Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Odnalazła się gwiazda neutronowa, której poszukiwano od ponad 30 lat

Rekomendowane odpowiedzi

Astronomom udało się odnaleźć gwiazdę zaginioną od ponad 30 lat. W 1987 roku zaobserwowano eksplozję supernowej, a dane z badań neutrino wskazują, że pozostałością supernowej powinna być gwiazda neutronowa. Jednak od tamtej pory nie udało się jej odnaleźć.

SN 1987A jest najbliższą Ziemi supernową od 1604 roku. Znajduje się ona w Wielkim Obłoku Magellana, w odległości 163 000 lat świetlnych od Ziemi. Zwykle widzimy tylko bardzo jasne światło z odległej galaktyki, ale nie możemy zbyt dokładnie się temu przyjrzeć. Tutaj po raz pierwszy mamy supernową tak blisko, że możemy zajrzeć do jej wnętrza, mówi Phil Cigan, z Cardiff University. Jest też pierwszą nową supernową, którą współczesna astronomia może szczegółowo badać. Nic więc dziwnego, że budzi ona szczególne zainteresowanie, a zaginiona gwiazda neutronowa tylko napędza ciekawość.

Olbrzymia ilość pyłu i gazu nie pozwoliła dotychczas dojrzeć gwiazdy neutronowej. Teraz Cigan i jego koledzy odnaleźli jej sygnaturę za pomocą urządzenia ALMA (Atacama Large Milimeter/submilimeter Array), złożonego z 66 radioteleskopów w Chile.
Dzięki temu potężnemu narzędziu udało się zarejestrować obszar jaśniejszy i cieplejszy niż otoczenie. Znajduje się on dokładnie w miejscu, w którym powinna być gwiazda neutronowa. Przetestowaliśmy wiele innych scenariuszy istnienia tego obszaru, ale najbardziej prawdopodobny jest ten mówiący o istnieniu tam gwiazdy neutronowej, która podgrzewa otaczający ją pył i gaz, powodując ich świecenie, wyjaśnia Cigan.

Uczony mówi, że obecnie nie jesteśmy w stanie bezpośrednio zobaczyć gwiazdy neutronowej pozostałej po ekplozji SN 1987A. Jednak w ciągu 50–100 lat gaz i pył powinny na tyle się rozproszyć, że ją zobaczymy. Wówczas astronomowie będą mogli zbadać ją bardziej szczegółowo, co z kolei pozwoli nam lepiej zrozumieć ewolucję supernowych.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dzisiejsza technologia pozwala na tak wiele w naszej sferze polarnej, niesamowite

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Northwestern University są pierwszymi, którym udało się zaobserwować gwiazdę progenitorową supernowej w zakresie średniej podczerwieni. Obserwacje, dokonane za pomocą Teleskopu Webba w połączeniu z analizą archiwalnych obrazów z Teleskopu Hubble'a, dają nadzieję na rozwiązanie zagadki masywnych czerwonych nadolbrzymów. Astronomowie od dekad zastanawiają się, dlaczego masywne czerwone nadolbrzymy rzadko eksplodują, podczas gdy modele teoretyczne przewidują, że powinny one stanowić większość supernowych Typu II, powstających poprzez zapadnięcie się jądra masywnej gwiazdy.
      Teleskop Webba sfotografował masywnego czerwonego nadolbrzyma zasłoniętego przez gęstą warstwę pyłu. Zatem tego typu gwiazdy eksplodują, ale dotychczas nie mogliśmy tych eksplozji obserwować, gdyż gęsty pył zasłaniał nam widok. Dopiero Teleskop Webba jest w stanie przebić się przez ten pył i wyjaśnić pozorną sprzeczność pomiędzy teorią a obserwacjami.
      Naukowcy, korzystając z All-Sky Automated Survey of Supernovae, najpierw odkryli supernową SN2025pht. Zauważyli ją 29 czerwca bieżącego roku. Znajduje się ona w pobliskiej galaktyce NGC 1637, oddalonej od Ziemi o 40 milionów lat świetlnych. Porównując obrazy galaktyki wykonane przez Hubble'a i JWST odnaleźli gwiazdę progenitorową (gwiazdę macierzystą) supernowej. Okazało się, że jest ona niezwykle jasna i świeci na czerwono. Mimo, że jej jasność była 100 000 razy większa od jasności Słońca, większość światła była blokowana przez pył. Tak bardzo blokował on blask gwiazdy, że na zdjęciach w zakresie światła widzialnego wydawała się ona 100-krotnie ciemniejsza, niż była w rzeczywistości. Jako, że pył blokuje głównie krótszy zakres fal, światło niebieskie, gwiazda wydawała się też wyjątkowo czerwona. To najbardziej czerwony i otoczony najgęstszą zasłoną pyłu czerwony nadolbrzym, który zmienił się w supernową, stwierdzają badacze.
