglądać w niebo. Na Antarktydzie powstaje właśnie niezwykłe urządzenie. Teleskop IceCube (Kostka Lodu), jest budowany wewnątrz lodowej czapy pokrywającej południowy biegun naszej planety. Jego zadaniem jest wykrywanie neutrin.
      Neutrino
      Neutrino to jedna z cząstek elementarnych. Należy ona do grupy leptonów i wyróżniamy trzy typy neutrin: taonowe, mionowe oraz elektronowe. Neutrino ma zerowy ładunek elektryczny i niemal nie ma masy. Cząstka jest tak przenikliwa, że na przykład planety nie stanowią dla niej żadnej przeszkody. W każdej chwili przez nasze ciała, przez budynki i przez samą Ziemię przelatuje niezliczona liczba neutrin. Ich głównym źródłem jest oddziaływanie promieni kosmicznych w górnych warstwach atmosfery. Neutrina emitują też np. gwiazdy i reaktory atomowe.
      Istnienie neutrin zostało przewidziane teoretycznie w 1930 roku przez Wolfganga Pauliego, ale musiało minąć aż 26 lat zanim eksperymentalnie udowodniono, że Pauli się nie mylił.

      Cząsteczki te są bardzo łakomym kąskiem dla astronomów. Podróżują z prędkością światła od źródeł promieniowania, a na swej drodze nie napotykają niemal żadnych przeszkód. Neutrina powstają np. we wnętrzach gwiazd i bez najmniejszych problemów przemierzają przestrzeń kosmiczną. Badanie neutrin pozwala więc naukowcom wysnuć wnioski na temat samych źródeł, z których zostały wyemitowane.
      Z tego, co wiemy obecnie, zdecydowana większość istniejących neutrin pochodzi z samych początków wszechświata, powstały w momencie Wielkiego Wybuchu.
      IceCube
      Neutrina badane są od kilkudziesięciu lat i od lat naukowcy opracowują nowe metody ich obserwacji. Teoretycy od dawna uważają, że do obserwacji neutrin pochodzących z bardzo odległych źródeł potrzebny jest instrument długości co najmniej kilometra. Takim instrumentem ma być IceCube. Na miejsce jego budowy wybrano Antarktydę, gdyż jej lody są wyjątkowo czyste i wolne od źródeł promieniowania. Nic nie powinno więc zakłócać pracy niezwykłego teleskopu.
      Będzie się on składał z co najmniej 4200 modułów optycznych zawieszonych na 70 pionowych linach, a te z kolei będą umieszczone na głębokości od 1450 do 2450 metrów pod powierzchnią lodu. Na samej powierzchni znajdzie się kopuła zbudowana z co najmniej 280 modułów optycznych. Powierzchnia IceCube'a będzie wynosiła około 1 kilometra kwadratowego. Jak łatwo obliczyć, objętość tego niezwykłego instrumentu naukowego to około 2,5 kilometra sześciennego. Po ukończeniu prac IceCube będzie działał przez 20 lat.

      Uczeni mają nadzieję, że odpowie on na tak fundamentalne pytania, jak warunki fizyczne rozbłysków gamma czy też pozwoli zbadać naturę fotonów pochodzących z pozostałości po supernowej w gwiazdozbiorze Kraba oraz z nieodległych galaktyk. Być może IceCube pozwoli również potwierdzić teorię strun.
      Obecnie IceCube składa się z 40 lin. Do stycznia 2009 roku przybędzie 9 kolejnych. Rok później mają być już 63 liny, a w marcu 2010 roku urządzenie osiągnie pełną gotowość operacyjną. We wrześniu 2010 roku zakończony zostanie główny etap budowy IceCube'a.
      Obecnie budżet projektu wynosi 271 milionów dolarów. W pracach bierze udział około 200 naukowców i 29 instytucji.
      O skali przedsięwzięcia niech świadczą liczby. Wywiercenie w lodzie każdego z 70 otworów o średniej głębokości 2454 metrów trwa średnio 48 godzin (pierwszy otwór wiercono przez 57 godzin). W tym czasie usuwane jest 757 metrów sześciennych lodu i zużyciu ulega około 2400 litrów paliwa. W każdym otworze umieszczana jest lina. Operacja ta trwa 11 godzin. Praca nie jest łatwa, gdyż Antarktyda to najzimniejsze, najbardziej wietrzne i najbardziej suche miejsce na Ziemi. W niektórych jej punktach nie padało od tysięcy lat, a średnie temperatury na Biegunie Południowym wynoszą latem około -37 stopni Celsjusza. Rekord ciepła na Biegunie to -13,8 stopnia Celsjusza. Rekord zimna na Antarktydzie to -89 stopni Celsjusza.
