Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

CERN zatwierdził eksperyment, którego współpomysłodawcą jest Polak

Recommended Posts

Europejska Organizacja Badań Jądrowych CERN pod Genewą zatwierdziła kilka dni temu nowy eksperyment, który będzie badał własności najlżejszych cząstek materii, tzw. neutrin. Jest to pierwszy tego typu eksperyment przy Wielkim Zderzaczu Hadronów (LHC), który rozpocznie nową erę badań nad neutrinami. W pracach nad projektem istotną rolę odegrał dr Sebastian Trojanowski z Narodowego Centrum Badań Jądrowych (NCBJ).

Planowany eksperyment FASERν (na końcu nazwy grecka mała litera „ni”) ma być nie tylko pierwszym takim detektorem w samym LHC, ale też w całej historii podobnych doświadczeń, w których dwa strumienie cząstek lecących w przeciwległych kierunkach zderzają się ze sobą. Otwiera to nową, fascynującą erę badań nad neutrinami, które są najbardziej nieuchwytnymi spośród znanych nam obecnie cząstek elementarnych.

Neutrina produkowane w LHC to najbardziej energetyczne neutrina wytworzone kiedykolwiek przez człowieka. Można je jedynie porównać do neutrin powstałych w ekstremalnych zjawiskach takich jak zderzenia wysoko energetycznych promieni kosmicznych z atmosferą ziemską. Eksperyment FASERν przy LHC umożliwi laboratoryjne badanie tych cząstek przy energiach, dla których jak dotąd nie było to możliwe.

Detektor FASERν będzie częścią większego, niedawno zatwierdzonego eksperymentu FASER, którego jednym z czterech pomysłodawców jest dr Sebastian Trojanowski związany z NCBJ oraz Uniwersytetem w Sheffield w Wielkiej Brytanii. FASERν to wyjątkowo mały detektor w porównaniu z typowymi eksperymentami neutrinowymi – mówi dr Trojanowski, który był bezpośrednio zaangażowany w prace przygotowawcze prowadzące do zatwierdzenia nowego detektora. Będzie to prostopadłościan o długości nieco ponad metra i szerokości jedynie 25cm. Tak niewielki rozmiar można było uzyskać dzięki precyzyjnemu dobraniu lokalizacji detektora, w miejscu gdzie trafia przeważająca część bardzo silnej wiązki neutrin produkowanych w LHC w punkcie kolizji protonów w detektorze ATLAS.

Instalację nowego detektora będzie można przeprowadzić bardzo szybko, a zbieranie pierwszych danych rozpocznie się wraz z ponownym uruchomieniem LHC już w 2021 roku. FASERν może również utorować drogę do innych eksperymentów neutrinowych w przyszłych zderzaczach cząstek, zaś rezultaty tych eksperymentów będą mogły zostać użyte podczas planowania przyszłych, znacznie większych detektorów neutrin – mówi dr Jamie Boyd, jeden z liderów projektu FASER, na co dzień pracujący w ośrodku CERN pod Genewą.

Choć nowy detektor FASERν jest osobnym instrumentem badawczym w stosunku do głównego detektora FASER zatwierdzonego wcześniej w tym roku, współgranie obydwu części eksperymentu może odegrać kluczową rolę w prowadzonych badaniach nad fizyką neutrin. Dodatkowo, w gronie kilku fizyków teoretyków z NCBJ oraz laboratorium SLAC w Stanach Zjednoczonych przeprowadziliśmy już pierwsze analizy ekscytujących perspektyw na odkrycie całkiem nowych cząstek elementarnych przy współudziale obu części eksperymentu FASER. Planujemy dalsze takie badania w przyszłości – wyjaśnia dr Trojanowski.

Badania wysoko energetycznych neutrin nie tylko pomogą nam lepiej zrozumieć przebieg burzliwych zdarzeń nieustannie zachodzących na styku atmosfery ziemskiej z przestrzenią kosmiczną, lecz również rzucą więcej światła na naturę oddziaływań tych trudnych do detekcji cząstek. Teoretyczne spekulacje dotyczące istnienia neutrin sięgają lat 30. XX wieku, ale pierwsza ich eksperymentalna obserwacja nastąpiła dopiero niemal ćwierk wieku później. W późniejszym okresie opracowano teoretycznie dość szczegółowy opis oddziaływań neutrin z innymi cząstkami materii, który nadal jednak nie został dogłębnie przetestowany eksperymentalnie, szczególnie w obszarze wysokich energii charakterystycznych dla detektora FASERν. Jednym z głównych celów eksperymentu będzie sprawdzenie, czy dokładne pomiary własności neutrin w tym zakresie energii są zgodne z przewidywaniami teoretycznymi i naszym obecnym stanem wiedzy, czy też nadszedł czas na weryfikację tych poglądów.

