Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Od bradykardii po tachykardię – po raz pierwszy zbadano puls płetwala błękitnego
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Największe zwierzę, jakie kiedykolwiek żyło na Ziemi, pochłania olbrzymią liczbę najmniejszych kawałków plastiku, donoszą naukowcy z Uniwersytetu Stanforda. Płetwal błękitny i inne walenie wchłaniają więcej mikroplastiku, niż dotychczas sądzono. I niemal cały mikroplastik, jaki trafia do ich organizmów, pochodzi z ich pokarmu, a nie z wody, którą filtrują.
Uczeni ze Stanforda opublikowali na łamach Nature Communications wyniki badań, w czasie których skupili się na płetwalach błękitnych, płetwalach zwyczajnych oraz humbakach i ilości mikroplastiku, który trafia do ich organizmów. Naukowcy stwierdzili, że zwierzęta żerujące u wybrzeży Kalifornii pożywiają się głównie na głębokościach od 50 do 250 metrów. To jednocześnie ten obszar wód oceanicznych, w którym występuje najwięcej mikroplastiku. Na podstawie badań uczeni oszacowali, że każdego dnia przeciętny płetwal błękitny pochłania około 10 milionów kawałków mikroplastiku.
Płetwale błękitne znajdują się niżej w łańcuchu pokarmowym, niż można by wnioskować z rozmiarów ich ciała. To oznacza, że są bliżej oceanicznego plastiku. Łączy je z nim jedno kryl. Kryl pochłania plastik, płetwale zjadają kryl, mówi współautor badań Matthew Savoca.
Humbaki żywią się głównie rybami i pochłaniają codziennie około 200 000 kawałków mikroplastiku, chociaż te osobniki, które jedzą głównie kryl, spożywają dziennie do 1 miliona fragmentów. Z kolei płetwale zwyczajne, których dietę stanowi i kryl i ryby, mogą codziennie wchłaniać od 3 do 10 milionów kawałków mikroplastiku. Savoca zauważa, że w jeszcze gorszej sytuacji są te zwierzęta, które żerują w bardziej zanieczyszczonych wodach, jak np. Morze Śródziemne.
Co więcej, mikroplastik trafia do organizmów waleni głównie z pożywieniem, a nie z filtrowaną przez nie wodą. A to dodatkowy powód do zmartwień. Specjaliści obawiają się, że przez mikroplastik walenie mogą nie otrzymywać odpowiedniej ilości składników spożywczych. Musimy przeprowadzić dodatkowe badania, by dowiedzieć się, czy kryl, który wchłonął mikroplastik, nie ma przypadkiem mniej tłuszczu, podobnie zresztą nie wiemy, czy mikroplastik zjadany przez ryby nie powoduje, że są one mniej pożywne. Pochłaniając mikroplastik zwierzęta te mogą bowiem otrzymywać sygnał, że już się najadły, stwierdza główna autorka badań, Shirel Kahane-Rapport. Jeśli ryby i kryl są mniej tłuste, oznacza to, że każde polowanie – które związane jest z dużym wydatkiem energetycznym – przynosi waleniom mniej kalorii, co może być dla nich szkodliwe. Jeśli obszar, w którym polują, jest pełen żywności, ale jest to żywność uboga w składniki odżywcze, to polowanie jest marnowaniem energii, zjadają śmieci. To tak, jakby trenować do maratonu, odżywiając się w tym czasie żelkami, dodaje Kahane-Rapport.
Goldbogen Lab, w którym prowadzono badania, od ponad dekady zbiera i analizuje dane dotyczące waleni. Naukowcy badają jak wiele walenie jedzą, w jaki sposób się odżywiają, dlaczego są tak duże, jak pracują ich serca. Teraz zakres badań rozszerzono o mikroplastik, który jest coraz poważniejszym problemem w morzach i oceanach. Mamy tutaj zwierzęta, których populacja z olbrzymim trudem odradza się po okresie polowań, a które muszą mierzyć się z wieloma innymi problemami wywoływanymi przez człowieka, piszą autorzy badań.
Problem plastiku w morskim łańcuchu pokarmowym znany jest od 50 lat. Dotychczas mikroplastik został znaleziony w organizmach co najmniej 1000 morskich gatunków. Jego wpływ na walenie jest szczególnie niepokojący, gdyż zwierzęta ta pochłaniają jego olbrzymie ilości.