      Najsilniejsze podmuchy wiatru zanotowano w lipcu 1972 roku. Naukowcy z francuskiej bazy Dumont d'Urville poinformowali wówczas, że wiatr wial z prędkością 320 kilometrów na godzinę. Na Antarktydzie znajduje się też największa pustynia na świecie, a rekordowy zanotowany spadek temperatury wyniósł 36 stopni w ciągu 12 minut.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badacze z Wielkiego Zderzacza Hadronów, pracujący przy eksperymencie LHCb poinformowali o zaobserwowaniu hipertrytona oraz antyhipertrytona. Ślady ponad 100 tych rzadkich hiperjąder znaleziono podczas analizy danych ze zderzeń protonów prowadzonych w latach 2016–2018. Rejestrowanie takich jąder to wisienka na torcie osiągnięć LHC, gdyż instrument nie został zaprojektowany do ich poszukiwania.
      Hiperjądro to takie jądro atomowe, w którym jeden z nukleonów (protonów lub neutronów), został zastąpiony przez hiperon, czyli barion zawierający kwark dziwny, ale nie zawierający ani kwarku b, ani kwarku powabnego. Czas życia hipertrytona i jego antycząstki wynosi około 240 pikosekund (ps) czyli 240 bilionowych części sekundy. Jak krótki to czas, niech świadczy fakt, że w tym czasie światło jest w stanie przebyć około 7 centymetrów.
      Zarejestrowany hipertryton jest zbudowany z protonu, neutronu i najlżejszego z hiperonów, hiperona Λ0 (lambda 0), a antyhipertryton zawiera ich antycząstki. Jako, że hipertryton i antyhipertryton zawierają hiperon, ich badaniem zainteresowana jest astrofizyka, gdyż tworzenie się hiperonów z kwarkiem dziwnym jest najbardziej korzystne energetycznie w wewnętrznych warstwach jądra gwiazd. Zatem poznanie sposobu powstawania hiperonów pozwoli na lepsze modelowanie jąder gwiazd.
      Równie interesujące dla badaczy kosmosu jest jeden z produktów rozpadu hipertrytona i jego antycząstki. Jest nim hel-3 – i, oczywiście, antyhel-3 – pierwiastek obecny w kosmosie, który może zostać wykorzystany do badania ciemnej materii.
      Z jednej strony jądra i antyjądra powstają w wyniku zderzeń materii międzygwiezdnej z promieniowaniem kosmicznym, z drugiej, mogą – przynajmniej teoretycznie – powstawać podczas anihilacji materii i antymaterii. Jeśli chcemy poznać dokładną liczbę jąder i antyjąder, które z kosmosu docierają do Ziemi, potrzebujemy precyzyjnych informacji na temat ich powstawania i anihilacji.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po czterech latach (ostatni stacjonarny finał był w 2019) spowodowanych pandemią tegoroczny Finał XVIII edycji konkursu Fizyczne Ścieżki powrócił do formuły stacjonarnej i odbył się w Narodowym Centrum Badań Jądrowych w Otwocku 20-21 kwietnia 2023 roku. W trakcie dwudniowego finału Konkursu, organizowanego przez Narodowe Centrum Badań Jądrowych i Instytut Fizyki Polskiej Akademii Nauk, zakwalifikowani do niego uczniowie zaprezentowali swoje prace w jednej z trzech kategorii: Pokaz Zjawiska Fizycznego, Praca Naukowa lub Esej. Podobnie jak na prawdziwym seminarium naukowym podczas Finału po prezentacji pracy jej autorzy odpowiadali na pytania Jury oraz osób zasiadających na widowni. Po obejrzeniu efektownych Pokazów Zjawisk Fizycznych, wysłuchaniu prezentacji Prac Naukowych oraz odczytu Esejów, jurorzy udali się na obrady, w wyniku których wyłonili laureatów Konkursu. Zwieńczeniem seminarium finałowego było uroczyste wręczenie uczniom i nauczycielom pamiątkowych dyplomów i nagród.