Badanie neutrin jest jedną ze specjalności polskich fizyków i współpracujących kilku polskich ośrodków. Między innymi Warszawska Grupa Neutrinowa, której istotną część stanowią naukowcy z NCBJ, bierze udział w wielkim eksperymencie neutrinowym T2K w Japonii i przygotowuje kolejny eksperyment z planowanym jeszcze potężniejszym detektorem HyperKamiokande. W porównaniu z wielkimi eksperymentami neutrinowymi ulokowanymi w kopalniach jak T2K czy oceanach lub lodach Antarktydy, FASERν jest nową jakością i powinien dać naukowcom cenne oraz stosunkowo tanie narzędzie badania otaczającego nas świata.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Badacze z Wielkiego Zderzacza Hadronów, pracujący przy eksperymencie LHCb poinformowali o zaobserwowaniu hipertrytona oraz antyhipertrytona. Ślady ponad 100 tych rzadkich hiperjąder znaleziono podczas analizy danych ze zderzeń protonów prowadzonych w latach 2016–2018. Rejestrowanie takich jąder to wisienka na torcie osiągnięć LHC, gdyż instrument nie został zaprojektowany do ich poszukiwania.
      Hiperjądro to takie jądro atomowe, w którym jeden z nukleonów (protonów lub neutronów), został zastąpiony przez hiperon, czyli barion zawierający kwark dziwny, ale nie zawierający ani kwarku b, ani kwarku powabnego. Czas życia hipertrytona i jego antycząstki wynosi około 240 pikosekund (ps) czyli 240 bilionowych części sekundy. Jak krótki to czas, niech świadczy fakt, że w tym czasie światło jest w stanie przebyć około 7 centymetrów.
      Zarejestrowany hipertryton jest zbudowany z protonu, neutronu i najlżejszego z hiperonów, hiperona Λ0 (lambda 0), a antyhipertryton zawiera ich antycząstki. Jako, że hipertryton i antyhipertryton zawierają hiperon, ich badaniem zainteresowana jest astrofizyka, gdyż tworzenie się hiperonów z kwarkiem dziwnym jest najbardziej korzystne energetycznie w wewnętrznych warstwach jądra gwiazd. Zatem poznanie sposobu powstawania hiperonów pozwoli na lepsze modelowanie jąder gwiazd.
      Równie interesujące dla badaczy kosmosu jest jeden z produktów rozpadu hipertrytona i jego antycząstki. Jest nim hel-3 – i, oczywiście, antyhel-3 – pierwiastek obecny w kosmosie, który może zostać wykorzystany do badania ciemnej materii.
      Z jednej strony jądra i antyjądra powstają w wyniku zderzeń materii międzygwiezdnej z promieniowaniem kosmicznym, z drugiej, mogą – przynajmniej teoretycznie – powstawać podczas anihilacji materii i antymaterii. Jeśli chcemy poznać dokładną liczbę jąder i antyjąder, które z kosmosu docierają do Ziemi, potrzebujemy precyzyjnych informacji na temat ich powstawania i anihilacji.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po czterech latach (ostatni stacjonarny finał był w 2019) spowodowanych pandemią tegoroczny Finał XVIII edycji konkursu Fizyczne Ścieżki powrócił do formuły stacjonarnej i odbył się w Narodowym Centrum Badań Jądrowych w Otwocku 20-21 kwietnia 2023 roku. W trakcie dwudniowego finału Konkursu, organizowanego przez Narodowe Centrum Badań Jądrowych i Instytut Fizyki Polskiej Akademii Nauk, zakwalifikowani do niego uczniowie zaprezentowali swoje prace w jednej z trzech kategorii: Pokaz Zjawiska Fizycznego, Praca Naukowa lub Esej. Podobnie jak na prawdziwym seminarium naukowym podczas Finału po prezentacji pracy jej autorzy odpowiadali na pytania Jury oraz osób zasiadających na widowni. Po obejrzeniu efektownych Pokazów Zjawisk Fizycznych, wysłuchaniu prezentacji Prac Naukowych oraz odczytu Esejów, jurorzy udali się na obrady, w wyniku których wyłonili laureatów Konkursu. Zwieńczeniem seminarium finałowego było uroczyste wręczenie uczniom i nauczycielom pamiątkowych dyplomów i nagród.