      Czerwone nadolbrzymy to jedne z największych gwiazd we wszechświecie. Gdy jądro takiej gwiazdy się zapada, pojawia się supernowa Typu II, a wynikiem jest eksplozji jest gwiazda neutronowa lub czarna dziura. SN2025pht wydawała się znacznie bardziej czerwona niż wszystkie inne czerwone nadolbrzymy, o których wiemy, że zamieniły się w supernowe. To zaś oznacza, że wcześniejsze eksplozje mogły być znacznie bardziej jasne, ale nie mieliśmy wówczas takich możliwości obserwacyjnych, jakie daje JWST, nie mogliśmy więc tak dobrze zobaczyć ich przez chmury pyłu.
      Obecność tego pyłu tłumaczy, dlaczego astronomowie mieli problemy z zobaczeniem czerwonych nadolbrzymów będących gwiazdami progenitorowymi supernowych. Większość gwiazd, które zamieniają się w supernową, należy do najjaśniejszych obiektów na niebie. Powinniśmy więc je z łatwością zauważyć. Astronomowie przypuszczają jednak, że najbardziej masywne stare gwiazdy mogą znajdować się w środowisku pełnym pyłu. Może być go tak dużo, że mimo olbrzymiej jasności tych gwiazd, niemal nie jesteśmy w stanie ich zobaczyć. Dokonane właśnie odkrycie potwierdza tę hipotezę. Jednocześnie wyjaśnia to, dlaczego tak trudno jest obserwować czerwone nadolbrzymy i ich eksplozje.
      Badania wykazały coś jeszcze. Czerwone nadolbrzymy emitują bogaty w tlen pył krzemionkowy. Jednak w przypadku SN2025pht pył był bogaty w węgiel. Zdaniem naukowców wskazuje to, że w ostatnich latach życia gwiazdy potężne prądy konwekcyjne wynoszą z wnętrza na powierzchnię węgiel, co zmienia skład chemiczny pyłu.
      Opis badań został opublikowany w The Astrophysical Journal Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Northwestern University są pierwszymi, którym udało się zaobserwować gwiazdę progenitorową supernowej w zakresie średniej podczerwieni. Obserwacje, dokonane za pomocą Teleskopu Webba w połączeniu z analizą archiwalnych obrazów z Teleskopu Hubble'a, dają nadzieję na rozwiązanie zagadki masywnych czerwonych nadolbrzymów. Astronomowie od dekad zastanawiają się, dlaczego masywne czerwone nadolbrzymy rzadko eksplodują, podczas gdy modele teoretyczne przewidują, że powinny one stanowić większość supernowych Typu II, powstających poprzez zapadnięcie się jądra masywnej gwiazdy.
      Teleskop Webba sfotografował masywnego czerwonego nadolbrzyma zasłoniętego przez gęstą warstwę pyłu. Zatem tego typu gwiazdy eksplodują, ale dotychczas nie mogliśmy tych eksplozji obserwować, gdyż gęsty pył zasłaniał nam widok. Dopiero Teleskop Webba jest w stanie przebić się przez ten pył i wyjaśnić pozorną sprzeczność pomiędzy teorią a obserwacjami.
      Naukowcy, korzystając z All-Sky Automated Survey of Supernovae, najpierw odkryli supernową SN2025pht. Zauważyli ją 29 czerwca bieżącego roku. Znajduje się ona w pobliskiej galaktyce NGC 1637, oddalonej od Ziemi o 40 milionów lat świetlnych. Porównując obrazy galaktyki wykonane przez Hubble'a i JWST odnaleźli gwiazdę progenitorową (gwiazdę macierzystą) supernowej. Okazało się, że jest ona niezwykle jasna i świeci na czerwono. Mimo, że jej jasność była 100 000 razy większa od jasności Słońca, większość światła była blokowana przez pył. Tak bardzo blokował on blask gwiazdy, że na zdjęciach w zakresie światła widzialnego wydawała się ona 100-krotnie ciemniejsza, niż była w rzeczywistości. Jako, że pył blokuje głównie krótszy zakres fal, światło niebieskie, gwiazda wydawała się też wyjątkowo czerwona. To najbardziej czerwony i otoczony najgęstszą zasłoną pyłu czerwony nadolbrzym, który zmienił się w supernową, stwierdzają badacze.