      Żaden konkurs nie budziłby emocji, gdyby nie możliwość zdobycia atrakcyjnych nagród. W przypadku Fizycznych Ścieżek za jedną z najważniejszych można uznać bezwarunkowy wstęp na wydziały fizyki wybranych uniwersytetów oraz wszystkie kierunki wybranych uczelni technicznych (więcej informacji można znaleźć na stronie Konkursu fizycznesciezki.pl lub stronach współpracujących uczelni). Wysiłek uczniów włożony w przygotowanie i zaprezentowanie pracy został doceniony przez pana Marszałka Adama Struzika, który dla laureatów ufundował nagrody finansowe. Symboliczne czeki w imieniu pana Marszałka wręczył jego reprezentant pan prezes Dariusz Grajda. Konkurs został również wsparty przez Starostę Otwockiego i Prezydenta Otwocka, którzy ufundowali nagrody w postaci książek dla uczniów i nauczycieli. Ponadto uczniowie oraz opiekunowie prac naukowych otrzymali nagrody rzeczowe zakupione dzięki darowiźnie Fundacji PGE.
      Podczas Gali Finałowej oprócz nagród konkursowych wręczono Nagrodę im. Prof. Ludwika Dobrzyńskiego – inicjatora i spiritus movens konkursu Fizyczne Ścieżki. Nagroda ta jest formą wyróżnienia dla nauczycieli i opiekunów naukowych, którzy wykazali się wyjątkowym zaangażowaniem w przygotowanie uczestników do Konkursu. W tym roku przyznano ją nauczycielom ze Słupska - pani Grażynie i Jarosławowi Linderom. Państwo Linder mogą się pochwalić licznymi finalistami i laureatami Konkursu. Wśród nich wielu zdecydowało się kontynuować swoje młodzieńcze zainteresowania, podejmując naukę na uczelniach wyższych na kierunkach nauk ścisłych lub inżynieryjnych.
      Poniżej pełna lista zwycięzców XVIII edycji konkursu Fizyczne Ścieżki:
      Kategoria: Pokaz Zjawiska Fizycznego
      I miejsce zajął:
      Paweł Wakuluk „Generator Marxa czyli wytwarzanie sztucznych błyskawic”
      II miejsce ex aequo zajęli:
      Łukasz Rogalski „Pokaz zjawisk fizycznych w tunelu aerodynamicznym”
      III LO im. Juliusza Słowackiego w Piotrkowie Trybunalskim
      oraz
      Joanna Tokarz, Anna Tokarz „Ze świecą w poszukiwaniu zjawisk fizycznych”
      I Liceum Ogólnokształcące im. Jana Smolenia w Bytomiu
      III miejsce ex aequo zajęli:
      Mateusz Bieniek, Norbert Majewski, Tomasz Cholewiński „Model akumulatora gazowego”
      Zespół Szkół Edukacji Technicznej w Łodzi
      oraz
      Aleksandra Solecka, Milena Bonk, Paweł Klamut „Gdzie pierogi nauczyły się pływać?”
      I Liceum Ogólnokształcące im. Komisji Edukacji Narodowej w Sanoku
      Kategoria: Praca Naukowa
      I miejsce zajął:
      Michał Mielnicki „Wpływ ciągłej wymiany dielektryka na pojemność kondensatora”
      V LO im. Augusta Witkowskiego w Krakowie
      II miejsce zajęli:
      Anita Godyń, Daniel Kmiecik „Jaśniej czy ciemniej? – niech rozstrzygną to pomiary fotometryczne”
      Zespół Szkół Ekonomiczno-Chemicznych w Trzebini
      W kategorii Esej:
      II miejsce ex aequo otrzymały:
      Aleksandra Badora „Dlaczego to fizyk może rozwiązać wielką zagadkę matematyczną?”
      Publiczne LO nr II z Oddziałami Dwujęzycznymi im. Marii Konopnickiej w Opolu
      oraz
      Magdalena Listek „Laboratorium o rozsuwanych ścianach”
      V LO im. Augusta Witkowskiego w Krakowie
      III miejsce otrzymała:
      Olga Ociepa „Postzubrinowskie wojny grawitacyjne”
      Waldorfskie Liceum Ogólnokształcące im. Cypriana Kamila Norwida w Bielsku-Białej

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...