      Żaden konkurs nie budziłby emocji, gdyby nie możliwość zdobycia atrakcyjnych nagród. W przypadku Fizycznych Ścieżek za jedną z najważniejszych można uznać bezwarunkowy wstęp na wydziały fizyki wybranych uniwersytetów oraz wszystkie kierunki wybranych uczelni technicznych (więcej informacji można znaleźć na stronie Konkursu fizycznesciezki.pl lub stronach współpracujących uczelni). Wysiłek uczniów włożony w przygotowanie i zaprezentowanie pracy został doceniony przez pana Marszałka Adama Struzika, który dla laureatów ufundował nagrody finansowe. Symboliczne czeki w imieniu pana Marszałka wręczył jego reprezentant pan prezes Dariusz Grajda. Konkurs został również wsparty przez Starostę Otwockiego i Prezydenta Otwocka, którzy ufundowali nagrody w postaci książek dla uczniów i nauczycieli. Ponadto uczniowie oraz opiekunowie prac naukowych otrzymali nagrody rzeczowe zakupione dzięki darowiźnie Fundacji PGE.
      Podczas Gali Finałowej oprócz nagród konkursowych wręczono Nagrodę im. Prof. Ludwika Dobrzyńskiego – inicjatora i spiritus movens konkursu Fizyczne Ścieżki. Nagroda ta jest formą wyróżnienia dla nauczycieli i opiekunów naukowych, którzy wykazali się wyjątkowym zaangażowaniem w przygotowanie uczestników do Konkursu. W tym roku przyznano ją nauczycielom ze Słupska - pani Grażynie i Jarosławowi Linderom. Państwo Linder mogą się pochwalić licznymi finalistami i laureatami Konkursu. Wśród nich wielu zdecydowało się kontynuować swoje młodzieńcze zainteresowania, podejmując naukę na uczelniach wyższych na kierunkach nauk ścisłych lub inżynieryjnych.
      Poniżej pełna lista zwycięzców XVIII edycji konkursu Fizyczne Ścieżki:
      Kategoria: Pokaz Zjawiska Fizycznego
      I miejsce zajął:
      Paweł Wakuluk „Generator Marxa czyli wytwarzanie sztucznych błyskawic”
      II miejsce ex aequo zajęli:
      Łukasz Rogalski „Pokaz zjawisk fizycznych w tunelu aerodynamicznym”
      III LO im. Juliusza Słowackiego w Piotrkowie Trybunalskim
      oraz
      Joanna Tokarz, Anna Tokarz „Ze świecą w poszukiwaniu zjawisk fizycznych”
      I Liceum Ogólnokształcące im. Jana Smolenia w Bytomiu
      III miejsce ex aequo zajęli:
      Mateusz Bieniek, Norbert Majewski, Tomasz Cholewiński „Model akumulatora gazowego”
      Zespół Szkół Edukacji Technicznej w Łodzi
      oraz
      Aleksandra Solecka, Milena Bonk, Paweł Klamut „Gdzie pierogi nauczyły się pływać?”
      I Liceum Ogólnokształcące im. Komisji Edukacji Narodowej w Sanoku
      Kategoria: Praca Naukowa
      I miejsce zajął:
      Michał Mielnicki „Wpływ ciągłej wymiany dielektryka na pojemność kondensatora”
      V LO im. Augusta Witkowskiego w Krakowie
      II miejsce zajęli:
      Anita Godyń, Daniel Kmiecik „Jaśniej czy ciemniej? – niech rozstrzygną to pomiary fotometryczne”
      Zespół Szkół Ekonomiczno-Chemicznych w Trzebini
      W kategorii Esej:
      II miejsce ex aequo otrzymały:
      Aleksandra Badora „Dlaczego to fizyk może rozwiązać wielką zagadkę matematyczną?”
      Publiczne LO nr II z Oddziałami Dwujęzycznymi im. Marii Konopnickiej w Opolu
      oraz
      Magdalena Listek „Laboratorium o rozsuwanych ścianach”
      V LO im. Augusta Witkowskiego w Krakowie
      III miejsce otrzymała:
      Olga Ociepa „Postzubrinowskie wojny grawitacyjne”
      Waldorfskie Liceum Ogólnokształcące im. Cypriana Kamila Norwida w Bielsku-Białej