      Czerwone nadolbrzymy to jedne z największych gwiazd we wszechświecie. Gdy jądro takiej gwiazdy się zapada, pojawia się supernowa Typu II, a wynikiem jest eksplozji jest gwiazda neutronowa lub czarna dziura. SN2025pht wydawała się znacznie bardziej czerwona niż wszystkie inne czerwone nadolbrzymy, o których wiemy, że zamieniły się w supernowe. To zaś oznacza, że wcześniejsze eksplozje mogły być znacznie bardziej jasne, ale nie mieliśmy wówczas takich możliwości obserwacyjnych, jakie daje JWST, nie mogliśmy więc tak dobrze zobaczyć ich przez chmury pyłu.
      Obecność tego pyłu tłumaczy, dlaczego astronomowie mieli problemy z zobaczeniem czerwonych nadolbrzymów będących gwiazdami progenitorowymi supernowych. Większość gwiazd, które zamieniają się w supernową, należy do najjaśniejszych obiektów na niebie. Powinniśmy więc je z łatwością zauważyć. Astronomowie przypuszczają jednak, że najbardziej masywne stare gwiazdy mogą znajdować się w środowisku pełnym pyłu. Może być go tak dużo, że mimo olbrzymiej jasności tych gwiazd, niemal nie jesteśmy w stanie ich zobaczyć. Dokonane właśnie odkrycie potwierdza tę hipotezę. Jednocześnie wyjaśnia to, dlaczego tak trudno jest obserwować czerwone nadolbrzymy i ich eksplozje.
      Badania wykazały coś jeszcze. Czerwone nadolbrzymy emitują bogaty w tlen pył krzemionkowy. Jednak w przypadku SN2025pht pył był bogaty w węgiel. Zdaniem naukowców wskazuje to, że w ostatnich latach życia gwiazdy potężne prądy konwekcyjne wynoszą z wnętrza na powierzchnię węgiel, co zmienia skład chemiczny pyłu.
      Opis badań został opublikowany w The Astrophysical Journal Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Northwestern University są pierwszymi, którym udało się zaobserwować gwiazdę progenitorową supernowej w zakresie średniej podczerwieni. Obserwacje, dokonane za pomocą Teleskopu Webba w połączeniu z analizą archiwalnych obrazów z Teleskopu Hubble'a, dają nadzieję na rozwiązanie zagadki masywnych czerwonych nadolbrzymów. Astronomowie od dekad zastanawiają się, dlaczego masywne czerwone nadolbrzymy rzadko eksplodują, podczas gdy modele teoretyczne przewidują, że powinny one stanowić większość supernowych Typu II, powstających poprzez zapadnięcie się jądra masywnej gwiazdy.
      Teleskop Webba sfotografował masywnego czerwonego nadolbrzyma zasłoniętego przez gęstą warstwę pyłu. Zatem tego typu gwiazdy eksplodują, ale dotychczas nie mogliśmy tych eksplozji obserwować, gdyż gęsty pył zasłaniał nam widok. Dopiero Teleskop Webba jest w stanie przebić się przez ten pył i wyjaśnić pozorną sprzeczność pomiędzy teorią a obserwacjami.
      Naukowcy, korzystając z All-Sky Automated Survey of Supernovae, najpierw odkryli supernową SN2025pht. Zauważyli ją 29 czerwca bieżącego roku. Znajduje się ona w pobliskiej galaktyce NGC 1637, oddalonej od Ziemi o 40 milionów lat świetlnych. Porównując obrazy galaktyki wykonane przez Hubble'a i JWST odnaleźli gwiazdę progenitorową (gwiazdę macierzystą) supernowej. Okazało się, że jest ona niezwykle jasna i świeci na czerwono. Mimo, że jej jasność była 100 000 razy większa od jasności Słońca, większość światła była blokowana przez pył. Tak bardzo blokował on blask gwiazdy, że na zdjęciach w zakresie światła widzialnego wydawała się ona 100-krotnie ciemniejsza, niż była w rzeczywistości. Jako, że pył blokuje głównie krótszy zakres fal, światło niebieskie, gwiazda wydawała się też wyjątkowo czerwona. To najbardziej czerwony i otoczony najgęstszą zasłoną pyłu czerwony nadolbrzym, który zmienił się w supernową, stwierdzają badacze.