Uczeni będą chcieli zbadać, co dzieje się z mikroplastikiem trafiającym do organizmów waleni. Może on podrażniać żołądek. Może trafiać do krwioobiegu. A może jest w całości wydalany. Tego wciąż nie wiemy, przyznaje Kahane-Rapport. Naukowcy zbadają też, jak mikroplastik wpływa na wartość odżywczą gatunków kluczowych nie tylko dla waleni, ale i innych zwierząt ważnych z ekologicznego punktu widzenia.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Serce nie jest w stanie regenerować się po uszkodzeniu. Dlatego dla kardiologii i kardiochirurgii ważne są wysiłki specjalistów z dziedziny inżynierii tkankowej, którzy usiłują opracować techniki regeneracji mięśnia sercowego, a w przyszłości stworzyć od podstaw całe serce. To jednak trudne zadanie, gdyż trzeba odtworzyć unikatowe struktury, przede wszystkim zaś spiralne ułożenie komórek. Od dawna przypuszcza się, że to właśnie taki sposób organizacji komórek jest niezbędny do pompowania odpowiednio dużej ilości krwi.
Bioinżynierom z Harvard John A. Paulson School of Engineering and Applied Sciences udało się stworzyć pierwszy biohybrydowy model komory ludzkiego serca ze spiralnie ułożonymi komórkami serca i wykazać przy tym, że przypuszczenia były prawdziwe. To właśnie takie spiralne ułożenie komórek znacząco zwiększa ilość krwi przepompowywanej przy każdym uderzeniu serca. To ważny krok, który przybliża nas do ostatecznego celu, jakim jest zbudowanie od podstaw serca zdatnego do transplantacji, mówi profesor Kit Parker, jeden z głównych autorów badań. Z ich wynikami możemy zapoznać się na łamach Science.
Fundamenty dla obecnych osiągnięć amerykańskich naukowców położył 350 lat temu angielski Richard Lower. Lekarz, wśród którego pacjentów znajdował się król Karol II, jako pierwszy zauważył i opisał w Tractatus de Corde, że włókna mięśnia sercowego ułożone są w kształt spirali. Przez kolejne wieki naukowcy coraz więcej dowiadywali się o sercu, jednak badanie spiralnego ułożenia jego komórek było bardzo trudne. W 1969 roku Edward Sallin z Wydziału Medycyny University of Alabama wysunął hipotezę, że to właśnie spiralne ułożenie komórek pozwala sercu na tak wydajną pracę. Jednak zweryfikowanie tej hipotezy nie było łatwe, gdyż bardzo trudno jest zbudować serca o różnych geometriach i ułożeniu włókien.
Naszym celem było zbudowanie modelu, na którym będziemy w stanie zweryfikować hipotezę Sallina i badać znaczenie spiralnej struktury włókien, stwierdza John Zimmerman z SEAS.
Naukowcy opracowali metodę o nazwie Focused Rotary Jet Spinning (FRJS). Urządzenie działa podobnie do maszyny produkującej watę cukrową. Znajdujący się w zbiorniku płynny biopolimer wydobywa się z niego przez niewielki otwór, wypychany na zewnątrz przez siły odśrodkowe działające na obracający się zbiornik. Po opuszczeniu zbiornika, z biopolimeru odparowuje rozpuszczalnik i materiał utwardza się, tworząc włóka. Odpowiednią formę włóknom nadaje zaś precyzyjnie kontrolowany strumień powietrza. Dzięki manipulowaniu tym strumieniem, można nadać włóknom odpowiednią strukturę, naśladującą strukturę włókien mięśnia sercowego. Dzięki FRJS możemy precyzyjnie odtwarzać złożone struktury, tworząc jedno- a nawet czterokomorowe struktury, dodaje Hubin Chang.
Gdy już w ten sposób odpowiednie struktury zostały utkane, na takie rusztowanie naukowcy nakładali na nie szczurze komórki mięśnia sercowego lub ludzkie komórki macierzyste uzyskane z kardiomiocytów. Tydzień później rusztowanie było pokryte wieloma warstwami kurczących się i rozkurczających komórek serca, których ułożenie naśladowało ułożenie włókien biopolimeru.
Naukowcy stworzyli dwie architektury komór serca. Jedną o spiralnie ułożonych włóknach, drugą o włókach ułożonych okrężnie. Następnie porównali deformację komory, tempo przekazywania sygnałów elektrycznych oraz ilość krwi wyrzucanej podczas skurczu. Okazało się, że komora o promieniście ułożonych włókach pod każdym z badanych aspektów przewyższa tę o ułożeniu okrężnym.