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      CERN podjął pierwsze praktyczne działania, których celem jest zbudowania następcy Wielkiego Zderzacza Hadronów (LHC). Future Circular Collider (FCC) ma mieć 91 kilometrów długości, a plany zakładają, że jego tunel będzie miał 5 metrów średnicy. Urządzenie będzie więc ponaddtrzykrotnie dłuższe od LHC. Akcelerator, który ma powstać w granicach Francji i Szwajcarii, będzie tak olbrzymi, by osiągnąć energię zderzeń sięgającą 100 TeV (teraelektronowoltów). Energia zderzeń w LHC wynosi 14 TeV.
      Specjaliści z CERN przeprowadzili już analizy teoretyczne, a obecnie rozpoczynają etap działań polowych. Miejsca, w których mają przebiegać FCC zostaną teraz poddane ocenie środowiskowej, a następnie przeprowadzone zostaną szczegółowe badania sejsmiczne i geotechniczne. Trzeba w nich będzie uwzględnić również osiem naziemnych ośrodków naukowych i technicznych obsługujących olbrzymią instalację.
      Po ukończeniu wspomnianych badań, a mogą one zająć kilka lat, 23 kraje członkowskie CERN podejmą ostateczną decyzję dotyczącą ewentualnej budowy FCC. Poznamy ją prawdopodobnie za 5–6 lat. W FCC mają być początkowo zderzane elektrony i pozytony, a następnie również hadrony.
      Zadaniem FCC ma być m.in. znalezienie dowodu na istnienie ciemnej materii, szukanie odpowiedzi na pytanie o przyczyny przewagi ilości materii nad antymaterią czy określenie masy neutrino.
      Fizycy przewidują, że możliwości badawcze Wielkiego Zderzacza Hadronów wyczerpią się około połowy lat 40. Problem z akceleratorami polega na tym, że niezależnie od tego, jak wiele danych dzięki nim zgromadzisz, natrafiasz na ciągle powtarzające się błędy. W latach 2040–2045 osiągniemy w LHC maksymalną możliwą precyzję. To będzie czas sięgnięcia po potężniejsze i jaśniejsze źródło, które lepiej pokaże nam kształt fizyki, jaką chcemy zbadać, mówi Patrick Janot z CERN.
      W 2019 roku szacowano, że koszt budowy FCC przekroczy 21 miliardów euro. Inwestycja w tak kosztowne urządzenie spotkała się z krytyką licznych specjalistów, którzy argumentują, że przez to może zabraknąć funduszy na inne, bardziej praktyczne, badania z dziedziny fizyki. Jednak zwolennicy FCC bronią projektu zauważając, iż wiele teoretycznych badań przekłada się na życie codzienne. Gdy stworzono działo elektronowe, powstało ono na potrzeby akceleratorów. Nikt nie przypuszczał, że dzięki temu powstanie telewizja. A gdy tworzona była ogólna teoria względności, nikomu nie przyszło do głowy, że będzie ona wykorzystywana w systemie GPS, zauważa Janot. Wśród innych korzyści zwolennicy budowy FCC wymieniają fakt, że zachęci on do trwającej dziesięciolecia współpracy naukowej. Zresztą już obecnie z urządzeń CERN korzysta ponad 600 instytucji naukowych i uczelni z całego świata.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Do końca maja potrwa modernizacja badawczego reaktora jądrowego MARIA. Jako przewidywany termin jego uruchomienia wskazywany jest przełom czerwca i lipca. Dr Marek Pawłowski, rzecznik Narodowego Centrum Badań Jądrowych (NCBJ), wyjaśnia, że napromienianie izotopów ma zostać wznowione od 1. cyklu pracy.
      Przerwa remontowa rozpoczęła się 5 września ubiegłego roku. Była ona podyktowana starzeniem się i brakiem części zamiennych. Dr Pawłowski wspomina również o konieczności dostosowania zbiorników na odpady ciekłe do nowych wymagań prawnych. Gdy prace modernizacyjne zostaną ukończone, rozpocznie się seria testów wszystkich  układów i urządzeń. Najpierw są one sprawdzane przy niepracującym reaktorze, a następnie gdy reaktor pracuje na minimalnej mocy. Gdy testy wypadną pomyślnie, NCBJ zwróci się do prezesa Państwowej Agencji Atomistyki o zgodę na uruchomienie reaktora. Dopiero po jej uzyskaniu MARIA będzie mogła podjąć pracę na nowo.
      Reaktor MARIA działa od grudnia 1974 roku. Jest urządzeniem doświadczalno-produkcyjnym i jednym z najważniejszych źródeł niektórych izotopów promieniotwórczych dla światowej medycyny. Na przykład w ubiegłym roku, dzięki błyskawicznej zmianie harmonogramu pracy MARII, udało się zapobiec światowym niedoborom medycznego molibdenu-99. MARIA, nazwany tak od imienia Marii Skłodowskiej-Curie, wykorzystywany jest też do badań materiałowych i technologicznych, domieszkowania materiałów półprzewodnikowych, neutronowej modyfikacji materiałów oraz badań fizycznych.