      Czerwone nadolbrzymy to jedne z największych gwiazd we wszechświecie. Gdy jądro takiej gwiazdy się zapada, pojawia się supernowa Typu II, a wynikiem jest eksplozji jest gwiazda neutronowa lub czarna dziura. SN2025pht wydawała się znacznie bardziej czerwona niż wszystkie inne czerwone nadolbrzymy, o których wiemy, że zamieniły się w supernowe. To zaś oznacza, że wcześniejsze eksplozje mogły być znacznie bardziej jasne, ale nie mieliśmy wówczas takich możliwości obserwacyjnych, jakie daje JWST, nie mogliśmy więc tak dobrze zobaczyć ich przez chmury pyłu.
      Obecność tego pyłu tłumaczy, dlaczego astronomowie mieli problemy z zobaczeniem czerwonych nadolbrzymów będących gwiazdami progenitorowymi supernowych. Większość gwiazd, które zamieniają się w supernową, należy do najjaśniejszych obiektów na niebie. Powinniśmy więc je z łatwością zauważyć. Astronomowie przypuszczają jednak, że najbardziej masywne stare gwiazdy mogą znajdować się w środowisku pełnym pyłu. Może być go tak dużo, że mimo olbrzymiej jasności tych gwiazd, niemal nie jesteśmy w stanie ich zobaczyć. Dokonane właśnie odkrycie potwierdza tę hipotezę. Jednocześnie wyjaśnia to, dlaczego tak trudno jest obserwować czerwone nadolbrzymy i ich eksplozje.
      Badania wykazały coś jeszcze. Czerwone nadolbrzymy emitują bogaty w tlen pył krzemionkowy. Jednak w przypadku SN2025pht pył był bogaty w węgiel. Zdaniem naukowców wskazuje to, że w ostatnich latach życia gwiazdy potężne prądy konwekcyjne wynoszą z wnętrza na powierzchnię węgiel, co zmienia skład chemiczny pyłu.
      Opis badań został opublikowany w The Astrophysical Journal Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Masa neutrina jest co najmniej milion razy mniejsza niż masa elektronu, informują naukowcy z Karlsruhe Tritium Neutrino (KATRIN). Badania określiły nową górną granicę możliwej masy neutrino na podstawie 36 milionów pomiarów. Dzięki nim wiemy, że wynosi ona nie więcej niż 0,45 elektronowolta (eV). Masa elektronu, kolejnej z najlżejszych cząstek elementarnych, to 511 000 elektronowoltów.
      Neutrino jest jedyną cząstką elementarną, której masy nie znamy. Zdobycie wiedzy na jej temat pozwoli na zbadanie, w jaki sposób neutrina nabywają masę. Czy – jak inne cząstki – dzięki oddziaływaniu z polem Higgsa, czy też w jakiś inny, nieznany dotychczas sposób. Poznanie masy neutrino powinno też zdradzić, w jaki sposób neutrina narodziły się w czasie Wielkiego Wybuchu i jak wpłynęły na formowanie się galaktyk.
      Nowa górna granica masy oznacza doprecyzowanie wcześniejszych badań przeprowadzonych przez KATRIN. W 2022 roku naukowcy pracujący przy tym eksperymencie stwierdzili, że górną granicą masy neutrino jest 0,8 eV. Teraz międzynarodowy zespół złożony z ponad 140 naukowców przeanalizował dane z 259 dni pracy KATRIN i jeszcze bardziej doprecyzował pomiary.
      Eksperyment KATRIN Collaboration wykorzystuje rozpad beta trytu. Podczas niego dochodzi do emisji elektronu i antyneutrina. Antycząstki mają taką samą masę jak odpowiadające im cząstki, więc badania antyneutrina pozwalają określić masę neutrina. Jednak neutrina niemal nie wchodzą w interakcje z materią. Ich badanie (i badanie antyneutrin) jest niezwykle trudne. W ramach eksperymentu KATRIN badany jest więc elektron, nie neutrino.
      Rozpad beta trytu to jeden z najmniej energetycznych rozpadów beta. Emitowane w jego trakcie elektron i neutrino unoszą łącznie 18,6 keV energii. Elektron trafia do 200-tonowego spektroskopu długości 23 metrów, o którego niezwykłym transporcie na miejsce montażu informowaliśmy kilka lat temu. Spektroskop bada widmo energii elektronu, jeśli precyzyjnie je poznamy, będziemy wiedzieli ile brakuje ze wspomnianych 18,6 keV, zatem ile energii przypadło na neutrino. Brzmi to prosto, ale jest niezwykle skomplikowanym zadaniem.