Co więcej, uczeni wykazali, że ich metoda może być skalowana nie tylko do rozmiarów ludzkiego serca, ale nawet do rozmiarów serca płetwala karłowatego. Z większymi modelami nie prowadzili testów, gdyż wymagałoby to zastosowania miliardów kardiomiocytów.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Uniwersytetu Harvarda i Emory University stworzyli pierwszą w pełni autonomiczną biohybrydową „rybę” zbudowaną z komórek ludzkiego mięśnia sercowego. Urządzenie pływa naśladując kurczenie się mięśni pracującego serca. To krok w kierunku zbudowania sztucznego serca z mięśni i stworzenia platformy do badania takich chorób, jak arytmia.
Naszym ostatecznym celem jest zbudowanie sztucznego serca, które mogłoby zastąpić nieprawidłowo rozwinięte serce u dzieci, mówi profesor Kit Parker z Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS). Większość prac związanych ze stworzeniem tkanki mięśniowej lub serca, w tym część prac prowadzonych przez nas, skupia się na skopiowaniu pewnych funkcji anatomicznych lub uzyskaniu prostego rytmu serca w sztucznej tkance. Tutaj zaś zaczynamy inspirować się biofizyką serca, co jest znacznie trudniejsze. Za wzór nie bierzemy samej budowy serca, a biofizyczne podstawy jego funkcjonowania. To je wykorzystaliśmy jako punkt wyjścia naszej pracy.
Naukowcy wykorzystali kardiomiocyty – komórki mięśnia sercowego odpowiadające za kurczenie się – i inspirowali się kształtem danio pręgowanego oraz ruchami, jakie wykonuje podczas pływania.
W przeciwieństwie do innych urządzeń, ogon biohybrydy składa się z dwóch warstw komórek. Gdy te po jednej stronie się kurczą, po drugiej stronie rozciągają się. Rozciągnięci prowadzi do otwarcia kanału białkowego, który z kolei prowadzi do kurczenia się i proces się powtarza. W ten sposób powstał system napędzający „rybę” przez ponad 100 dni.
Wykorzystując mechaniczno-elektryczne sygnały pomiędzy dwoma warstwami komórek, odtworzyliśmy cykl, w którym każdy skurcz automatycznie wywołuje reakcję w postaci rozciągania się strony przeciwnej. To pokazuje, jak ważne jest sprzężenie zwrotne w mechanizmie działania pomp mięśniowych, takich jak serce, stwierdza główny autor badań, doktor Keel Yong Lee z SEAS.
Naukowcy zaprojektowali też autonomiczny moduł kontrolny, który na podobieństwo rozrusznika serca kontroluje częstotliwość i rytm spontanicznych ruchów komórek. Dzięki współpracy dwóch warstw komórek oraz modułu kontrolnego uzyskano ciągły, spontaniczny i skoordynowany ruch płetwy ogonowej w przód i w tył.
Co więcej, działanie sztucznej ryby poprawia się z czasem. W ciągu pierwszego miesiąca, w miarę dojrzewania kardiomiocytów, poprawiła się amplituda ruchów, maksymalne tempo pływania oraz koordynacja mięśni. W końcu biohybryda pływała równie szybko i efektywnie jak prawdziwy danio pręgowany.
Teraz naukowcy przymierzają się do zbudowania bardziej złożonych biohybryd z komórek ludzkiego serca. To, że potrafię zbudować z klocków model serca, nie oznacza, że potrafię zbudować serce. Można na szalce Petriego wyhodować komórki komórki nowotworowe aż utworzą tętniącą grudkę i nazwać to organoidem. Jednak nic z tego nie oddaje fizyki systemu, który w czasie naszego życia kurczy się ponad miliard razy, a jednocześnie w locie odbudowuje swoje komórki. To jest prawdziwe wyzwanie. I tam właśnie chcemy dojść, mówią uczeni.
« powrót do artykułu -
przez KopalniaWiedzy.pl
University of Maryland Medical Center informuje o przeprowadzeniu pierwszego w historii udanego przeszczepu serca świni człowiekowi. Biorcą przeszczepu był 57-letni mężczyzna z terminalną chorobą serca, dla którego tego typu zabieg był jedyną opcją terapeutyczną. Po raz pierwszy w historii serce genetycznie zmodyfikowanej świni zostało przeszczepione człowiekowi i nie doszło do natychmiastowego odrzucenia.
Mam wybór, albo umrzeć, albo poddać się temu przeszczepowi. Chcę żyć. Wiem, że to strzał na oślep, ale to moja jedyna szansa, mówił David Bennett na dzień przed zabiegiem. Mężczyzna był wielokrotnie hospitalizowany.
FDA (Food and Drug Agency) wydała nadzwyczajną zgodę na przeprowadzenie zabiegu w ostatnim dniu ubiegłego roku. O zgodę taką można starać się w odniesieniu do eksperymentalnych produktów medycznych – w tym wypadku genetycznie zmodyfikowanego świńskiego serca – gdy ich wykorzystanie jest jedyną dostępną opcją u pacjenta z zagrażającą życiu chorobą.