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Technicy z Fermi National Accelerator Laboratory ukończyli prototyp specjalnego nadprzewodzącego kriomodułu, jedynego takiego urządzenia na świecie. Projekt PIP-II, w którym udział biorą też polscy naukowcy, ma na celu zbudowanie najpotężniejszego na świecie źródła neutrin. Zainwestowała w nie również Polska.
      HB650 będzie najdłuższym i największym kriomodułem nowego akceleratora liniowego (linac). Wraz z trzema innymi będzie przyspieszał protony do 80% prędkości światła. Z linac protony trafią do dwóch kolejnych akceleratorów, tam zostaną dodatkowo przyspieszone i zamienione w strumień neutrin. Neturina te zostaną wysłane w 1300-kilometrową podróż przez skorupę ziemską, aż trafią do Deep Underground Neutrino Experiment and the Long Baseline Neutrino Facility w Lead w Dakocie Południowej.
      Prace nad nowatorskim kriomodułem rozpoczęły się w 2018 roku, w 2020 jego projekt został ostatecznie zatwierdzony i rozpoczęła się produkcja podzespołów. W styczniu 2022 roku w Fermilab technicy zaczęli montować kriomoduł. HB650 to 10-metrowy cylinder o masie około 12,5 tony. Wewnątrz znajduje się szereg wnęk wyglądających jak połączone ze sobą puszki po napojach. Wnęki wykonano z nadprzewodzącego niobu, który podczas pracy będzie utrzymywany w temperaturze 2 kelwinów. W tak niskiej temperaturze niob staje się nadprzewodnikiem, co pozwala efektywnie przyspieszyć protony.
      Żeby osiągnąć tak niską temperaturę wnęki będą zanurzone w ciekłym helu, nad którym znajdzie wiele warstw izolujących, w tym MLI, aluminium oraz warstwa próżni. Całość zamknięta jest w stalowej komorze próżniowej, która zabezpiecza wnęki przed wpływem pola magnetycznego Ziemi.
      Linac będzie przyspieszał protony korzystając z pola elektrycznego o częstotliwości 650 MHz. Wnętrze wnęk musiało zostać utrzymane w niezwykle wysokiej czystości, gdyż po złożeniu urządzenia nie ma możliwości ich czyszczenia, a najmniejsze nawet zanieczyszczenie zakłóciłoby pracę akceleratora. Czystość musiała być tak wysoka, że nie wystarczyło, iż całość prac przeprowadzano w cleanroomie. Wszelkie przedmioty znajdujące się w cleanroomie oraz stosowane procedury były projektowane z myślą o utrzymaniu jak najwyższej czystości. Pracownicy nie mogli na przykład poruszać się zbyt szybko, by nie wzbijać w powietrze ewentualnych zanieczyszczeń.
      Obecnie trwa schładzanie kriomodułu do temperatury 2 kelwinów. Naukowcy sprawdzają, czy całość wytrzyma. Nie bez powodu jest to prototyp. Chcemy dzięki niemu zidentyfikować wszelkie problemy, zobaczyć co do siebie nie pasuje, co nie działa, mówi Saravan Chandrasekaran z Fermilab. Po zakończeniu chłodzenia urządzenie zostanie poddane... testowi transportu. Kriomoduł trafi do Wielkiej Brytanii, a gdy wróci do Fermilab zostaną przeprowadzone testy, by upewnić się, że wszystko nadal działa.
      Gdy HB650 przejdzie pomyślnie wszystkie testy, rozpocznie się budowa właściwego kriomodułu. Wezmą w nim udział partnerzy projektu PIP-II (Photon Improvement Plan-II) z Polski, Indii, Francji, Włoch, Wielkiej Brytanii i USA.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...