      Eksperyment KATRIN zakończy działanie jeszcze w bieżącym roku. Naukowcy będą wówczas dysponowali danymi zebranymi z 1000 dni. Spodziewają się, że obniżą górną granicę masy neutrino do 0,3 eV, a może nawet do 0,2 eV. To i dobra, i zła wiadomość. Coraz lepiej poznajemy bowiem masę neutrino, ale nie znamy jej dokładnej wartości. Gdyby było to bliżej 1 eV, to eksperymenty takie jak KATRIN mogłyby dać nam ostateczną odpowiedź. Jednak teraz wiemy już, że potrzebne będą znacznie bardziej precyzyjne urządzenia, niż te, którymi obecnie dysponujemy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W próbkach pobranych z dna Pacyfiku występuje niespodziewanie dużo berylu-10, informują naukowcy z Niemiec i Australii. Ten rzadki izotop powstaje w atmosferze pod wpływem promieniowania kosmicznego i dostarcza cennych informacji na temat geologicznej historii Ziemi. Jego większa od spodziewanej akumulacja na dnie oceanu może mieć związek ze zmianami prądów lub zjawiskami astrofizycznymi, które miały miejsce około 10 milionów lat temu. Nadmiarowy beryl może być znacznikiem, dzięki któremu będziemy mogli bardziej precyzyjnie opisać historię geologiczną naszej planety.
      Izotopy promieniotwórcze, jak beryl-10, są wykorzystywane do datowania. Najbardziej znanym z nich jest węgiel-14. Jednak metoda radiowęglowa może być wykorzystywana do datowania próbek nie starszych niż około 50 tysięcy lat. Aby datować starsze próbki potrzebujmy innych izotopów, takich jakich beryl-10. Powstaje on w górnych partiach atmosfery, gdy promienie kosmiczne wchodzą w interakcje z tlenem i azotem. Później wraz z deszczem 10Be opada na powierzchnię planety i może akumulować się na dnie oceanów. Czas jego połowicznego rozpadu wynosi 1,4 miliona lat, co pozwala na datowanie próbek starszych niż 10 milionów lat.
      Niedawno naukowcy z Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Uniwersytetu Technicznego w Dreźnie i Austalijskiego Uniwersytetu Narodowego prowadzili szczegółowe analizy próbek z dna Pacyfiku. Wykorzystali akceleratorową spektrometrię mas do oceny zawartości berylu-10. A gdy sprawdzili uzyskane wyniki, czekała ich niespodzianka. W próbce sprzed około 10 milionów lat znaleźliśmy niemal dwukrotnie więcej 10Be niż się spodziewaliśmy. To nieznana dotychczas anomalia, mówi doktor Dominik Koll z HZDR. Uczeni, by upewnić się, że nie doszło do zanieczyszczenia, poddali podobne analizie inne próbki i uzyskali takie same wyniki.
      Anomalia taka wymaga wyjaśnienia. Doktor Koll ma dwie hipotezy. Jedna z nich związana jest z cyrkulacją oceaniczną wokół Antarktyki. Przypuszcza się, że 10–12 milionów lat temu doszło tam do znacznych zmian rozkładu prądów morskich. To mogło spowodować, że przez pewien czas dystrybucja 10Be była nierównomierna i spowodowało to szczególnie dużą koncentrację tego pierwiastka na Pacyfiku.
      Druga z hipotez mówi, że przed 10 milionami lat promieniowanie kosmiczne stało się bardziej intensywne, na przykład w wyniku wybuchu pobliskiej supernowej. Ewentualnie Układ Słoneczny mógł przejściowo utracić swoją warstwę ochronną – heliosferę – na przykład w wyniku kolizji z gęstą chmurą międzygwiezdną. Jedynie dodatkowe pomiary berylu pokażą, czy anomalia spowodowana jest zmianą rozkładu prądów oceanicznych czy wydarzeniem astrofizycznym, mówi Koll. Dlatego chcemy w przyszłości przeanalizować więcej próbek i mamy nadzieję, że inne zespoły naukowe zrobią to samo, dodaje.
      Jeśli do podobnej anomalii doszło na całej planecie, będzie to oznaczało, że jest ona skutkiem tego, co stało się w przestrzeni kosmicznej. Jeśli występuje tylko lokalnie, prawdopodobnie winna jest zmiana prądów oceanicznych.
      Zauważony właśnie nadmiar berylu może być niezwykle przydatny w datowaniu geologicznym. Gdy bowiem porównuje się różne zestawy danych głównym problemem konieczność istnienia uniwersalnych znaczników czasowych, które pozwolą zsynchronizować dane. Dla okresów liczonych w milionach lat takie kosmogeniczne znaczniki jeszcze nie istnieją. Ta anomalia może być pierwszym z nich, wyjaśnia Koll.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...