To przełomowy zabieg, który przybliża nas do momentu rozwiązania problemu z brakiem organów do przeszczepu. Po prostu nie ma tylu dawców z nadającymi się do przeszczepu sercami, by zaspokoić długą listę oczekujących, mówi główny operator profesor Bartley P. Griffith. Postępujemy bardzo ostrożnie, ale też jesteśmy pełni nadziei, że ten pierwszy w historii zabieg da w przyszłości szansę pacjentom.
Profesor Griffith ściśle współpracował z profesorem Muhammadem M. Mohiuddinem, jednym z najlepszych na świecie specjalistów od przeszczepów organów zwierzęcych (ksenotransplantacji), który dołączył do University of Maryland przed pięcioma laty i wraz z prof. Griffinem stworzyli Cardiac Xenotransplantation Program. To kulminacja wieloletnich bardzo złożonych badań i doskonalenia techniki na zwierzętach, które przeżyły z organem obcego gatunku ponad 9 miesięcy. FDA wykorzystała nasze dane i dane na temat eksperymentalnej świni podczas procesu autoryzowania przeszczepu, mówi Mohiuddin.
Ksenotransplantacje mogą uratować tysiące ludzi, ale wiążą się z ryzykiem wystąpienia niebezpiecznej reakcji układu odpornościowego biorcy. Może dojść do gwałtownego natychmiastowego odrzucenia i śmierci pacjenta.
Pierwsze ksenotransplantacje były przeprowadzane już w latach 80. XX wieku, ale w dużej mierze porzucono je po słynnym przypadku Stephanie Fae Beauclair. Dziewczynka urodziła się ze śmiertelną wadą serca, przeszczepiono jej serce pawiana, jednak dziecko zmarło miesiąc później w wyniku reakcji układu odpornościowego. Od wielu jednak lat w kardiochirurgii z powodzeniem wykorzystuje się świńskie zastawki serca.
Pan Bennett trafił do szpitala na sześć tygodni przed zabiegiem. Został wówczas podłączony do ECMO. Nie kwalifikował się do tradycyjnego przeszczepu, a z powodu arytmii nie mógł mieć wszczepionego sztucznego serca.
Oprócz eksperymentalnej procedury pacjentowi podawany jest też, obok tradycyjnych środków, eksperymentalny lek zapobiegający odrzuceniu przeszczepu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
"Echoes" to interaktywna instalacja autorstwa Mathiasa Gmachla. Powstała z ok. 4,5 t stali i mierzy ponad 17 m. Przedstawia podświetlonego walenia. Gdy widz za bardzo się do niego zbliży i przekroczy pewną granicę, światła rzeźby przygasają, a ścieżka dźwiękowa przycicha do momentu, aż człowiek odejdzie na "bezpieczną" odległość. Zabieg ten ma pokazać, co się dzieje, gdy ludzie zawłaszczają przestrzeń, której inni mieszkańcy Ziemi potrzebują, by przetrwać.
Oceany mają swoje własne środowisko dźwiękowe, które jest kluczowe do tego, by zwierzęta morskie mogły wykorzystywać dźwięk do komunikacji, orientacji i unikania zagrożeń. Ludzka działalność staje się coraz głośniejsza, co [...] prowadzi do zmian fizjologicznych i behawioralnych u morskiej fauny. W niektórych przypadkach kończy się to śmiercią - podkreślono w opisie projektu, udostępnionym przez Gmachla na Facebooku.
Wymyśliłem, by umieścić zagrożone zwierzęta w mieście i stworzyć ludziom przestrzeń do refleksji nad kwestią naszej przyszłości. Uważam, że to prosty sposób na przekazanie, czym jest wyginięcie: wszystko cichnie i zanika - tłumaczy artysta.
Od początku prac Gmachl wiedział, że chce wzorować powstającą strukturę na rocznym płetwalu błękitnym. To krytyczny, związany z usamodzielnieniem, czas w życiu tego zwierzęcia.
Projekt powstał we współpracy z Dzielnicą Muzeów (MuseumsQuartier) w Wiedniu i Lugano Arte e Cultura. Do 11 czerwca instalacja znajdowała się w stolicy Austrii, a od 25 czerwca do 12 października walenia można było podziwiać w Parco Ciani w Lugano. Obecnie "Echoes: A Voice From Uncharted Waters" stanowi ozdobę 12. edycji festiwalu Luminothérapie w Montrealu.
O innych projektach tego twórcy można poczytać na stronie Loop.pH.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.